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Abstract

In the present paper, we derive certain new argument properties of
a class of multivalent analytic functions defined in an open unit disk by
using a theorem recently established by A. Y. Lashin in 2004. Certain
intersting (known or new) results are derived in the form of corollaries
from our main results.
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1. Introduction

Let A(p) denote the class of functions of the form:

f(z) = zp +
∞∑

k=p+1

akz
k, (p ∈ N), (1.1)
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which are analytic in the open unit disc ∆ := {z : |z| < 1}. For two functions
f(z) and g(z) ∈ A(p) , the Hadamard product (or convolution) is defined by

(f ∗ g)(z) := zp +
∞∑

k=p+1

akbkz
k =: (g ∗ f)(z), (1.2)

where

g(z) = zp +
∞∑

k=p+1

bkz
k (p ∈ N). (1.3)

For f(z) ∈ A(p), we consider following p-modification of the familiar Jung-
Kim-Srivastava integral operator:

Iσf(z) =
(p+ 1)σ

zΓ(σ)

z∫
0

(
log

z

t

)σ−1

f(t)dt, (1.4)

= zp +
∞∑

n=p+1

(
p+ 1

n+ 1

)σ
anz

n σ > 0. (1.5)

Obviously
I0f(z) ≡ f(z). (1.6)

For the p-modified Jung-Kim-Srivastava integral operator, we easily get

z[Iσf(z)]
′
= (p+ 1)Iσ−1f(z)− Iσf(z). (1.7)

Many classes of analytic functions defined by the p-modified Jung-Kim-Srivastava
integral operator (1.4) were studied earlier by Shams et al. [6], Liu [4] and
Patel and Mohanty [5].
In this paper, we derive certain argument properties of analytic functions de-
fined by means of the p-modified Jung-Kim-Srivastava integral operator (1.4).
In order to prove our main results, we shall require the following result.

Lemma 2.1 [3]. Let p(z) be analytic in ∆, with p(0) = 1, and p(z) 6= 0
(z ∈ ∆). Further suppose that α, β ∈ R+ and

|arg(p(z) + βzp′(z))| < π

2
(α +

2

π
tan−1β), (α > 0, β > 0), (2.1)

then
|arg(p(z))| < π

2
α for z ∈ ∆. (2.2)
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2. Main Results

Theorem 3.1. If f(z) ∈ A(p) satisfies the condition∣∣∣∣{Iσf(z)

Iσg(z)

}γ {
1 +

λ

p

(
Iσ−1f(z)

Iσf(z)
− I

σ−1g(z)

Iσg(z)

)}∣∣∣∣ < π

2
α+tan−1

(
λ

p(p+ 1)
α

)
,

(3.1)
then ∣∣∣∣{Iσf(z)

Iσg(z)

}γ∣∣∣∣ < π

2
α (3.2)

where α, β, γ, σ ∈ R+, λ ≥ 0 and z ∈ ∆.
Proof. Define a function

p(z) =

{
Iσf(z)

Iσg(z)

}γ
, γ 6= 0 (3.3)

then p(z) = 1+ c1z+ c2z
2 + .............. which is analytic in ∆ with p(0) = 1 and

p(z) 6= 0 (z ∈ ∆).
Diffrentiating (2.3) logarithmically, we get

z p′(z)

p(z)
= γ

[
z [Iσf(z)]

′

Iσf(z)
− z [Iσg(z)]

′

Iσg(z)

]
. (3.4)

Now making use of identity (1.7) in (3.4), we easily get

p(z) +
λ

γp(p+ 1)
zp′(z) =

{
Iσf(z)

Iσg(z)

}γ {
1 +

λ

p

(
Iσ−1g(z)

Iσg(z)
− I

σ−1f(z)

Iσf(z)

)}
,

(3.5)
and the statement of the Theorem 3.1 directly follows from Lemma 2.1.

Setting γ = 1 and g(z) = zp i.e. all bi = 0 (i = p+ 1, ......) in Theorem
3.1, we easily arrive at the

Corollary 3.2. If f(z) ∈ A(p) satisfies∣∣∣∣arg{λp Iσ−1f(z)

zp
+

(p− λ)

p

Iσf(z)

zp

}∣∣∣∣ < π

2
α + tan−1

(
λ

p(p+ 1)
α

)
, (3.6)

then ∣∣∣∣arg(Iσf(z)

zp

)∣∣∣∣ < π

2
α, (3.7)
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where α, β, σ ∈ R+, λ ≥ 0 and z ∈ ∆.
Again taking γ = p = 1, we get

Corollary 3.3. Let α, σ ∈ R+ and λ ≥ 0. If f(z) ∈ A(1) satisfies∣∣∣∣arg{λIσ−1f(z)

z
+ (1− λ)

Iσf(z)

z

}∣∣∣∣ < π

2
α + tan−1

(
λ

2
α

)
, (3.8)

then ∣∣∣∣arg(Iσf(z)

z

)∣∣∣∣ < π

2
α. (3.9)

Further taking γ = 1, λ = p + 1 and σ → 0 in Theorem 3.1, we get
result on argument estimate given earlier by Cho et al. [ 1 ].

If we put γ = p = 1, and let σ → 0 in Theorem 3.1, and replace λ by 2β
therein , we get a result due to Lashin [ 3 ].

Lastly taking γ = 1, and f(z) = zp i.e. (ai = 0, i = p+1, ......) in Theorem
3.1, we get an interesting result contained in

Corollary 3.4. Let zp

Iσg(z) 6= 0, g(z) ∈ A(p) and λ ≥ 0. Suppose that∣∣∣∣arg

[(
1 +

λ

p

)
zp

Iσg(z)
− λ

p

Iσ−1g(z)

Iσg(z)

(
zp

Iσg(z)

)]∣∣∣∣ < π

2
α+tan−1

(
λ

p(p+ 1)
α

)
,

(3.10)
then ∣∣∣∣ zp

Iσg(z)

∣∣∣∣ < π

2
α. (α ∈ R+, z ∈ ∆) (3.11)

Theorem 3.5. Let λ, σ ∈ R+ and 0 < λ < p. Suppose that f(z) ∈ A(p)
satisfies ∣∣∣∣Iσf(z)

zp

∣∣∣∣ < π

2
α + tan−1

(
λα

p(p+ 1)

)
(3.12)

then we have∣∣∣∣∣∣arg

p(p+ 1)

λ
z−p(p+1)/λ

z∫
0

t(p+1)(p−λ)/λIσf(t)dt

∣∣∣∣∣∣ < π

2
α. (3.13)
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Proof. Consider the function

p(z) =

p(p+ 1)

λ
z−p(p+1)/λ

z∫
0

t(p+1)(p−λ)/λIσf(t)dt

 . (3.14)

Obviously
p(z) = 1 + c1z + c2z

2 + ..................... (3.15)

and p(z) is an analytic in ∆. Also p(0) = 1, and p′(z) 6= 0.
Differentiating (3.14), we get the following result after some computa-

tions

p(z) +
λ

p(p+ 1)
zp′(z) =

Iσf(z)

zp
. (3.16)

Now making use of Lemma 2.1 , the proof of the Theorem 3.5 is complete.
Setting p = 1, λ = 2 and σ → 0 , in Theorem 3.5, we arrive at the

following interesting result contained in

Corollary 3.6. Let f(z) ∈ A(1) satisfies∣∣∣∣arg

(
f(z)

z

)∣∣∣∣ < π

2
α + tan−1(α), (3.17)

then we have ∣∣∣∣∣∣arg

1

z

z∫
0

f(t)

t
dt

∣∣∣∣∣∣ < π

2
α (α > 0 and z ∈ ∆). (3.18)
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