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Abstract

In this paper, it has given a uniqueness theorem for the singular
Sturm-Liouville problem having the singularity type l(l+1)

x2 and 2
x−

l(l+1)
x2

on the unit interval. It is given that the particular set of eigenvalues
is sufficient to determine the unknown potential. We mentioned that
these results were given by McLaughlin and Rundell for regular Sturm-
Liouville problem.

Keywords and Phrases: Eigenvalues, Dirichlet Conditions, Singular Dif-
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1. Introduction

Sturm-Liouville problems, in particularly self-adjoints ones, received extensive
studies in last years. Such problems often appear in mathematics, mechanics,
physics, electronics, geophysics, meteorology and other branches of natural
sciences. The first spectral problem was given by Ambarzumyan [1]. In 1946,
Borg asserted that to quarantee uniqueness, one needs additional spectral
data [2]. He showed that the spectra of two boundary value problems for an
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operator with different boundary conditions at one end uniquely determine the
potential. And later, Marchenko, Levitan used the transformation operator to
show that the eigenvalues and norming constants uniquely determine potential
function [9], [7]. Hochstadt showed that the potential is an even function, then
potential is uniquely determined [5]. On the other hand, A finite number of
eigenvalues in one spectrum is unknown, q(x) is not uniquely determined by
one full spectrum and one partial spectrum. This problem was investigated
by Gesztesy and Simon in [4]. In later years, these problems was studied for
regular and singular problem by some authors, [3], [6], [8], [11], [12], [13], [14].

In this paper, it is shown that the particular set of eigenvalues is sufficient
to determine the potential for differential operator having singularity type
l(l+1)

x2 and l(l+1)
x2 − 2

x
at the point zero. We mentioned that analogous results

are given by McLaughlin and Rundell in [10].
We consider the eigenvalue problem

y
′′ −

[
q(x) +

l(l + 1)

x2

]
y = λy, (1.1)

y(0) = 0, y
′
(1, λ) +Hy(1, λ) = 0, (1.2)

where q(x) ∈ L2(0, 1) and l is an integer. This type equations arise when
separation of variables is used for the study of radial Schrödinger operators
∆+q(x) on a ball in Euclidean space, zonal Schrödinger operators on spheres or
in the study of Laplace operators ∆ for a Riemann manifold of revolution. For
example, the singularity type l(l+1)

x2 refers to Bessel equation, the singularity

type 2
x
− l(l+1)

x2 refers to hydrogen atom. It is given the eigenvalues of the
problem (1.1), (1.2) in the form

λn(q) =

(
n+

l

2

)2

π2 +

1∫
0

q(x)dx− l(l + 1) + an,

where the series
∑
a2

n <∞ [12].
If the boundary condition at x = 1 is changed, say to the Dirichlet condition

y(1) = 0, then corresponding set of eigenvalues
∼
λn(q), k = 1, 2, ... of the

problem

y
′′ −

[
q(x) + l(l+1)

x2

]
y = λy

y(0) = y(1) = 0

}
(1.3)
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is also given.

2. A Uniqueness Theorem

In this section, it will be given that one potential q(x) can be determined from
λn(q,Hk), where n is fixed and Hk, k = 1, 2, ..., are distinct.

Firstly, we give two lemmas that required for proof of the main theorem.
First lemma is a oscillation theorem for eigenvalues of a Sturm-Liouville op-
erator, the second one is a statement of the inverse problem of the singular
Sturm - Liouville operator.

Lemma 2.1. Let q(x) ∈ L2(0, 1). Then, for all −∞ < H <∞,
∼
λn(q) < λn(q,H) <

∼
λn+1(q). (2.1)

Lemma 2.2. λn(q1, H1) and λn(q2, H2) are eigenvalues of the problems

y
′′ −

[
q1(x) +

l(l + 1)

x2

]
y = λy, (2.2)

y(0) = 0, y
′
(1, λ) +H1y(1, λ) = 0 (2.3)

and

y
′′ −

[
q2(x) +

l(l + 1)

x2

]
y = λy, (2.4)

y(0) = 0, y
′
(1, λ) +H2y(1, λ) = 0, (2.5)

respectively. If these eigenvalues satisfy

λn(q1, H1) = λn(q2, H1), n = 0, 1, 2, ...

λn(q1, H2) = λn(q2, H2), n = 0, 1, 2, ...

then q1 = q2.

Theorem 2.1. Let q1(x), q2(x) ∈ L2(0, 1). Assume that Hk for k = 1, 2, ... are
real distinct numbers and

λn(q1, Hk) = λn(q2, Hk), k = 1, 2, ... (2.6)
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then q1 = q2.
Proof. For each λ, let ϕ2(x, qi, λ) (i = 1, 2) be the solution of problem

y
′′ −

[
qi(x) +

l(l + 1)

x2

]
y = λy, (2.7)

y(0) = 0, y
′
(0) = 1. (2.8)

Then, by using (2,7) it has been the Sturm identity for Sturm-Liouville problem

ϕ2(x, q1, λ)

{
ϕ

′′

2(x, q2, λ)−
[
q2(x) +

l(l + 1)

x2

]
ϕ2(x, q2, λ)

}
−ϕ2(x, q2, λ)

{
ϕ

′′

2(x, q1, λ)−
[
q1(x) +

l(l + 1)

x2

]
ϕ2(x, q1, λ)

}
= [q1(x)− q2(x)]ϕ2(x, q1, λ)ϕ2(x, q2, λ)

+
[
ϕ2(x, q1, λ)ϕ

′

2(x, q2, λ)− ϕ2(x, q2, λ)ϕ
′

2(x, q1, λ)
]′

= 0. (2.9)

On the other hand, we shall denote by
∼
λn(qi) the eigenvalues of the problem

(1.1) with the Dirichlet condition ϕ2(1, qi,
∼
λn) = 0.

Now, to facilitate some softwares, we use the the simplified notation

νk = λn(q1, Hk) = λn(q2, Hk), k = 1, 2, ...

Inserting λ = νk in (2.9) and integrating from 0 to 1, it get that the term in
brackets on the final line has zero at x = 0 and x = 1. So, we get

1∫
0

(q1 − q2)ϕ2(x, q1, νk)ϕ2(x, q2, νk)dx = 0, k = 1, 2, ... (2.10)

It is observed from Lemma 1.1. that the sequence {νk}∞k=1 forms a bounded
set on the real line and consequently has at least one finite accumulating point.
Furthermore, for fixed x since ϕ2(x, qi, λ) is analytical function of λ, it can be
shown that

S(λ) =

1∫
0

(q1 − q2)ϕ2(x, q1, λ)ϕ2(x, q2, λ)dx (2.11)
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is also an analytical function of λ. Then,

S(λ) ≡ 0. (2.12)

Now, we will show that all of the eigenvalues of (1.1) with H = 0 and all
of the eigenvalues (1.3) are the same for the q(x) set equal to qi(x), i.e., we
will show that

∼
λn(q1) =

∼
λn(q2), n = 1, 2, ..., (2.13)

λm(q1, 0) = λm(q2, 0), m = 1, 2, .... (2.14)

Then, from Lemma 2 we would be able to conclude that q1 = q2.
For proving the (2.13) and (2.14), we return to the identity (2.9) and get

that when λ = λm(q1, 0), then ϕ2(1, q1, λm(q1, 0)) 6= 0 while ϕ
′
2(1, q1, λm(q1, 0)) =

0. Integrating (2.9) from 0 to 1 and using (2.12) we must have ϕ
′
2(1, q2, λm(q1, 0)) =

0, m = 1, 2, .... This implies that each λm(q1, 0) is an eigenvalue for (1.1) and
(1.2) when (q,H) = (q2, 0). It follows that (2.13) holds.

Similiarly set λ =
∼
λn(q1) in the identity (2.9) and doing the above process,

we conclude that (2.14) holds. Then, the proof is complete.
Now, we consider the operator

−y′′ +
[
l (l + 1)

x2
− 2

x
+ qi (x)

]
y = λy (0 < x ≤ 1) , (2.15)

y (0) = 0, y′ (1) +Hy (1) = 0. (2.16)

In quantum mechanics the study of the energy levels of the hydrogen atom
leads to the equation (2.15). The λn(q,Hi) be eigenvalues of the problem
(2.15), (2.16). Hence, we would be able to the following theorem like to the
Theorem 2.1.

Theorem 2.2. Let q1(x), q2(x) ∈ L2(0, 1). Assume that Hk for k = 1, 2, ... are
real distinct numbers and

λn(q1, Hk) = λn(q2, Hk), k = 1, 2, ...

then q1 = q2 for the problem (2.15), (2.16). Proof of the theorem 2.2 is
analogous to Theorem 2.1.
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