Almost Everywhere Convergence of Inverse Dunkl Transform on the Real Line*

J. El Kamel[†]and Ch. Yacoub[‡]

Department of Mathematics, Faculty of Sciences of Monastir, 5019 Monastir, TUNISIA

Received November 3, 2007, Accepted February 19, 2008.

Abstract

We show that the spherical partial sums maximal operator S_*^{α} , associated to Dunkl transform on \mathbb{R} is bounded on $L^p(\mathbb{R},|x|^{2\alpha+1}dx)$, $p_0 , where <math>p_0 = \frac{4(\alpha+1)}{2\alpha+3}$ and $p_1 = \frac{4(\alpha+1)}{2\alpha+1}$. This implies that, for every $f \in L^p(\mathbb{R},|x|^{2\alpha+1}dx)$, $S_R^{\alpha}f$ converges to f a. e., as $R \to \infty$. On the other hand we obtain a sharp version by showing that S^{α}_* is bounded from the Lorentz space $L^{p_i,1}(\mathbb{R},|x|^{2\alpha+1})$ into $L^{p_i,\infty}(\mathbb{R},|x|^{2\alpha+1})$, i=0,1.

Keywords and Phrases: Dunkl transform, Maximal function, Almost everywhere convergence, Lorentz space.

1. Introduction and preliminaries

Given $\alpha \geq -1/2$ and a suitable function f on \mathbb{R} , its Dunkl transform D_{α} is defined by

$$D_{\alpha}f(y) = \int_{\mathbb{R}} f(x)E_{\alpha}(-ixy)d\mu_{\alpha}(x), \quad y \in \mathbb{R};$$
 (1)

^{*2000} Mathematics Subject Classification. 42B15, 42C10, 42B10, 31B10, 31B20.

[†]E-mail: jamel.elkamel@fsm.rnu.tn

[‡]E-mail: chokri.yacoub@fsm.rnu.tn

here

$$d\mu_{\alpha}(x) = \frac{1}{2^{\alpha+1}\Gamma(\alpha+1)} |x|^{2\alpha+1} dx, \qquad (2)$$

$$E_{\alpha}(z) = 2^{\alpha} \Gamma(\alpha + 1) \left\{ \frac{J_{\alpha}(iz)}{(iz)^{\alpha}} + z \frac{J_{\alpha+1}(iz)}{(iz)^{\alpha+1}} \right\}, \tag{3}$$

where J_{α} denotes the Bessel function of the first kind of order α . The inverse Dunkl transform \check{D}_{α} is given by $\check{D}_{\alpha}f(\lambda) = D_{\alpha}f(-\lambda)$ (see [2] and [3]).

In this paper, we are interested in the almost everywhere convergence as $R \to \infty$, of the partial sums $S_R^{\alpha} f(x)$, where

$$S_R^{\alpha} f(x) = \int_{|y| \le R} D_{\alpha} f(y) E_{\alpha}(ixy) d\mu_{\alpha}(y).$$

Recall that given $\beta \geq -\frac{1}{2}$, the Hankel transform of order β of a suitable function g on $(0, \infty)$ is defined by

$$\mathcal{H}_{\beta}g(y) = \int_0^{\infty} g(x) \frac{J_{\beta}(yx)}{(yx)^{\beta}} x^{2\beta+1} dx, \quad y > 0.$$
 (4)

Nowak and Stempak [6], found an expression of the Dunkl transform D_{α} in terms of Hankel transform of orders α and $\alpha + 1$.

Lemma 1.1. (See ([6]) Given $\alpha \geq -\frac{1}{2}$, we have

$$D_{\alpha}f(y) = \mathcal{H}_{\alpha}(f_e)(|y|) - iy\mathcal{H}_{\alpha+1}\left(\frac{f_o(x)}{x}\right)(|y|), \qquad (5)$$

where for a function f on \mathbb{R} , we denote by f_e and f_o the restrictions to $(0, \infty)$ of its even and odd parts, respectively, i.e. the functions on $(0, \infty)$ defined by

$$f_e(x) = \frac{1}{2} (f(x) + f(-x)), \quad f_o(x) = \frac{1}{2} (f(x) - f(-x)), \quad x > 0.$$

Define, the partial sums $s_R^{\beta}g(x)$ by

$$s_R^{\beta}g(x) = \int_0^R \mathcal{H}_{\beta}g(y) \frac{J_{\beta}(xy)}{(xy)^{\beta}} y^{2\beta+1} dy, \quad x > 0, \tag{6}$$

and

$$s_*^{\beta}g(x) = \sup_{R>0} \left| s_R^{\beta}g(x) \right|. \tag{7}$$

In 1988, Kanjin [4] and Prestini [7] independently proved the following.

Theorem 1.2. Let $\beta \geq -\frac{1}{2}$ and $1 \leq p < \infty$.

• If
$$\frac{4(\beta+1)}{2\beta+3} , then s_*^{β} is bounded on $L^p((0,\infty), x^{2\beta+1})$.$$

• If
$$p \leq \frac{4(\beta+1)}{2\beta+3}$$
 or $p \geq \frac{4(\beta+1)}{2\beta+1}$, then s_*^{β} is not bounded on $L^p\left((0,\infty),x^{2\beta+1}\right)$.

Throughout this paper we use the convention that c_{α} denotes a constant, depending on α and p, its value may change from line to line.

2. Almost everywhere convergence

Define linear operators S_R^{α} , R>0 and S_*^{α} on the Schwartz space $S\left(\mathbb{R}\right)$ by

$$S_R^{\alpha} f(x) = \int_{|y| < R} D_{\alpha} f(y) E_{\alpha}(ixy) d\mu_{\alpha}(y), \tag{8}$$

and

$$S_*^{\alpha} f(x) = \sup_{R > 0} |S_R^{\alpha} f(x)|, \quad x \in \mathbb{R}.$$
(9)

We note that, by Proposition 5 in [5], $S_R^{\alpha} f$ can be defined for $f \in L^p(\mathbb{R}, d\mu_{\alpha})$, 1 , by

$$S_R^{\alpha} f(x) = \int_{\mathbb{R}} \phi_R(-y) \tau_x f(-y) d\mu_{\alpha}(y), \quad x \in \mathbb{R},$$
 (10)

where $\phi_R(x) = c_{\alpha} R^{2(\alpha+1)} j_{\alpha+1}(Rx)$, $x \in \mathbb{R}$, and $\tau_x, x \in \mathbb{R}$ are the so-called Dunkl translation operators on \mathbb{R} .

Lemma 2.1. Given $\alpha \geq -\frac{1}{2}$, we have

$$S_R^{\alpha}(f)(x) = s_R^{\alpha}(f_e)(|x|) + x s_R^{\alpha+1} \left(\frac{f_o(r)}{r}\right)(|x|),$$
 (11)

$$S_*^{\alpha} f(x) \le s_*^{\alpha} (f_e)(|x|) + |x| s_*^{\alpha+1} \left(\frac{f_o(r)}{r}\right) (|x|).$$
 (12)

Proof. Let $x \in \mathbb{R}$. By (3), (8) and Lemma 1.1, we have

$$S_{R}^{\alpha}f(x) = \int_{|y| \leq R} \left[\mathcal{H}_{\alpha}(f_{e})(|y|) - iy\mathcal{H}_{\alpha+1} \left(\frac{f_{o}(r)}{r} \right) (|y|) \right]$$

$$= \left[2^{\alpha}\Gamma(\alpha+1) \left\{ \frac{J_{\alpha}(yx)}{(yx)^{\alpha}} + ixy\frac{J_{\alpha+1}(yx)}{(yx)^{\alpha+1}} \right\} \right] d\mu_{\alpha}(y)$$

$$= \frac{1}{2} \int_{|y| \leq R} \mathcal{H}_{\alpha}(f_{e})(|y|) \frac{J_{\alpha}(yx)}{(yx)^{\alpha}} |y|^{2\alpha+1} dy$$

$$+ \frac{ix}{2} \int_{|y| \leq R} y\mathcal{H}_{\alpha}(f_{e})(|y|) \frac{J_{\alpha+1}(yx)}{(yx)^{\alpha+1}} |y|^{2\alpha+1} dy$$

$$- \frac{i}{2} \int_{|y| \leq R} y\mathcal{H}_{\alpha+1} \left(\frac{f_{o}(r)}{r} \right) (|y|) \frac{J_{\alpha}(yx)}{(yx)^{\alpha}} |y|^{2\alpha+1} dy$$

$$+ \frac{x}{2} \int_{|y| \leq R} \mathcal{H}_{\alpha+1} \left(\frac{f_{o}(r)}{r} \right) (|y|) \frac{J_{\alpha+1}(yx)}{(yx)^{\alpha+1}} |y|^{2\alpha+3} dy.$$

We note that the second and the third integrals are equal to zero. So

$$S_{R}^{\alpha}f(x) = \frac{1}{2} \int_{|y| \le R} \mathcal{H}_{\alpha}(f_{e})(|y|) \frac{J_{\alpha}(yx)}{(yx)^{\alpha}} |y|^{2\alpha+1} dy$$

$$+ \frac{x}{2} \int_{|y| \le R} \mathcal{H}_{\alpha+1} \left(\frac{f_{o}(r)}{r}\right) (|y|) \frac{J_{\alpha+1}(yx)}{(yx)^{\alpha+1}} |y|^{2\alpha+3} dy$$

$$= \int_{0}^{R} \mathcal{H}_{\alpha}(f_{e})(y) \frac{J_{\alpha}(|x|y)}{(|x|y)^{\alpha}} y^{2\alpha+1} dy$$

$$+ x \int_{0}^{R} \mathcal{H}_{\alpha+1} \left(\frac{f_{o}(r)}{r}\right) (y) \frac{J_{\alpha+1}(|x|y)}{(|x|y)^{\alpha+1}} y^{2\alpha+3} dy$$

$$= s_{R}^{\alpha}(f_{e})(|x|) + x s_{R}^{\alpha+1} \left(\frac{f_{o}(r)}{r}\right) (|x|).$$

Thus

$$S_*^{\alpha} f(x) \le s_*^{\alpha} (f_e)(|x|) + |x| s_*^{\alpha+1} \left(\frac{f_o(r)}{r}\right) (|x|).$$

- Proposition 2.2. Let $\alpha > -\frac{1}{2}$.

 If $p_0 , then <math>S_*^{\alpha}$ is bounded on $L^p(\mathbb{R}, d\mu_{\alpha}(x))$.

 If $p \le p_0$ or $p \ge p_1$, then S_*^{α} is not bounded on $L^p(\mathbb{R}, d\mu_{\alpha}(x))$.

Proof. S_*^{α} cannot be bounded for $p \leq p_0$ or $p \geq p_1$ (see: [4] and [7]). By Theorem 1, we have for $p_0 ,$

$$||s_*^{\alpha}(f_e)(|x|)||_{L^p(\mathbb{R},d\mu_{\alpha}(x))} = 2 ||s_*^{\alpha}(f_e)||_{L^p((0,\infty),x^{2\alpha+1}dx)}$$

$$\leq c_{\alpha} ||f_e||_{L^p((0,\infty),x^{2\alpha+1}dx)}$$

$$\leq c_{\alpha} ||f||_{L^p(\mathbb{R},d\mu_{\alpha}(x))}.$$

On the other hand, as in ([7],[8]), one gets

$$|x| \, s_*^{\alpha+1} \left(\frac{f_o(r)}{r} \right) (|x|) \le \frac{c_\alpha}{|x|^{\alpha+\frac{1}{2}}} \left[M + H + \widetilde{H} + \widetilde{C} \right] \left[\frac{f_o(r)}{r} r^{\alpha+\frac{3}{2}} \right] (|x|), \quad (13)$$

where M, H, \widetilde{H} and \widetilde{C} denotes respectively, the maximal function, the Hilbert integral, the maximal Hilbert transform and the Carleson operator. Let $K = M + H + \widetilde{H} + \widetilde{C}$ and $w \in A_n(\mathbb{R})$, p > 1. It is well known that

$$||Kf||_{L^p(\mathbb{R}, w(x)dx)} \le c_p ||f||_{L^p(\mathbb{R}, w(x)dx)}.$$
 (14)

Hence

$$\left\| |x| \, s_*^{\alpha+1} \left(\frac{f_o(r)}{r} \right) (|x|) \right\|_{L^p(\mathbb{R}, d\mu_\alpha(x))}$$

$$\leq c_\alpha \left\| |x|^{-\alpha - \frac{1}{2}} K \left[\frac{f_o(r)}{r} r^{\alpha + \frac{3}{2}} \right] (|x|) \right\|_{L^p(\mathbb{R}, d\mu_\alpha(x))}$$

$$\leq c_\alpha \left\| K \left[\frac{f_o(r)}{r} r^{\alpha + 3/2} \right] (|x|) \right\|_{L^p(\mathbb{R}, w(x) dx)},$$

with $w(x) = |x|^{2\alpha + 1 - p(\alpha + 1/2)}$.

Since $p_0 if and only if <math>-1 < 2\alpha + 1 - p(\alpha + 1/2) < p - 1$,

then $w \in A_p(\mathbb{R})$, and by (13)

$$\left\| |x| \, s_*^{\alpha+1} \left(\frac{f_o(r)}{r} \right) (|x|) \right\|_{L^p(\mathbb{R}, d\mu_\alpha(x))} \leq c_\alpha \left\| \frac{f_0(|x|)}{|x|} \, |x|^{\alpha+3/2} \right\|_{L^p(\mathbb{R}, w(x)dx)}$$

$$\leq c_\alpha \left\| f_o(x) \right\|_{L^p(\mathbb{R}, d\mu_\alpha(x))}$$

$$\leq c_\alpha \left\| f(x) \right\|_{L^p(\mathbb{R}, d\mu_\alpha(x))}.$$

We conclude by Lemma 2.1.

Using Proposition 2.2, and since almost everywhere convergence holds for functions on $S(\mathbb{R})$, which is a dense subset of $L^p(\mathbb{R}, d\mu_{\alpha})$, (see [3]), we obtain

Corollary 2.3. For every $f \in L^p(\mathbb{R}, d\mu_{\alpha})$, if $p_0 , then$

$$S_R^{\alpha} f(x) \to f(x)$$
 a.e. as $R \to \infty$.

3. Endpoint estimates

We recall that the Lorentz space $L^{p,q}(X,\mu)$, is the set of all measurable functions f on X satisfying

$$||f||_{p,q} = \left(\frac{q}{p} \int_0^\infty \left(t^{\frac{1}{p}} f^*(t)\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} < \infty$$

when, $1 \le p < \infty$, $1 \le q < \infty$, and

$$||f||_{p,q} = \sup_{t>0} t^{\frac{1}{p}} f^*(t) = \sup_{\lambda>0} \lambda \left(d_f(\lambda)\right)^{\frac{1}{p}} < \infty$$

when, $1 \leq p \leq \infty$ and $q = \infty$. Here f^* denotes the nonincreasing rearrangement of f, i.e.

$$f^*(t) = \inf \{s > 0/d_f(s) \le t\}, \qquad d_f(s) = \mu \{x \in X/|f(x)| > s\}.$$

In 1991, Romera and Soria [8] (see also Colzani and all [1]) proved the following

Theorem 3.1. Let $\alpha > -\frac{1}{2}$, then s_*^{α} is bounded from the Lorentz space $L^{p_i,1}\left((0,\infty),x^{2\alpha+1}dx\right)$ into $L^{p_i,\infty}\left((0,\infty),x^{2\alpha+1}dx\right)$, i=0,1.

Using this result, we will see that Proposition 2.2 can be strengthened. More precisely we obtain

Proposition 3.2. Let $\alpha > -\frac{1}{2}$, then S_*^{α} is bounded from the Lorentz space $L^{p_i,1}(\mathbb{R}, d\mu_{\alpha})$ into $L^{p_i,\infty}(\mathbb{R}, d\mu_{\alpha})$, i = 0, 1.

Using Marcinkiewicz's interpolation theorem in terms of Lorentz space we retrieve Proposition 2.2 as a corollary.

Proof. By Lemma 2.1, we have

$$\mu_{\alpha} \left\{ x \in \mathbb{R} / S_*^{\alpha} f(x) > \lambda \right\} \leq \mu_{\alpha} \left\{ x \in \mathbb{R} / s_*^{\alpha} f_e(|x|) > \frac{\lambda}{2} \right\}$$

$$+ \mu_{\alpha} \left\{ x \in \mathbb{R} / |x| s_*^{\alpha+1} \left(\frac{f_o(r)}{r} \right) (|x|) > \frac{\lambda}{2} \right\}.$$

$$= I + II.$$

By Theorem 2.4, we get:

$$\mu_{\alpha} \left\{ x \in \mathbb{R} / s_*^{\alpha} f_e(|x|) > \frac{\lambda}{2} \right\} = 2\mu_{\alpha} \left\{ x \in (0, \infty) / s_*^{\alpha} f_e(x) > \frac{\lambda}{2} \right\}$$

$$\leq \frac{c_{\alpha}}{\lambda^{p_i}} \|f_e\|_{p_i, 1} \leq \frac{c_{\alpha}}{\lambda^{p_i}} \|f\|_{p_i, 1}.$$

To estimate II, we follow closely [8] and we sketch a proof for completeness. We decompose the set

$$\left\{ x \in \mathbb{R}/\left|x\right| s_*^{\alpha+1} \left(\frac{f_o(r)}{r}\right) (\left|x\right|) > \frac{\lambda}{2} \right\}$$

$$= \bigcup_{k \in \mathbb{Z}} \left\{ x \in \mathbb{R}/\left|x\right| \in I_k, \left|x\right| s_*^{\alpha+1} \left(\frac{f_o(r)}{r}\right) (\left|x\right|) > \frac{\lambda}{2} \right\},$$

where $I_k = [2^k, 2^{k+1}[$.

Put
$$g(r) := \frac{f_o(r)}{r} = g_k^1(r) + g_k^2(r)$$
, with $g_k^1 = g\chi_{I_k^*}$, $g_k^2 = g\chi_{(I_k^*)^c}$, where $I_k^* =]2^{k-1}, 2^{k+2}[$.

By (12), we have

$$\left|x\right|s_*^{\alpha+1}\left(g_k^1(r)\right)\left(\left|x\right|\right) \leq \frac{c_\alpha}{\left|x\right|^{\alpha+1/2}}K\left(g_k^1(r)r^{\alpha+3/2}\right)\left(\left|x\right|\right).$$

By ([8], p: 1021), we have for 1 ,

$$\sum_{k \in \mathbb{Z}} \mu_{\alpha} \left\{ x \in \mathbb{R}/|x| \in I_{k}, \frac{1}{|x|^{\alpha+1/2}} K\left(g_{k}^{1}(r) r^{\alpha+3/2}\right)(|x|) > \frac{\lambda}{2} \right\}$$

$$\leq \frac{c_{\alpha}}{\lambda^{p}} \|f_{o}\|_{L^{p}(\mathbb{R}, d\mu_{\alpha}(x))}^{p} \leq \frac{c_{\alpha}}{\lambda^{p}} \|f\|_{L^{p}(\mathbb{R}, d\mu_{\alpha}(x))}^{p} \leq \frac{c_{\alpha}}{\lambda^{p}} \|f\|_{p, 1}^{p}.$$

On the other hand as in ([8], p: 1021), we have

$$|x| \, s_*^{\alpha+1} \left(g_k^2(r) \right) (|x|) \leq \frac{c_\alpha}{|x|^{\alpha+1/2}} \int_0^\infty \frac{s^{\alpha+3/2} |f_o(s)|}{s(|x|+s)} ds$$

$$\leq \frac{c_\alpha}{|x|^{\alpha+3/2}} \int_0^\infty |f_o(s)| \, s^{\alpha+1/2} ds$$

$$\leq \frac{c_\alpha}{|x|^{\alpha+3/2}} \int_{\mathbb{R}} |f_o(s)| \, \frac{1}{|s|^{\alpha+1/2}} d\mu_\alpha(s).$$

Remark that we have considered f_0 as a function defined on \mathbb{R} . As the same we get,

$$|x| \, s_*^{\alpha+1} \left(g_k^2(r) \right) (|x|) \leq \frac{c_\alpha}{|x|^{\alpha+1/2}} \int_0^\infty |f_o(s)| \, s^{\alpha-1/2} ds$$

$$\leq \frac{c_\alpha}{|x|^{\alpha+1/2}} \int_{\mathbb{R}} |f_o(s)| \, \frac{1}{|s|^{\alpha+3/2}} d\mu_\alpha(s).$$

Using the following facts

$$\frac{1}{|x|^{\alpha+\frac{1}{2}}} \in L^{p_1,\infty}\left(\mathbb{R}, d\mu_{\alpha}(x)\right),$$
$$\frac{1}{|x|^{\alpha+\frac{3}{2}}} \in L^{p_0,\infty}\left(\mathbb{R}, d\mu_{\alpha}(x)\right),$$

and Holder's inequality for the Lorentz spaces, we arrive to

$$\mu_{\alpha} \left\{ x \in \mathbb{R} / \left| x \right| s_{*}^{\alpha+1} \left(g_{k}^{2}(r) \right) (\left| x \right|) > \frac{\lambda}{2} \right\} \leq \frac{c_{\alpha}}{\lambda^{p_{i}}} \left\| f_{o} \right\|_{p_{i},1}^{p_{i}} \leq \frac{c_{\alpha}}{\lambda^{p_{i}}} \left\| f \right\|_{p_{i},1}^{p_{i}},$$

which completes the proof.

Acknowledgment

We are grateful to Professor K. Stempak for sending us the preprint [6].

References

- [1] L. Colzani, A. Crespi, G. Travaglini, and M. Vignati, Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in euclidean and noneuclidean spaces, *Trans. Amer. Math. Soc.*, **338**, **N.1**(1993), 43-55.
- [2] C. F. Dunkl, Hankel transforms associated to finite reflexion groups, *Contemp.Math.*, **138**(1992), 123-138.
- [3] M. F. F. de Jeu, The Dunkl transform, *Inv. Math.*, **113**(1993), 147-162.
- [4] Y. Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc., 103, N.4(1988), 1063-1069.
- [5] L. Kamoun, Besov-type spaces for the Dunkl operator on the real line, *J. Comp. Appl. Math.*, **199**(2007), 56-67.
- [6] A. Nowak and K. Stempak, Relating transplantation and multipliers for Dunkl and Hankel transforms, to appear in *Math. Nachr*.
- [7] E. Prestini, Almost everywhere convergence of the spherical partial sums for radial functions, *Mh. Math.*, **105**(1988), 207-216.
- [8] E. Romera and F. Soria, Endpoint estimates for the maximal operator associated to spherical partial sums on radial functions, *Proc. Amer. Math. Soc.*, **111**, **N.4**(1991), 1015-1022.