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Abstract

We show that the spherical partial sums maximal operator ST, as-

sociated to Dunkl transform on R is bounded on L* (R, ]m\%‘“d:c),
4(a+1) 4(a+1)

Po b b1, where po 20 +3 and pi % 1 1 18 1m

plies that, for every f € LP (]R, |:c\2°‘+1dx), SR [f converges to f a. e,
as R — oo. On the other hand we obtain a sharp version by show-
ing that S is bounded from the Lorentz space LP"'! (R, |z[***!) into
LPo® (R, [z***Y), i=0,1.

Keywords and Phrases: Dunkl transform,Mazimal function, Almost every-
where convergence, Lorentz space.

1. Introduction and preliminaries

Given o > —1/2 and a suitable function f on R, its Dunkl transform D, is
defined by

Dof(y) = / F(2) Ea(—izy)da(z), y € R: 1)
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here
1

T 20T (e + 1)
Ju(i2) Jot1(12)
(2 T iz )
where J, denotes tvhe Bessel functvion of the first kind of order «. The inverse
Dunkl transform D,, is given by D, f(X) = Do f(—A) (see [2] and [3]).

dpia () e d, (2)

Bu(2) = 2°T(a + 1) {

In this paper, we are interested in the almost everywhere convergence as
R — o0, of the partial sums S§ f(z), where

S?Zf(x) = Daf(y)Ea@xy)dﬂa(y)'

ly|<R

1
Recall that given 3 > —5 the Hankel transform of order J of a suitable
function g on (0, 00) is defined by

Heg(y) = /O oog(fv) @(xy)‘/? 2 hdx, y > 0. (4)

Nowak and Stempak [6], found an expression of the Dunkl transform D, in
terms of Hankel transform of orders o and o + 1.

1
Lemma 1.1. (See ([6]) Given a > —g we have

T

Daf(y) = Ha(£) (D) — iHass (f"(l")) (o). (5)

where for a function f on R, we denote by f. and f, the restrictions to (0, c0)
of its even and odd parts, respectively, i.e. the functions on (0,00) defined by

1

(f(x) + f(==)),  folz) =5 (f(z) = f(=x)), =>0.

fula) = .

DO | —

Define, the partial sums spg(x) by

o) = [ Haa) Ty, w0, )
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and

2g(r) = sup ()| M

In 1988, Kanjin [4] and Prestini [7] independently proved the following.

1
Theorem 1.2. Let § > —5 and 1 < p < oco.

4B +1 4(B+1
o If % <p< 2(2—11)’ then s° is bounded on LP ((0, OO)’wa)'
U ors % or pz %; then 57 is not bounded on

LP ((0,00), 2*11).

Throughout this paper we use the convention that ¢, denotes a constant,
depending on « and p, its value may change from line to line.

2. Almost everywhere convergence

Define linear operators S%, R > 0 and Sy’ on the Schwartz space S (R) by

Sef(r) = Do f(y) Ea(izy)dpa(y), (8)

ly|I<R

and
SEf(x) = Sup |Sef(z)|, zeR. (9)

We note that, by Proposition 5 in [5], Sk f can be defined for f € LP(R, du,),
1 <p<p, by

Sf() = [ on-y)rf(-udualy). @€ R (10)

where ¢p(z) = coR*“™Vj,1(Rz), z € R, and 7.,z € R are the so-called
Dunkl translation operators on R .

1
Lemma 2.1. Given oo > —3 we have

S3) = sl (e + s (P40 (o (1)
se1(a) < (gl + 1ol 557 (240 (o, (12)
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Proof. Let z € R. By (3), (8) and Lemma 1.1, we have

sifte) = [ [Hetrdoh = it (222 0]
{20‘1’(04 1) { Joly) my‘]”%iyfl)}] djia(y)

(yl")“ (yx
! A <) %) |y 2o+ gy
s J l( ) 2a+1
‘f‘? ‘y|<R (fe)<|y|)( )a+l |y| dy

) (ly]) Z2l82) | a1 g,

"5 s (= (v0)

L fo(r) a+1(y3¢) S
+2 IySRHaH( )(| ) 7 —Sert (yz)ot! Y dy.

We note that the second and the third integrals are equal to zero. So

1 Jo(y)

Spf(z) = 3 ‘yKRHa(fe)(lyD () [y >+ dy
r Jo(r) Jor1(Y2) | 20+
2 |y|<RHa+1( )(| ) eyt (yz)ott ™ dy

— / Ho(£)(y |’x|)zi>y2a+1dy
o [ (fg( ) ) ) ey,

(afy)=t”
)
(5

s ()(a]) + s (

Thus

S2f(x) < st(fe)(|al) + |o] s2*

folr
(lz])-
. 1
Proposition 2.2. Let o > 5

o If poy<p<pi, then SY is bounded on LP (R, du,(z)).
o If p<pyorp>py, then S is not bounded on LP (R, du,(z)).
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Proof. S cannot be bounded for p < py or p > p; (see: [4] and [7]).
By Theorem 1, we have for py < p < p1,

||Sf(fe)<|x|)||LP(]R,dua(x)) = 2“S(:(fe)||LP((07OO),w2a+1dz)
Ca |’f€HLp((0,oo),:v2°‘+1dx)

<
< Callfll o dpaa)) -

On the other hand, as in ([7],[8]), one gets

st (B0) o < g Mo 7] [ B3 e, a9

where M, H, H and C denotes respectively, the maximal function, the Hilbert
integral, the maximal Hilbert transform and the Carleson operator.
Let K=M+H+ H+Cand we A, (R),p > 1. It is well known that

||Kf||LP(]R,w(x)d:c) < Cp ||f||LP(]R,w(a:)da:) : (14)

H|$| o (@) (=) LP(R,djta(z))
o4 ¢ | 2043

s [ 20 2] 1)

with UJ(J]) _ |I|2a+1—p(oc+1/2).

Hence

IA

Co

LP(R,dp(z))

IN

Ca

Y

LP(R,w(z)dx)

Since pg < p < py ifand only if =1 <2a+1—pla+1/2) <p—1,

then w € A, (R), and by (13)
ol (22 (i) folal) | oy

]

— «

LP(R,dpa(z)) LP(Rw(x)dx)
Ca || fol) “LP(R,dua(x))

Ca ||f($)||LP(R,dua(ﬂf)) '
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We conclude by Lemma 2.1.

Using Proposition 2.2, and since almost everywhere convergence holds for func-
tions on S(R), which is a dense subset of L” (R, dpu, ), (see [3]), we obtain

Corollary 2.3. For every f € LP (R, du,), if po<p <p1, then

Sef(x) — f(z) ae as R— oo.

3. Endpoint estimates

We recall that the Lorentz space LP? (X, u), is the set of all measurable func-
tions f on X satisfying

£, = (g | (téf*u))q%f <o

when, 1 <p < oo, 1 < ¢ < oo, and

1, 1
1F1l,q = suptr f7(t) = sup A (df(A))» < o0
£>0 A>0

when, 1 < p < 0o and ¢ = co. Here f* denotes the nonincreasing rearrange-
ment of f, i.e.

1) =inf{s > 0/ds(s) <t},  dsls) = p{w e X/|f(z)] > s}.

In 1991, Romera and Soria [8] (see also Colzani and all [1]) proved the following

1
Theorem 3.1. Let a > —5 then s is bounded from the Lorentz space
Lri ((0, oo),x2a+1dx) into LP»*° ((O7 00), xzaﬂdac), i=0,1.

Using this result, we will see that Proposition 2.2 can be strengthened.
More precisely we obtain

1
Proposition 3.2. Let a > —5 then S¢ is bounded from the Lorentz space
LY (R, duy) into LP*° (R, dug) ,i = 0, 1.
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Using Marcinkiewicz’s interpolation theorem in terms of Lorentz space we
retrieve Proposition 2.2 as a corollary.
Proof. By Lemma 2.1, we have

po{w €R/SIf(x) > A} < m{xeRhﬁKWD>§}

+ Lo {:c € R/ |x|s2™ (
= [+1I

By Theorem 2.4, we get :
A A
Ha 2 € R/sTfe(l2]) > 5 ¢ = 2pa g € (0,00) /s fe(2) > 5

el [l -

—)\p 1_)\p|

To estimate 11, we follow closely [8] and we sketch a proof for completeness.
We decompose the set

{oer/usrn (22) gap > 3

= U {x e R/ |z| € Iy, |z ¢ (@) (|z[) > %} ,

kEZ

where I, = [2F, 2511,

Put g(r) := folr)
II: :]2k71’ 2k+2['

= gi(r) + gi(r), with gy = gxzz, 6§ = gx(p)e, where

By (12), we have

Ca

2 st (gx(r) (=) < HQT/?K(gi(T)TQ”’/Q) ().
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By ([8], p: 1021), we have for 1 < p < oo,

1 A
a+1/2K (gli(r)raﬁﬂ) (z[) > 5}

Zua{xeR/m GIk,|

kEZ

AL

HfOHLP R,dpa x) — )\p Hf”LP (R,dppa () — /\p

On the other hand as in ([8], p: 1021), we have

00 a+3/2
2| s (ge(r) (Jz]) < 511/2/ Ss(\x!‘-{osﬂds

Co / Fuls)] 5°1/2ds
0

=

Cqo 1
——— [ |fo(8)| — == dials).
gl AOlr 80

Remark that we have considered f; as a function defined on R.

As the same we get,

a Ca = a—
s ) ) < | intorseas
Co, 1
R / o) el

IN

|

Using the following facts
€ LPY>™ (R, dua(x)),

’:ElorF%

€ LPo™ (R, dua(x)),

|x|a+%

and Holder’s inequality for the Lorentz spaces, we arrive to
o A
o {2 € R/ lal 24 (20) o) > 5 | < S 11

which completes the proof.
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