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Abstract

The theory of coupled thermoelasticity in three dimensions is employed to
determine the distribution of temperature and stresses in an infinite medium
having an instantaneous point heat source at the origin in a rotating medium.
Laplace transform along with the double Fourier transforms have been
applied in the basic equations of coupled thermoelasticity and finally the
resulting equations are written in the form of a vector—matrix differential
equation which is then solved by eigenvalue approach. The inversion of the
Laplace transform solution is carried out by applying Bellman method and
computations have been done by using MATLAB software. Numerical
computations of temperature and stresses have been made in space time
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domain and presented graphically and then compared with current results
available in the literture.
Keywords and Phrases: Laplace transform, Double Fourier transform, Coupled
thermoelasticity, Eigenvalue, Transversely isotropic.

1. Introduction

The coupling between the strain and temperature fields was first studied by
Duhamel [1] who derived the equations for the distribution of strains in an elastic
medium subjected to temperature gradient. Biot [2] justified and derived on the basis
of irreversible thermodynamics, the fundamental relations of the equations of
thermoelasticity and stated its variational principles. For static problems this coupling
vanished and the thermal field becomes independent of the strain field.

Apart from the constitutive relations, the governing equations for displacement
and temperature fields, as in the linear dynamical theory of classical thermoelasticity
consist of the coupled partial differential equation of motion and the Fourier heat
conduction equation. The equation for displacement field is governed by a wave type
hyperbolic equation, whereas, the latter equation for the temperature field is a
parabolic diffusion type equation. However, the classical thermoelasticity predicts a
finite speed for predominantly elastic disturbances but an infinite speed for
predominantly thermal disturbances that are coupled together. In view of Lord and
Shulman [3], a part of every solution of equations extends to infinity. In view of
mathematical difficulty involved in the coupled equations of thermoelasticity Noda et
al [4], Furukawa et al. [5], Chandrasekharaiah and Keshavan [6], Choudhury [7] have
considered only one dimensional problems.

On the other hand, several authors Ackerman et al [8, 9, 10], Von Gutfeld and
Nethercot [11], Taylor et al [12], Jackson and Walker [13] have conducted on
different solids and shown that heat pulses do not propagate with infinite speed. In
order to overcome this difficulty involved in an infinite speed of thermal disturbances,
several authors Norwood and Warren [14], Green and Lindsay [15], Suhubi [16],
Dhaliwal and Rokne [17] have made an attempt on different grounds to modify
classical equations of thermoelasticity by suggesting a wave type heat conduction
equation. An interesting review paper by Chandrasekharaiah [18] contains most of the
major results involving many modifications with a list of reference.

The main object of this paper is to make an investigation about the effect of
rotation in a three dimensional problem of coupled thermoelasticity to determine the
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temperature, deformation and stresses, in an infinite transversely isotropic medium
due to an instantaneous heat source.

The solution has been achieved in closed form in the Laplace—double Fourier
transform domain and finally numerical inversions in space time domain have been
made and some of the results are shown graphically.

Nomenclature

Aijj = elastic Moduli of material

Bj = stress temperature coefficient

p = density of mass

Ky, Ky, K = coefficients of thermal conductivity in x, y and z directions
respectively

c = specific heat per unit mass

K = <

1 Kx

Kz = KZ
KX

T = absolute temperature

Tij = stress components

To = Reference temperature

p = Laplace transform parameter

&M = Fourier transform parameter

9) = Rotation vector.

Fi(é,n,p) = Function of &,7,p

o(.) = Dirac—delta function

I. Basic Equations

We consider a transversely isotropic infinite elastic medium in three
dimensions which is unstrained and unstressed initially but has a uniform temperature
distribution To. The displacement components u, v & w along the x, y and z
directions respectively are of the form

u=uxvy,zt); v=v(x,y, z,t), w=w(x,Y, z,t) (1.2
The stress components related to the displacement components are
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T = A44(@+8_Uj
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All _A12 au 8\/
Ty = 5 —+—
oy OX
Now, we consider the rotation Q=(2,0,0).

The equations of motion in a rotating medium are

Tijs j = Pl HOx(Qxu)}+(20x0) ]

(1.2)

(1.3)

From (1.3) using (1.2) we get the following equations of motion in terms of

displacement in a rotating medium as follows: —
2 2 2 2 2 2

AauAauAau(Al A)av (Al A)aw o u
11 t Ay A P\ At Ay )T\ At Ay ) =P
ox? oy° oz° oxay oz ot
2 2 2 2
o°v o°v o°v o°u 0w
A —= — 4+ A, —= A, )— A A, )——
44 6X2 +A, 8y2 T Ay 822 +(A12+ 44)8x8y+( 23+ 44)6y62

2
o°v 2 ow oT
=p| ——-QV-2Q— [+ 3, —
p(atz atj P by

and

oT

+p

OX
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o*w o*w o*w o%u o%v
A44¥+A4A oy +Ag 572 +(A13+A44)@+(A23+A44)@
o’w ov ot
= -QW+2Q— |+ f,— 1.4
A% 2en g 4

The heat conduction equation is
o°T o°T o°T oT

0 ou ov ow
+K,—+K =p.—+T —| B, —+B,—+pB.— |-0Q(X,V, 2,1t
p o at(Bl ox B, By aZj Q(x,y,z,1)

K Z—— z
“ox? Yoy toazr Tt at oy

(1.5)

We consider a point instantaneous heat source located at the origin whose
strength Q is the form:

Q(x, y, z,t) = go 8(x) 8(y) 3(z) &(t) (1.6)
where o is a constant.

I1. Method of Solution

Formulation of a Vector—Matrix Differential Equation :

We apply the Laplace—double Fourier transforms as

T(X,Y,2,p) = T T(X,y,z,t)exp(-pt)dt

Ty = | T0yz.p)exnl, 00

T.Enzp) = | TEy.zpend, )iy
= 1)

22— _1
where =1y

where p, & and n are transform parameters.

Using the transformation in equations (1.4) and (1.5) we get :
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d2U
(‘i Ay +T]2A44 +pp ); +A,—— 4z’ &n(Alz +A LV,
—1L,E(A; + A44) 24 é:ﬂlT =0
(2.2)
'xiyén(Alz +AU, - {E.’ZAM + nzAzz + p(p2 - QZ)}VZ
d*v,
+A44d—z (A, +A44) +2prW ‘HyTle
z (2.3)

: du, av -
LE(AL +AL)—— d —iyn(A +A44) : {A44§2 +A,n° +p(p? —QZ)}W2

W2

—2ppQV, + A33 d* ﬂs = (2.4)

and

d*T,
K, 4z’ {i +K1n +‘:<I)} 2
_T,p
K

X

(—ixéﬂlﬁz —1, 1BV, + s ddv_zzj 27zK P ) (2.5)

Since at time t = 0, the body is at rest in an undeformed and unstressed state
and is maintained at the reference temperature,so the following initial conditions hold.

ou(x,y,z,0) ov(x,y,z,0)
u X, ,Z,O = :0 , Y, Z, = =
(x,¥,2,0) p” | v(X,Y,2,0) ot 0
W(X,Y,2,0) = aW(X(,ai/,z,O) _0  and 8T(xéi/,z,0) 0 2.6)

We have further assumed that %V-Wand T oo \vell as their first derivatives with

respect to x and y vanish at infinity. Further we assume that =0att=0.

Equations (2.2) to (2.5) can be written in the form of a vector—-matrix
differential equation as :

dv
—=Av+1(2)
dz -~ - (2.7)
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where v:[UZ,VZ,V_VZ,'ITZ,UZ’,V{,V_VZI,'E’]T

X

q
and f(z)=|0,0,0,0,0,0,0,——>—06(z
() { u5(2)

Here the primes indicate differentiation w.r.t. z.

The matrix A is

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
A 0 0 0 0 0 0 0 1
- C51 C52 O C54 O O C57 0
Ca Cs Cq Cq O 0 Cg 0
0 C72 C73 0 C75 C76 0 C78
_C81 CSZ C84 O C87 0
where
C _§2A11+772A44+pp2 . C. = i, en(A, + Ay)
51 ' 52 =
Ay, A,
Ixéﬂ . Ix‘):( + A )
C,, = -4 C,, = A + Ay
A, A,
C, = Ll on(Ag + Aw) C _§2A44+772A22+p(p2—£22)
617 A J 62 = A
a4 44
20pQ2 i,np
Ces = _i; Cy = 2
Ay, A,
C. - 77 (Ags + Ayy) C = 2 ppQ2
67 —A—, =
44 Ay,

C :A44(§2+772)+p(p2—£22); C :ixf(A13+A44)
73 A33 75 A33
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(2.8)

(2.9)
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C76 _ iyn(A23 + A44) : C78 _ ﬁ
Ay Ass
—-1,88T,p. /AN
5+Km2+im BT
X . Op
Cy = < : Co =5 (2.10)

Solution of the Vector—Matrix Equation

We find the solution of equation (2.7) by following the method of eigen value
approach as in Das and Bhakta [19].(Appendix-I)

The characteristic equation of matrix A is of the form

27— Fu(&, m, pIA° + Fol&, m, P* ~ (&, m, p)A° + Fa(&,m, p) = 0. (2.11)
The roots of the equation (2.11) are of the form

A=+hy A=+hs A=+As A=+ A (2.12)

which are also the eigenvalues of the matrix A ,where
2 2 2 2
A+ Ay + A3+ 2, = F1(S1, D)

Ay + Ay g+ Aol + Zydy + 250y = Fo (6, p)

2,2 .2 2,2 ,2 2,2 ,2 2,2 ,2

A Ay + A Ay + A A2, + A4, 0, = F2(E, 1, P)

2.2.2.2
MA A, = F2(E,m, )

The right and left eigen vector X and Y of the matrix A corresponding to % are
respectively.

.
)~(:[Xl’Xvas’Xqu’Xe’Xst]
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and Y =[y,,Y,. Y5 Y4 Ys: Yer V7. Vel (2.13)

The components x; of X andyiof Y (i=1,2, ..., 8) can be calculated from the
relations
AX=2X and  YA=LY
which are given in the Appendix.Il.
Henceforth we will use the following notations :

[X]H[MJ for 1=1,3,5,7
X = (2.14)
[x]k__k[l) for i=2,4,6,8
[Y]H(M) for i=1,3,5,7
and Y, = (2.15)
[Y]_., for i=2,4,6,8

Assuming the regularity condition at z = « as in Das et al. [20] the solution of
equation (2.6) is of the form

V(@) = Y A (2) X, XP(-1.2) (2.16)
where

_qo

A,=——""*>— ; 1=1,2,3,4
” 2nK, (Y5 X5) (y8 )}L?}Li

From equation (2.16) we can find the expression of u,(&,n,z,p),V,(&n,z,p),
W,(&,n,z,p) and T,(&m,z,p) as follows :
4
U, (& 7m. 2, p) = X Ayj(2) xq; exp (—Ai2) (2.17)
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4

V2 (8.2, p)=_21Azi (2)x,i exp(-1iz) (2.18)
1=
4

W, (71,2, p)=_ZlA2i (2) x3i exp(-1iz) (2.19)
1=
_ 4

T, (572, p)=_zlA2i (2) x4i €xp(-1i2) (2.20)
I=

where xij = (xi )/1:_/1]_ and Yjj = (Vi ),1:_/11_

Where forms of xj and yj ( i=12,..8) are given in Appendix Il.Also the
expressions for the stresses (,,),. (%, ), (%..),. (7, ). (%), and (%), in the

Laplace—double Fourier transform domain can be obtained from (1.2) applying the
transforms as given in equations (2.1) using the expressions (2.17) — (2.20). Using the
inverse Fourier transforms in the resulting expressions for temperature and stresses,
we will get their integral representations of the temperature and stresses in the Laplace
transform domain as

[T’ %xx ! %yy'?zz] (X’ Y.z, p)

- ]g T [TZ ' (%xx )2’ (%yy)Z' (%zz)z]COS?ZX cosny dédn

Ty (X, Y,2,p) = (?Xy )2 sin Ex sinmy d&dn

O =y 8
O 73 8

T, (X, Y,2,p) (T4 ), sin Ex cosny d&dn

Il
O ey 8
o —38

T,00y.2.0) = [ [ (,), cosexsinmy dedn (2.21)

o t—38
O 3 8

The evaluation of these infinite integrals when all the terms are written out in full
form become very unwidely and moreover we have to perform the inverse Laplace
transform to these expressions in order to find the temperature and stresses in space
time domain.
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I11. Numerical Solution

The Laplace—double Fourier inversion of the expressions for temperature and stresses
in space—time domain are very complex and we prefer to develop an efficient
computer programme for the inversion of these integral transforms. For the inversion
of Laplace transform we follow the method of Bellman et al [21] and choose seven
values of the time t=t; 1 =1, 2, 3, 4, 5, 6, 7 as the time range at which the
temperature and stresses are to be determined where t; are the roots of the Legendre
polynomial of degree seven. Simultaneous calculations for the inversion of double
Fourier transforms were done by evaluating the infinite integrals (2.20) numerically
by seven point Gaussian quadrature formula for several prescribed values of x, y and z.

The following data for the material Cobalt (considered as transversely isotropic)
in SI units have been used vide Dhaliwal and Singh [22].

A; = 3.071 x 10" Nm™

Az = 1.650 x 10" Nm™
Az = 1.027 x 10" Nm™
Ap = 3.071x 10" Nm™
Ay = 1.027 x 10" Nm™
Azz = 3.581 x 10" Nm™
Au = 1.027 x 10" Nm™
B = P2 = 7.04x10° Nm?deg™
B3 = 6.90 x 10° Nm 2 deg™*

Kx =K, =K, = 0.69 x 10° Wm " deg™

p = 8.836x10°kgm™

c = 427x10°Jkg ' deg™

To = 298°K (3.1)

2. Concluding Remarks

In order to study the stress characteristic we have drawn seven graphs of the stress T,
Tyy, Tzzs Txys Tyzs Tzx aNd temperature for different values of the space variables at times
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t = 0.025775, 0.138382, 0.352509, 0.693147, 1.21376, 2.04612, 3.67119. It is
observed that

1. The characteristic of the stresses t,x and tyy, for the material considered [as in
(3.1)] are almost the same is respect of wave propagation.

2. For fixed values of y and z as x increases, the amplitude of Ty, T2z, Txy, Tyz, Tzx and
T gradually decreases with same wave length as t increases.

3. For fixed values of x and z as y increases the amplitudes of txx, Tz, Txy, Tyz, Tax
and T gradually decreases with same wave length, as t increases.

4. For fixed values of x, y and t
1) Txx, Tyz, Tzxs Txy @nd T gradually decreases as z increases from 0.0001 to 1.

i) The amplitudes of 1, initially increases as z increases from 0.0001 to 0.001
then decreases as z increases from 0.001 to 1.

5. It has also been observed that when x and y assume relatively larger values than z
then stress 1y, assumes only positive values for time t;.

6. For fixed values of X, y, z and t the absolute values of Ty, Tz, Txy, Tyz Tx and T
increases as Q varies from 0 to 10*.

We have drawn the temperature and stresses for x =y = 1 and z = 0.0001 for
values of time mentioned earlier. They are presented graphically with the help of a
computer using cubic spline formation. It is found that the amplitudes of stresses and
temperature increases with greater wave lengths as t increases.
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Appendix |

Solution of the vector matrix differential equation

Consider a vector matrix differential

dv

ax = Av + f(x) 4.2)
with the condition

v(xg) =C (4.2)

where A isann Xn constant real matrix, C is given constant real n vector and f is
real n vector function.

Let
v=X exp(Ax) 4.3)
be the solution of the homogeneous equation
dv
ax = Av (4.4)

where Aisascalarand X isan n vector independent of x. Substituting Eq.(4.3), we
get,
(AX =X )e X =0= AX = AX

This may be interpreted that A is an eigenvalue of the matrix A and X the
corresponding right eigenvector.Let 11, A5, A3,.... An be n distinct eigenvalues of the

matrix Aand X, X,, X3,.... X n be the corresponding right eigenvector of the
matrix A. Then the vectors X, X5, X3,.... Xn are linearly independent and so they

form a basis of the space I'"" ,where T" denotes the field of complex numbers. We can
find the scalers by by bs, ....b, such that

C = b X1+boXo+hsXs....bn Xn
Choose ci=be 4%  (i=1,2,3,....n)

Let,
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n
u(x) = X cj XjeliX (4.5)
i=1
Thus u(x) is the solution of the eq(4.4) and

n n

u(xo)ZZciXieﬂiXo = Zbixi:C
i=1 [

Now , let

n
w(x) = Y ai(x) XjediX (4.6)
i=1

be the solution of Eq.(4.1), a;(X),a»(X),asz(x),,,an(x) are scalar function of x
such that aj(xo)=0,

Differentiating Eq(4.6) with respect to ,x, we get
n n
w' (x) = D ali(x) XiediX+ D aj(x) Ai XjeldiX (4.7)
Substituting Eq.(4.6) and (4.7) in Eq(4.1), we have

n n n
2 ali(x) XiediX+ X ai(x) 4i XiediX = X aj(0AXjediX+ f(x)

n n
or, X ali(x)Xiedi* =Y aj()[AXi—aiXi]ediX+ f(x)= f(x) (4.8)
i=1 i=1

multiplying Eq.(4.8) by Y je=4iX (where Y1,Y,,Y3,....Y , are left eigenvector
corresponding to the eigenvalues A,,4,, A3,.... An ), We get

n
> ali0Yje(hiA)X = v f(x)e=4;¥
-1
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/ —A;X o
or, aj()Y;X;=Y;f(xe Y X =0 fori=jl,

1 —A;X
aﬂ (X) = WYJ f(X)e !
17
X -1 ~2;8
a;(x) = [ (YjXj) Y ;f(x)e "' ds (4.9)
X

0

[aj (xg) =0, for j=1,23....n]
Now take

v(x)=u(x)+w(x) (4.10)
Differentiatimg we get,
v (x) = u! (x) + W (x) = Au(x) + Aw(x) + f(x) = Afu(x) + v(X)] +  (X)

=Av(X)+ f(X)

v (xp)=u’ (xo)+w! (x5)=C .

Hence , v(x)=u(x)+w(x) is the unique solution of the differential eq.(4.1),
satisfying the condition (4.2).

Appendix 11

We take,

a = (Cs1 — 1?) Ce4 — Cé1 Csq

a = Csp Cos— (Co2 — A7) Csa

a3 = Cs57Ces L — (Ce3 + X Cé7) Cs4

b1 = MCs1 C78 — C15 Ces)

b, = (Ce2—2%) A Crg—(Cr2+ A Cro) Cea
b3 = (Ce3+ A Ce7) L Crg— (C73— 19 Ces
C1 = % Cy5 (Cgs —A?) — A Cy5 Cas



C2
C3
fs
fe
f7
gs
Oe
g7
hs
he
hy
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= (Cr2+ A Cr) (Cas— 1?) — Ca2 Crg A
= (Cr3 = 1% (Caa =A%) = 1* Cr5 Coz
(Cs1 —A%) Cg2 — Cs2 Cas

Cs2 Co1 — (Ce2 — 17) Ca

C75 Cg2 L — (C72+ C76 1) Cax

MCsz Cg7 — Cs7 Ce7)

(Ce2 — 1?) Ce7 . — (Cg3 + Ce7A) Cez
= (Cr2+Crs 1) Cor A — (Cr3— 1) Caz
= (Cs4 — 1) Cs7 . — Css Ce7 1

= (Ces + Co7 1) (Cas— 1?) — Ces Cor A
= (Cr3—1%) (Caa =A%) — C7g Cor A

The components of X and Y are as follows :—

X1
X2

X3

X4

X5
X6
X7
Xs
Y1
y2
Y3
Ya
Ys

= bycs—bsc

= bsci—Dbics

= bico-bycy

-1 [(Cs1— A%) X1 + Cs2 X2 + Cs7 A X3 ]
C54

= A X

= AX

= A X3

= A Xs

= AYs—Cisys

= AYs—Crs Y7

= —Cs7y5—Cerys + Ly7 — Cg7 ys

= — Cry7 + Ays

= gsh7 — grhe

253
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Y6 = g7hs — gshy
Y7 = Oshe — gehs
1
Ys = o [(Cs1 — A%)ys + Cerys + Crs Ay7]
81
Variation of stress Tex versus time t
5 T T T T

XX

Fig.2 t >
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Variation of Txy verses time

L
0 0.5 1 1.5 2 2.5 3 3.5
Fig.5 t —

Variation of Tyy vs.time t

Fig.3 t——»
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Variation of ryz verses time t
2 T

yz

-4 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5
t—»
Variation of t__ verses time
4 zZX
T T T T

Fig.7 t—»
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Variation of t__ verses time t
2 zz
T T T T

Fig.4 t—-

Variation of temperature versus time

Fig.1 t—»
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