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Abstract 

The theory of coupled thermoelasticity in three dimensions is employed to 
determine the distribution of temperature and stresses in an infinite medium 
having an instantaneous point heat source at the origin in a rotating medium. 
Laplace transform along with the double Fourier transforms have been 
applied in the basic equations of coupled thermoelasticity and finally the 
resulting equations are written in the form of a vector−matrix differential 
equation which is then solved by eigenvalue approach. The inversion of the 
Laplace transform solution is carried out by applying Bellman method and 
computations have been done by using MATLAB software. Numerical 
computations of temperature and stresses have been made in space time 
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domain and presented graphically and then compared with current results 
available in the literture. 

Keywords and Phrases: Laplace transform, Double Fourier transform, Coupled 
thermoelasticity, Eigenvalue, Transversely isotropic.  

 

1.  Introduction 

 The coupling between the strain and temperature fields was first studied by 
Duhamel [1] who derived the equations for the distribution of strains in an elastic 
medium subjected to temperature gradient. Biot [2] justified and derived on the basis 
of irreversible thermodynamics, the fundamental relations of the equations of 
thermoelasticity and stated its variational principles. For static problems this coupling 
vanished and the thermal field becomes independent of the strain field. 

 Apart from the constitutive relations, the governing equations for displacement 
and temperature fields, as in the linear dynamical theory of classical thermoelasticity 
consist of the coupled partial differential equation of motion and the Fourier heat 
conduction equation. The equation for displacement field is governed by a wave type 
hyperbolic equation, whereas, the latter equation for the temperature field is a 
parabolic diffusion type equation. However, the classical thermoelasticity predicts a 
finite speed for predominantly elastic disturbances but an infinite speed for 
predominantly thermal disturbances that are coupled together. In view of Lord and 
Shulman [3], a part of every solution of equations extends to infinity. In view of 
mathematical difficulty involved in the coupled equations of thermoelasticity Noda et 
al [4], Furukawa et al. [5], Chandrasekharaiah and Keshavan [6], Choudhury [7] have 
considered only one dimensional problems. 

 On the other hand, several authors Ackerman et al [8, 9, 10], Von Gutfeld and 
Nethercot [11], Taylor et al [12], Jackson and Walker [13] have conducted on 
different solids and shown that heat pulses do not propagate with infinite speed. In 
order to overcome this difficulty involved in an infinite speed of thermal disturbances, 
several authors Norwood and Warren [14], Green and Lindsay [15], Suhubi [16], 
Dhaliwal and Rokne [17] have made an attempt on different grounds to modify 
classical equations of thermoelasticity by suggesting a wave type heat conduction 
equation. An interesting review paper by Chandrasekharaiah [18] contains most of the 
major results involving many modifications with a list of reference. 

 The main object of this paper is to make an investigation about the effect of 
rotation in a three dimensional problem of coupled thermoelasticity to determine the 
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temperature, deformation and stresses, in an infinite transversely isotropic medium 
due to an instantaneous heat source. 

 The solution has been achieved in closed form in the Laplace−double Fourier 
transform domain and finally numerical inversions in space time domain have been 
made and some of the results are shown graphically. 

 

Nomenclature    
Aij  = elastic Moduli of material 
βj  = stress temperature coefficient 
ρ  = density of mass 
Kx, Ky, Kz = coefficients of thermal conductivity in x, y and z directions  
     respectively 
c  = specific heat per unit mass 

K1  = 
x

y

K
K

 

K2  = 
x

z

K
K  

T  = absolute temperature  
τij  = stress components 
To  = Reference temperature 
p  = Laplace transform parameter 
ξ, η  = Fourier transform parameter 
Ω
r

  = Rotation vector. 
),,( pF i ηξ     =         Function of p,,ηξ  

(.)δ                  =        Dirac−delta function  

 

I. Basic Equations 
We consider a transversely isotropic infinite elastic medium in three 

dimensions which is unstrained and unstressed initially but has a uniform temperature 
distribution To. The displacement components u, v & w along the x, y and z 
directions respectively are of the form 

u = u(x, y, z, t);  v = v(x, y, z, t),  w = w(x, y, z, t)    (1.1) 

The stress components related to the displacement components are    
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Now, we consider the rotation ).0 ,0 ,(Ω=Ω
r

 

The equations of motion in a rotating medium are 
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    (1.3) 

From (1.3) using (1.2) we get the following equations of motion in terms of 
displacement in a rotating medium as follows: − 
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The heat conduction equation is 
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 We consider a point instantaneous heat source located at the origin whose 
strength Q is the form: 

 Q(x, y, z, t) = qo δ(x) δ(y) δ(z) δ(t)     (1.6) 

where qo is a constant. 

 

II.   Method of Solution    
Formulation of a Vector−Matrix Differential Equation : 

We apply the Laplace−double Fourier transforms as 
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where p, ξ and η are transform parameters. 

 

Using the transformation in equations (1.4) and (1.5) we get : 
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 Since at time t = 0, the body is at rest in an undeformed and unstressed state 
and is maintained at the reference temperature,so the following initial conditions hold. 
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We have further assumed that T and w,v,u as well as their first derivatives with 
respect to x and y vanish at infinity. Further we assume that 　 = 0 at t = 0. 

 Equations (2.2) to (2.5) can be written in the form of a vector−matrix 
differential equation as : 
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Here the primes indicate differentiation w.r.t. z. 
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Solution of the Vector−Matrix Equation 
We find the solution of equation (2.7) by following the method of eigen value 
approach as in Das and Bhakta [19].(Appendix-I) 

The characteristic equation of matrix 
~
A is of the form 

 λ8 − F1(ξ, η, p)λ6 + F2(ξ, η, p)λ4 − F3(ξ, η, p)λ2 + F4(ξ, η, p) = 0.     (2.11) 

The roots of the equation (2.11) are of the form 
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The right and left eigen vector 
~~
Y and X  of the matrix 
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A  corresponding to λ are 

respectively. 
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and   [ ]87654321~
y,y,y,y,y,y,y,yY =                   (2.13) 

The components xi of 
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X  and yi of 
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Assuming the regularity condition at z = ∞ as in Das et al. [20] the solution of 
equation (2.6) is of the form 
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Where forms of xi  and yi ( 8,...2,1=i ) are given in Appendix II.Also the 
expressions for the stresses ( ) ( ) ( ) ( ) ( )2zx2yz2zz2yy2xx  , , , , τττττ  and ( )

2xyτ in the 

Laplace−double Fourier transform domain can be obtained from (1.2) applying the 
transforms as given in equations (2.1) using the expressions (2.17) − (2.20). Using the 
inverse Fourier transforms in the resulting expressions for temperature and stresses, 
we will get their integral representations of the temperature and stresses in the Laplace 
transform domain as  
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The evaluation of these infinite integrals when all the terms are written out in full 
form become very unwidely and moreover we have to perform the inverse Laplace 
transform to these expressions in order to find the temperature and stresses in space 
time domain. 
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III. Numerical Solution    
The Laplace−double Fourier inversion of the expressions for temperature and stresses 
in space−time domain are very complex and we prefer to develop an efficient 
computer programme for the inversion of these integral transforms. For the inversion 
of Laplace transform we follow the method of Bellman et al [21] and choose seven 
values of the time t = ti;  i  = 1, 2, 3, 4, 5, 6, 7 as the time range at which the 
temperature and stresses are to be determined where ti are the roots of the Legendre 
polynomial of degree seven. Simultaneous calculations for the inversion of double 
Fourier transforms were done by evaluating the infinite integrals (2.20) numerically 
by seven point Gaussian quadrature formula for several prescribed values of x, y and z. 

The following data for the material Cobalt (considered as transversely isotropic) 
in SI units have been used vide Dhaliwal and Singh [22]. 

 A11 =  3.071 x 1011 Nm−2 

 A12 =  1.650 x 1011 Nm−2 

 A13 =  1.027 x 1011 Nm−2 

 A22 =  3.071 x 1011 Nm−2 

 A23 =  1.027 x 1011 Nm−2 

 A33 =  3.581 x 1011 Nm−2 

            A44 =  1.027 x 1011 Nm−2 

            β1  =  β2  =  7.04 x 106 Nm−2 deg−1 

 β3  =  6.90 x 106 Nm−2 deg−1 

 Kx = Ky = Kz  =  0.69 x 102 Wm−1 deg−1 

 ρ  =  8.836 x 103 kg m−3 

 c  =  4.27 x 102 J kg−1 deg−1 

 To  =  298o K                   (3.1) 

 

2.  Concluding Remarks    
In order to study the stress characteristic we have drawn seven graphs of the stress τxx, 
τyy, τzz, τxy, τyz, τzx and temperature for different values of the space variables at times  
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t = 0.025775, 0.138382,  0.352509,  0.693147,  1.21376,  2.04612,  3.67119. It is 
observed that 

1. The characteristic of the stresses τxx and τyy for the material considered [as in 
(3.1)] are almost the same is respect of wave propagation. 

2. For fixed values of y and z as x increases, the amplitude of τxx, τzz, τxy, τyz, τzx and 
T gradually decreases with same wave length as t increases. 

3. For fixed values of x and z as y increases the amplitudes of τxx, τzz, τxy, τyz, τzx 
and T gradually decreases with same wave length, as t increases. 

4. For fixed values of x, y and t  

 i) τxx, τyz, τzx, τxy and T gradually decreases as z increases from 0.0001 to 1.  

ii) The amplitudes of τzz initially increases as z increases from 0.0001 to 0.001 
then decreases as  z  increases from 0.001 to 1. 

5. It has also been observed that when x and y assume relatively larger values than z 
then stress τxy assumes only positive values for time ti. 

6. For fixed values of x, y, z and t the absolute values of τxx, τzz, τxy, τyz, τzx and T 
increases as Ω varies from 0 to 104. 

   We have drawn the temperature and stresses for x = y = 1 and z = 0.0001 for 
values of time mentioned earlier. They are presented graphically with the help of a 
computer using cubic spline formation. It is found that the amplitudes of stresses and 
temperature increases with greater wave lengths as t increases. 
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Appendix I 
Solution of the vector matrix differential equation 

 Consider  a vector matrix differential   

                                       )(xfAvdx
dv +=                                                    (4.1) 

with the condition   

                                       Cv(x =)0                                                              (4.2) 

where  A  is an n ×n constant real matrix, C  is given constant  real n vector and f  is 
real  n vector function. 

        Let  

                             )exp( xXv λ=                                                                    (4.3) 

be the solution of the homogeneous  equation  

                              Avdx
dv =                                                                          (4.4) 

where λ is a scalar and X  is an n vector independent of x . Substituting Eq.(4.3), we 
get , 

                               XAXxeXAX λλλ =⇒=− 0)(  

This may be interpreted that λ is an eigenvalue of  the matrix A  and X the 
corresponding right eigenvector.Let λλλλ n,....,, 321 be n distinct eigenvalues of the 
matrix A and X nXXX ,....,, 321  be the corresponding right eigenvector of the 
matrix A . Then the vectors X nXXX ,....,, 321   are linearly independent and so they 

form a basis of the space Γn ,where Γ  denotes the field of complex numbers. We can 
find the scalers b1 ,b2, b3, ….bn such that 

          C  = b1X1+b2X2+b3X3….bnXn 

Choose   ci = bie- xi 0λ , ( i= 1,2,3, ….n) 

Let , 



Eigenvalue Approach to Three Dimensional Coupled Thermoelasticity                   251 

                       e xiX i
n

i
cixu λ∑

=
=

1
)(                                                                  (4.5) 

Thus )(xu  is the solution of the eq(4.4) and      

                       e xiX i
n

i
cixu 00

1
)( λ∑

=
=    =  X i

n

i
bi∑  = C 

Now , let  

                      e xiX i
n

i
xaixw λ∑

=
=

1
)()(                                                                 (4.6) 

be the solution of Eq.(4.1),  )()()()( ,,,,, 321 xaxaxaxa n  are scalar function of x 
such that  0)( 0 =xai , 

Differentiating Eq(4.6) with respect to ,x, we get 

                       e xiX ii
n

i
xaie xiX ix

n

i
a ixw λλλ ∑∑

==
+=

1
)()(

1
/)(/                 (4.7)          

Substituting Eq.(4.6) and (4.7) in Eq(4.1), we have      

 

 )(
1

)(
1

)()(
1

/ xfe xiX iA
n

i
xaie xiX ii

n

i
xaie xiX ix

n

i
a i +=+ ∑∑∑

===
λλλλ     

or,    e xiX ix
n

i
a i λ)(

1
/∑

=
 = )(

1
)( ][ xfe xiX iiX iA

n

i
xai +−∑

=
λλ = )(xf         (4.8) 

multiplying Eq.(4.8) by e xY jj λ−  ( where YYYY n,....,, 321  are left eigenvector 
corresponding to the eigenvalues λλλλ n,....,, 321 ), we get  

  e xiYx
n

i
a i jj

)()(
1

/ λλ −

=
∑  =  e xxfY jj λ−)(  



252   N. C. Das, A. Lahiri, and S. Sarkar 

or,   0[,)()(/ =
−

= XY
x

exfYXYxa jj
j

jjjj
λ

 for ji ≠ ], 

               
x

exfY
X jY j

xa j
jj

λ−
= )(1)(/  

               ds
s

exfYjX
x

x
jYxa j

jj
λ−−

∫= )(1)()(
0

                                          (4.9) 

              ,0)([ =oxa j    for  ]......3,2,1 nj=  

Now take  

            )()()( xwxuxv +=                                                                                  (4.10)    

Differentiatimg we get, 

)()]()([)()()()()()( /// xfxvxuAxfxAwxAuxwxuxv ++=++=+=
                                                                                             )f(xAv(x)+=      

Cxwxuxv =+= )(/)(/)(/
000 . 

Hence , )()()( xwxuxv += is the unique solution of the differential eq.(4.1), 
satisfying the condition (4.2). 

 

Appendix II   
We take, 

a1 =  (C51 − λ2) C64 − C61 C54 

a2 =  C52 C64 − (C62 − λ2) C54 

a3 =  C57 C64 λ − (C63 + λ C67) C54 

b1 =  λ(C61 C78 − C75 C64) 

b2 =  (C62 − λ2) λ C78 − (C72 + λ C76) C64 

b3 =  (C63 + λ C67) λ C78 − (C73 − λ2) C64 

c1 =  λ C75 (C84 − λ2) − λ C78 C81 
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c2 =  (C72 + λ C76) (C84 − λ2) − C82 C78 λ 

c3 =  (C73 − λ2) (C84 − λ2) − λ2 C78 C87 

f5 =  (C51 − λ2) C82 − C52 C81 

f6 =  C82 C61 − (C62 − λ2) C81 

f7 =  C75 C82 λ − (C72 + C76 λ) C81 

g5 =  λ(C52 C87 − C57 C87) 

g6 =  (C62 − λ2) C87 λ − (C63 + C67λ) C82 

g7 =  (C72 + C76 λ) C87 λ − (C73 − λ2) C82 

h5 =  (C84 − λ2) C57 λ − C54 C87 λ 

h6 =  (C65  + C67 λ) (C84 − λ2) − C64 C87 λ 

h7 =  (C73 − λ2) (C84 − λ2) − C78 C87 λ2 

 

The components of 
~~
Y  and  X  are as follows :− 

x1 =  b2 c3 − b3 c2 

x2 =  b3 c1 − b1 c3 

x3 =  b1 c2 − b2 c1 

x4 =  
54C
1−  [(C51 − λ2) x1 + C52 x2 + C57 λ x3 ] 

x5 =  λ x1 

x6 =  λ x2 

x7 =  λ x3 

x8 =  λ x4 

y1 =  λ y5 − C75 y5 

y2 =  λ y6 − C76 y7 

y3 =  − C57 y5 − C67y6 + λy7 − C87 y8 

y4 =  − C78y7 + λy8 

y5 =  g6h7 − g7h6 
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y6 =  g7h5 − g5h7 

y7 =  g5h6 − g6h5 

y8 =  
81C

1
−  [(C51 − λ2)y5 + C61y6 + C75 λy7] 
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