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1. Introduction

Polynomial interpolation is the interpolation of a given data set by a polyno-
mial. As we know there is a unique interpolating polynomial which can be
written in different forms. Here we use the Lagrange form.

The main result of this paper is a general interpolating formula. We show
that the Lagrange interpolating polynomial is only a special case of this general
formula. Using this formula we can obtain many particular interpolating for-
mulas. In this paper we use the formula to obtain few corrected interpolating
polynomials, as an illustration. Some corrected interpolating polynomials are
given in [11] and [12]. In [12] we can find the following corrected interpolating
formula

f(x) = Ln(x) + ωn(x)

[ k+1
2 ]∑

j=1

2

22j−1(2j − 1)!
g2j−1 [x0;x1; ...;xn] + R̄k(x),

where Ln(x) is the Lagrange interpolating polynomial, ωn(x) = (x−x0) · · · (x−
xn), gm(t) = (x− t)m−1f (m)(x+t

2
), gm [x0;x1; ...;xn] denote the divide difference

of order m and R̄k(x) is a remainder term. We also suppose that we have a
given partition of the interval [a, b] (∆ = {a = x0 < x1 < · · · < xn = b}) and
that f ∈ Ck+1(a, b).

In [11] we can find the following formula

f(x) = Ln(x)− ωn(x)

[ k−1
2 ]∑

j=0

E2j+1(0)

(2j + 1)!
g2j+1 [x0;x1; ...;xn] +Rk(x),

where Ej(x) are Euler polynomials, gm(t) = (x − t)m−1f (m)(t) and Rk(x) is
a remainder term. (Note that gm(t) = gm(t, x). We use this simplification in
the rest of this paper.) We show that the above formula is a special case of
the mentioned general interpolating formula. In [11] many error inequalities
for the above formula are derived. Here we improve some of these inequalities.

In section 2 we give a general interpolating formula. In section 3 we give few
particular corrected interpolating polynomials. We specially mention Corol-
lary 5 in which we show that the Lagrange interpolating polynomial is only
a special case of the general formula. In section 4 we give some general error
inequalities for the general interpolating formula. In section 5 we give vari-
ous error bounds for these corrected interpolating polynomials. Similar error
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inequalities are obtained in numerical integration. For example see [3]–[6],
[9] and [10]. In some of these paper it is shown that the obtained error in-
equalities are superior to bounds obtained in more standard ways. Thus we use
these kind of inequalities in this paper to obtain error bounds for interpolating
polynomials.

Finally, we emphasize that the usual error inequalities in polynomial in-
terpolation (for the Lagrange interpolating polynomial Ln(x)) are given by
means of the (n + 1)th derivative while in this paper we can find these error
inequalities expressed by means of the kth derivative for k = 1, 2, ..., n.

2. A General Corrected Interpolating Polyno-

mial

Let ∆ = {a = x0 < x1 < · · · < xn = b} be a given subdivision of the interval
[a, b] and let f : [a, b] → R be a given function. The Lagrange interpolation
polynomial is given by

Ln(x) =
n∑

i=0

pni(x)f(xi), (1)

where

pni(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, (2)

for i = 0, 1, ..., n. Here we always use the notation Ln(x) for the Lagrange in-
terpolating polynomial and pni(x), i = 0, 1, 2, ..., n, denote the basic Lagrange
interpolating polynomials. We have the Cauchy relations ([7, pp. 160-161]),

n∑
i=0

pni(x) = 1 (3)

and
n∑

i=0

pni(x)(x− xi)
j = 0, j = 1, 2, ..., n. (4)

Let ∆ = {x0 = a < x1 < · · · < xn = b} be a given uniform subdivision of
the interval [a, b], i.e. xi = x0 + ih, h = (b − a)/n, i = 0, 1, 2, ..., n. Then the
Lagrange interpolating polynomial is given by
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Ln(x) = Ln(x0 + th)

= (−1)n t(t− 1) · · · (t− n)

n!

n∑
i=0

(−1)i

(
n

i

)
f(xi)

t− i
,

where t /∈ {0, 1, 2, ..., n}, 0 < t < n.
As we know the divided difference of the first order of the function f is

given by

f [x0;x1] =
f(x1)− f(x0)

x1 − x0

.

The divided difference of order n is defined via the divided differences of order
n− 1 by the recurrence formula

f [x0;x1; ...;xn] =
f [x1;x2; ...;xn]− f [x0;x1; ...;xn−1]

xn − x0

.

The following lemma is valid ([2, p. 68]).

Lemma 1. The nth-order divided difference satisfies the relation

f [x0;x1; ...;xn] =
n∑

i=0

f(xi)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

The interpolating polynomial can be written in the Newton form as

Ln(x) = f(x0) +
n−1∑
i=0

(x− x0) · · · (x− xi)f [x0; ...;xi+1]

= f(x0) +
n−1∑
i=0

ωi(x)f [x0; ...;xi+1] ,

where
ωi(x) = (x− x0)(x− x1) · · · (x− xi), (5)

for i = 0, 1, 2, ..., n.

Lemma 2. Let Pm(t) be any polynomial of degree ≤ m and let ∆ be a given
partition of the interval [a, b]. Then

n∑
i=0

pni(x)

∫ x

xi

Pm(t)dt = 0, (6)

for 0 ≤ m ≤ n−1, where pni(x) are basic Lagrange polynomials and x ∈ [a, b].
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Proof. Let x be a real number. Then we have

Pm(t) =
m∑

j=0

cj(x− t)j,

for some coefficients cj = cj(x), j = 0, 1, ...,m. (This is a consequence of the
Taylor formula.) Thus,∫ x

xi

Pm(t)dt =
m∑

j=0

cj

∫ x

xi

(x− t)jdt.

We have ∫ x

xi

(x− t)jdt =
(x− xi)

j+1

j + 1
.

It follows that ∫ x

xi

Pm(t)dt =
m∑

j=0

cj
(x− xi)

j+1

j + 1
.

Finally, we get

n∑
i=0

pni(x)

∫ x

xi

Pm(t)dt =
m∑

j=0

cj
j + 1

n∑
i=0

pni(x)(x− xi)
j+1 = 0,

for 0 ≤ m ≤ n− 1, since (4) holds. 2

In what follows (to simplify notations and records) we denote

Pj(t, xi) = Pj(t)

such that

P
(m)
j (t) =

∂mPj(t, xi)

∂tm
,

where xi ∈ [a, b].

Theorem 3. Under the assumptions of Lemma 2 suppose that f ∈ Ck+1(a, b).
Let {Pk(t)} be a harmonic (or Appell) sequence of polynomials, i.e. P ′k(t) =
Pk−1(t), P0(t) = 1. Then

f(x) = Ln(x)−
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]
+Rk,j(x),

(7)
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where

Rk,j(x) = (−1)k

n∑
i=0

pni(x)

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
Pk (t) dt, (8)

for any polynomial Qj(t) such that 0 ≤ j + k ≤ n− 1.

Proof. Integrating by parts, we obtain

(−1)k

∫ x

xi

f (k+1)(t)Pk (t) dt

= (−1)k
[
Pk(x)f (k)(x)− Pk(xi)f

(k)(xi)
]

+ (−1)k−1

∫ x

xi

f (k)(t)Pk−1 (t) dt.

In a similar way we have

(−1)k−1

∫ x

xi

f (k)(t)Pk−1 (t) dt

= (−1)k−1
[
Pk−1(x)f (k−1)(x)− Pk−1(xi)f

(k−1)(xi)
]

+(−1)k−2

∫ x

xi

f (k−1)(t)Pk−2 (t) dt.

Continuing in this way we get

(−1)k

∫ x

xi

f (k+1)(t)Pk (t) dt

=
k∑

m=1

(−1)m
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]

+

∫ x

xi

f ′(t)dt

=
k∑

m=1

(−1)m
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]

+ f(x)− f(xi).

Then we have
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Rk(x) = (−1)k

n∑
i=0

pni(x)

∫ x

xi

f (k+1)(t)Pk (t) dt

=
n∑

i=0

pni(x) [f(x)− f(xi)]

+
n∑

i=0

pni(x)
k∑

m=1

(−1)m
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]

= f(x)− Ln(x)

+
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]
.

If we define Sm(t) = Qj(t)Pk (t), m = j + k, then we also have

(−1)k

n∑
i=0

pni(x)

∫ x

xi

Qj(t)Pk (t) dt = (−1)k

n∑
i=0

pni(x)

∫ x

xi

Sm (t) dt = 0,

for 0 ≤ m ≤ n− 1, since (6) holds.
From the above two relations we easily conclude that (7) is valid. 2

Remark 4. Note that we can choose k = 0 in the above theorem. In this
case we have no perturbation of the Lagrange interpolating polynomial. (Of
course, the corresponding sum in (7) is empty, if k = 0.) If Qj(t) = 0 then we
can set k ≤ n.

3. Particular Corrected Interpolating Polyno-

mials

If we substitute the polynomials

Pk(t) =
(t− xi)

k

k!

in Theorem 3 then we get the following result. (Recall that we have adopted
the notation Pk(t) = Pk(t, xi) - mostly to simplify records.)
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Corollary 5. Under the assumptions of Theorem 3 we have

f(x) = Ln(x) +Rk,j(x), (9)

where Rk,j(x) is given by (8).

Hence, we got the Lagrange interpolating polynomial (without perturba-
tion). See also Remark 4.

If we substitute the polynomials

Pk(t) =
(x− xi)

k

k!
Ek

(
t− xi

x− xi

)
, (10)

(Ek(t) are Euler polynomials) in Theorem 3 then we get the following corrected
interpolating polynomial.

Corollary 6. Under the assumptions of Theorem 3 we have

f(x) = Ln(x) + ωn(x)
k∑

m=1

(−1)mEm(0)

m!
gm [x0;x1; ...;xn] +Rk,j(x), (11)

where ωn(x) = (x− x0) · · · (x− xn),

Rk,j(x) =
(−1)k

k!

n∑
i=0

pni(x)(x− xi)
k

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
Ek

(
t− xi

x− xi

)
dt

(12)
and

gm(t) = (x− t)m−1f (m)(t), m = 1, 2, ..., k.

This result is proved in [11]. (Recall that we have adopted the simplification
gm(t, x) = gm(t).)

It is obvious that we can substitute infinitely many harmonic sequences of
polynomials in Theorem 3 to obtain various corrected interpolating formulas.

Here we consider the polynomials

Pk(t) =
(x− xi)

k

k!
Bk

(
t− xi

x− xi

)
, (13)

where Bk(t) are Bernoulli polynomials. For these polynomials we can get
applicable results.
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We now recall some properties of Bernoulli polynomials. The Bernoulli
polynomials are defined by the relation

text

et − 1
=
∞∑

k=0

Bk(x)
tk

k!
, |t| < 2π,

such that

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
,... (14)

We have

B′k(x) = kBk−1(x) or

∫
Bk(x)dx =

Bk+1(x)

k + 1
, k = 1, 2, ..., (15)

∫ 1

0

Bn(t)Bm(t)dt = (−1)n m!n!

(m+ n)!
Bm+n (16)∫ 1

0

Bn(t)dt = 0, n = 1, 2, ... (17)

|B2n(t)| ≤ |B2n| , n = 1, 2, ... (18)

0 < (−1)nB2n+1(t) <
2(2n+ 1)!

(2π)2n+1

(
1

1− 2−2n

)
, 0 < x <

1

2
, n = 1, 2, ... (19)

The numbers Bk = Bk(0) are Bernoulli numbers. We have B0 = 1, B1 =
−1/2, B2 = 1/6,..., B2j+1 = 0 for j = 1, 2, ... and

Bk(0) = (−1)kBk(1). (20)

Further properties of Bernoulli polynomials can be found in [1].
If we substitute the polynomials (13) in Theorem 3 then we get the follow-

ing result.

Corollary 7. Under the assumptions of Theorem 3 we have

f(x) = Ln(x) + ωn(x)
k∑

m=1

(−1)mBm

m!
gm [x0;x1; ...;xn] +Rk,j(x), (21)
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where

Rk,j(x) =
(−1)k

k!

n∑
i=0

pni(x)(x− xi)
k

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
Bk

(
t− xi

x− xi

)
dt

(22)
and

gm(t) = (x− t)m−1f (m)(t), m = 1, 2, ..., k.

Proof. If Pm(t) are defined by (13) then we have

Pm(x)f (m)(x)− Pm(xi)f
(m)(xi)

=
(x− xi)

m

m!

[
Bm(1)f (m)(x)−Bm(0)f (m)(xi)

]
such that

k∑
m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]

=
k∑

m=1

(−1)m

m!

n∑
i=0

pni(x)(x− xi)
m
[
Bm(1)f (m)(x)−Bm(0)f (m)(xi)

]
=

k∑
m=1

(−1)m

m!
Bm(0)

n∑
i=0

pni(x)(x− xi)
mf (m)(xi),

since
n∑

i=0

pni(x)(x− xi)
mBm(1)f (m)(x) = 0,

for 1 ≤ m ≤ n. We have

n∑
i=0

pni(x)(x− xi)
mf (m)(xi)

= ωn(x)
n∑

i=0

(x− xi)
m−1f (m)(xi)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

and

gm [x0;x1; ...;xn] =
n∑

i=0

(x− xi)
m−1f (m)(xi)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
,
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by Lemma 1, such that

k∑
m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]

= ωn(x)
k∑

m=1

(−1)m

m!
Bm(0)gm [x0;x1; ...;xn] .

From (7), (8) and the above relation we see that (21) holds. 2

Remark 8. Since B2m+1 = 0, m = 1, 2, ..., and B1 = −1/2 we can write

f(x) = Ln(x) +
1

2
ωn(x)g1 [x0;x1; ...;xn] + ωn(x)

[ k
2 ]∑

m=1

B2m

(2m)!
g2m [x0;x1; ...;xn]

+Rk,j(x).

We also consider the polynomials

Pk(t) =
(t− x)k

k!
. (23)

Corollary 9. Under the assumptions of Theorem 3 we have

f(x) = Ln(x) + ωn(x)
k∑

m=1

1

m!
gm [x0;x1; ...;xn] +Rk,j(x), (24)

where

Rk,j(x) =
(−1)k

k!

n∑
i=0

pni(x)

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
(t− x)kdt (25)

and
gm(t) = (x− t)m−1f (m)(t), m = 1, 2, ..., k.

Proof. If we substitute the polynomials (23) in Theorem 3 then we get

f(x) = Ln(x) +
k∑

m=1

(−1)m

n∑
i=0

pni(x)Pm(xi)f
(m)(xi) +Rk,j(x)

= Ln(x) +
k∑

m=1

(−1)m

m!

n∑
i=0

pni(x)(xi − x)mf (m)(xi) +Rk,j(x),
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since Pm(x) = 0 and

Rk,j(x) =
(−1)k

k!

n∑
i=0

pni(x)

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
(t− x)kdt.

The above formula can be written in the form

f(x) = Ln(x) +
k∑

m=1

1

m!

n∑
i=0

pni(x)(x− xi)
mf (m)(xi) +Rk,j(x)

= Ln(x) + ωn(x)
k∑

m=1

1

m!
gm [x0;x1; ...;xn] ,

where
gm(t) = (x− t)m−1f (m)(t), m = 1, 2, ..., k.

2

4. General Error Inequalities

Let g ∈ C(a, b). As we know among all algebraic polynomials of degree ≤ j
there exists the only polynomial Q∗j(t) having the property that∥∥g −Q∗j∥∥∞ ≤ ‖g −Qj‖∞ ,

where Qj ∈ Πj is an arbitrary polynomial of degree ≤ j. We define

Gj(g) =
∥∥g −Q∗j∥∥ = inf

Qj∈Πj

‖g −Qj‖∞ . (26)

Here we use the above notation Gj without referring to its definition.
We also introduce the notations

‖g‖∞,i =


max

t∈[xi,x]
|g(t)| , x > xi

max
t∈[x,xi]

|g(t)| , x < xi

|g(xi))| , x = xi

, (27)

‖g‖1,i =

∣∣∣∣∫ x

xi

|g(t)| dt
∣∣∣∣ . (28)

Specially, if [xi, x] = [0, 1] then we use the notations ‖g‖∞,1 and ‖g‖1,1.
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Theorem 10. Under the assumptions of Theorem 3 we have∣∣∣∣∣f(x)− Ln(x) +
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]∣∣∣∣∣ (29)

≤ Gj(f
(k+1))

n∑
i=0

|pni(x)| ‖Pk‖1,i .

Proof. Let Qj(t) = Q∗j(t), where Q∗j(t) is defined by (26) for the function

g(t) = f (k+1)(t). Then we have

|Rk,j(x)| ≤
n∑

i=0

|pni(x)|
∣∣∣∣∫ x

xi

[
f (k+1)(t)−Q∗j(t)

]
Pk (t) dt

∣∣∣∣
≤

∥∥f (k+1) −Q∗j
∥∥
∞

n∑
i=0

|pni(x)|
∣∣∣∣∫ x

xi

|Pk (t)| dt
∣∣∣∣

= Gj(f
(k+1))

n∑
i=0

|pni(x)|
∣∣∣∣∫ x

xi

|Pk (t)| dt
∣∣∣∣ .

From (7), (8), (28) and the above relation we see that (29) holds. 2

Theorem 11. Let the assumptions of Theorem 3 hold. If γk+1, Γk+1 are real
numbers such that γk+1 ≤ f (k+1(t) ≤ Γk+1, t ∈ [a, b], k = 0, 1, ..., n− 1, then∣∣∣∣∣f(x)− Ln(x) +

k∑
m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]∣∣∣∣∣

≤ Γk+1 − γk+1

2

n∑
i=0

|pni(x)| ‖Pk‖1,i ,

∣∣∣∣∣f(x)− Ln(x) +
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]∣∣∣∣∣

≤
n∑

i=0

|pni(x)| |Ski − γk+1| |x− xi| ‖Pk‖∞,i
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and ∣∣∣∣∣f(x)− Ln(x) +
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]∣∣∣∣∣

≤
n∑

i=0

|pni(x)| |Γk+1 − Ski| |x− xi| ‖Pk‖∞,i ,

where Ski =
[
f (k)(x)− f (k)(xi)

]
/(x− xi), i = 0, 1, ..., n.

Proof. We set Qj(t) = (Γk+1 + γk+1) /2 in (8). Then we have

∣∣∣∣∣f(x)− Ln(x) +
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]∣∣∣∣∣

= |Rk,j(x)|

≤
n∑

i=0

|pni(x)|
∣∣∣∣∫ x

xi

[
f (k+1)(t)− Γk+1 + γk+1

2

]
Pk (t) dt

∣∣∣∣
≤

∥∥∥∥f (k+1) − Γk+1 + γk+1

2

∥∥∥∥
∞

n∑
i=0

|pni(x)|
∣∣∣∣∫ x

xi

|Pk (t)| dt
∣∣∣∣ .

Since ∥∥∥∥f (k+1) − Γk+1 + γk+1

2

∥∥∥∥
∞
≤ Γk+1 − γk+1

2

we get∣∣∣∣∣f(x)− Ln(x) +
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]∣∣∣∣∣

≤ Γk+1 − γk+1

2

n∑
i=0

|pni(x)|
∣∣∣∣∫ x

xi

|Pk (t)| dt
∣∣∣∣ .

The first inequality is proved.
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We now have∣∣∣∣∣f(x)− Ln(x) +
k∑

m=1

(−1)m

n∑
i=0

pni(x)
[
Pm(x)f (m)(x)− Pm(xi)f

(m)(xi)
]∣∣∣∣∣

= |Rk,j(x)|

≤
n∑

i=0

|pni(x)|
∣∣∣∣∫ x

xi

[
f (k+1)(t)− γk+1

]
Pk (t) dt

∣∣∣∣
≤

n∑
i=0

|pni(x)| |Ski − γk+1| |x− xi| ‖Pk‖∞,i ,

since ∣∣∣∣∫ x

xi

[
f (k+1)(t)− γk+1

]
dt

∣∣∣∣
=

∣∣f (k)(x)− f (k)(xi)− γk+1(x− xi)
∣∣

= (Ski − γk+1) |x− xi| .

The second inequality is proved. The third inequality can be proved in a
similar way. 2

5. Particular Error Inequalities

In this section we give various error bounds for the particular corrected inter-
polating polynomials.

For that purpose, we introduce the notations

Ck(x) =
n∑

i=0

|x− xi|k

|xi − x0| · · · |xi − xi−1| |xi − xi+1| · · · |xi − xn|
, (30)

Fk(x) =
n∑

i=0

(Ski − γk+1) |x− xi|k

|xi − x0| · · · |xi − xi−1| |xi − xi+1| · · · |xi − xn|
, (31)

Dk(x) =
n∑

i=0

(Γk+1 − Ski) |x− xi|k

|xi − x0| · · · |xi − xi−1| |xi − xi+1| · · · |xi − xn|
, (32)

where Ski =
[
f (k)(x)− f (k)(xi)

]
/(x−xi), i = 0, 1, ..., n and γk+1, Γk+1 are real

numbers such that γk+1 ≤ f (k+1(t) ≤ Γk+1, t ∈ [a, b], k = 0, 1, ..., n− 1.
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We also introduce notations for the remainders of the corrected interpolat-
ing polynomials. These interpolating polynomials are obtained in Section 3.
We define

RB
k,j(x) (33)

=
(−1)k

k!

n∑
i=0

pni(x)(x− xi)
k

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
Bk

(
t− xi

x− xi

)
dt

= f(x)− Ln(x)− ωn(x)
k∑

m=1

(−1)mBm

m!
gm [x0;x1; ...;xn] ,

RE
k,j(x) (34)

=
(−1)k

k!

n∑
i=0

pni(x)(x− xi)
k

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
Ek

(
t− xi

x− xi

)
dt

= f(x)− Ln(x)− ωn(x)
k∑

m=1

(−1)mEm(0)

m!
gm [x0;x1; ...;xn] ,

RT
k,j(x) =

(−1)k

k!

n∑
i=0

pni(x)

∫ x

xi

[
f (k+1)(t)−Qj(t)

]
(t− x)kdt (35)

= f(x)− Ln(x)− ωn(x)
k∑

m=1

1

m!
gm [x0;x1; ...;xn] .

In this section we use the above notations without referring to their definitions.
We now consider the interpolation formula given in Corollary 7.

Theorem 12. Under the assumptions of Corollary 7 we have∣∣RB
k,j(x)

∣∣ ≤ ‖Bk‖1,1

k!
Gj(f

(k+1))Ck(x) |ωn(x)| .

Proof. We substitute the polynomials (13) in Theorem 10. If we use the fact
that ∣∣∣∣∫ x

xi

∣∣∣∣Bk

(
t− xi

x− xi

)∣∣∣∣ dt∣∣∣∣ = |x− xi|
∫ 1

0

|Bk(t)| dt (36)

then we easily find that the above inequality holds. 2
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Corollary 13. Under the assumptions of Theorem 12 let k be odd, k = 2r −
1, r ≥ 1. Then we have

∣∣RB
k,j(x)

∣∣ ≤ 2 |B2r|
(2r − 1)!

1− 2−2r

r
Gj(f

(2r))C2r−1(x) |ωn(x)| ,

If k is even then we have∣∣RB
k,j(x)

∣∣ ≤ 2Λk

(k + 1)!
Gj(f

(k+1))Ck(x) |ωn(x)| , (37)

where
Λk = 2 |Bk+1(t0)| (38)

and t0 ∈
(
0, 1

2

)
is a unique zero point (in the interval

(
0, 1

2

)
) of the Bernoulli

polynomial Bk(·), k = 2r.

Proof. To prove the first inequality it is sufficient to note that∫ 1

0

|Bk(t)| dt = 2
1− 2−2r

r
|B2r| , (39)

if k ≥ 2 is odd, k = 2r − 1. (The last integral is calculated in [6].)
To prove the second inequality we calculate

‖Bk‖1,1 =

∫ 1

0

|Bk(t)| dt = 2

[∣∣∣∣∫ t0

0

Bk(t)dt

∣∣∣∣+

∣∣∣∣∣
∫ 1/2

t0

Bk(t)dt

∣∣∣∣∣
]

(40)

=
2

k + 1

[
|Bk+1(t0)−Bk+1|+

∣∣∣∣Bk+1(t0)−Bk+1(
1

2
)

∣∣∣∣] .
2

Remark 14. The above estimates have only theoretical importance, since it is
difficult to find the polynomial Q∗ in practice. In fact, we can find Q∗ only for
some special cases of functions. However, we can use the estimates to obtain
some practical estimations.

We also have the estimation

∣∣RB
k,j(x)

∣∣ ≤ √|B2k|√
(2k)!

Gj(f
(k+1))Ck(x) |ωn(x)| .
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This estimation follows from Theorem 12 and the fact that(∫ 1

0

|Bk (t)| dt
)2

≤
∫ 1

0

(Bk (t))2 dt =
(k!)2

(2k)!
|B2k| . (41)

We also emphasize that this inequality would be used only if k is even and we
cannot find (or we simply don’t know) the zero point to.

Finally, we specially note that if k is even then the corresponding Bernoulli
polynomial Bk(t) has only one zero point t0 in

(
0, 1

2

)
. For example, for

k = 2 this zero point is t0 = 1
2
− 1

6

√
3, for k = 4 the zero point is t0 =

1
2
− 1

30

√(
225− 30

√
30
)

and generally, for large k = 2r, it is (very) close to 1
4
.

Theorem 15. Let the assumptions of Corollary 7 hold. If γk+1, Γk+1 are real
numbers such that γk+1 ≤ f (k+1(t) ≤ Γk+1, t ∈ [a, b], k = 0, 1, ..., n− 1, then∣∣RB

k,j(x)
∣∣ ≤ Γk+1 − γk+1

2k!
Ck(x) |ωn(x)| ‖Bk‖1,1 ,

where ωn(x) is defined by (5). We also have∣∣RB
k,j(x)

∣∣ ≤ |ωn(x)|
k!

Fk(x) ‖Bk‖∞,1

and ∣∣RB
k,j(x)

∣∣ ≤ |ωn(x)|
k!

Dk(x) ‖Bk‖∞,1 .

Proof. We substitute the polynomials (13) in Theorem 11 and use the relation
(36). 2

Corollary 16. Let the assumptions of Theorem 15 hold. If k is odd, k =
2r − 1, r ≥ 2, then∣∣RB

k,j(x)
∣∣ ≤ Γk+1 − γk+1

(2r − 1)!

1− 2−2r

r
|B2r|Ck(x) |ωn(x)| .

If k is even then we have∣∣RB
k,j(x)

∣∣ ≤ Γk+1 − γk+1

(k + 1)!
ΛkCk(x) |ωn(x)|

where Λk is defined by (38).
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Proof. The proof follows from the above theorem and the relations (39) and
(40). 2

Remark 17. We additionally have the estimate

∣∣RB
k,j(x)

∣∣ ≤ Γk+1 − γk+1

2
√

(2k)!

√
|B2k|Ck(x) |ωn(x)| . (42)

which can be proved using the relation (41). See also Remark 14.

Corollary 18. Let the assumptions of Theorem 15 hold. Then∣∣RB
k,j(x)

∣∣ ≤ 2

(2π)k

1

1− 21−k
|ωn(x)|Fk(x),

if k = 4r + 3, r = 0, 1, 2, ...,

∣∣RB
k,j(x)

∣∣ ≤ |Bk|
k!
|ωn(x)|Fk(x),

if k = 2r, r = 1, 2, ...,∣∣RB
k,j(x)

∣∣ ≤ 2

(2π)k

1

1− 21−k
|ωn(x)|Dk(x)

if k = 4r + 3, r = 0, 1, 2, ...,

∣∣RB
k,j(x)

∣∣ ≤ |Bk|
k!
|ωn(x)|Dk(x),

if k = 2r, r = 1, 2, ....

Proof. The proof follows from the above theorem and the following properties
of Bernoulli polynomials:

‖Bk‖∞,1 = max
t∈[0,1]

|Bk(t)| ≤ |Bk| , k = 2r, r = 1, 2, ...

‖Bk‖∞,1 ≤
2k!

(2π)k

1

1− 21−k
, k = 4r + 3, r = 0, 1, 2, ....

2
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Lemma 19. Let ∆ = {x0 = a < x1 < · · · < xn = b} be a given uniform sub-
division of the interval [a, b], i.e. xi = x0 + ih, h = (b− a)/n, i = 0, 1, 2, ..., n.
If x ∈ (xj−1, xj), for some j ∈ {1, 2, ..., n}, then

|ωn(x)| ≤ j!(n− j + 1)!hn+1, (43)

Ck(x) ≤ 2n

n!

{
1

2
[n+ 1 + |n− 2j + 1|]

}k

hk−n, (44)

and

Ck(x) |ωn(x)| ≤ αjnk
n− j + 1

n

2n(b− a)k+1(
n
j

) , (45)

where

αjnk =

[
1

2n
(n+ 1 + |2j − n− 1|)

]k

. (46)

This lemma is proved in [11].

Remark 20. Note that
αjnk ≤ 1

and αjnk = 1 if and only if j = 1 or j = n. If we choose x ∈ [xj, xj+1],
j = 0, 1, ..., n − 1, then we get the factor (j + 1)/n instead of the factor
(n− j + 1)/n in (45).

Theorem 21. Under the assumptions of Lemma 19 and Theorem 15 we have∣∣RB
k,j(x)

∣∣ ≤ |B2r|αjnk

k!

1− 2−2r

r

n− j + 1

n

2n(b− a)k+1(
n
j

) (Γk+1 − γk+1) ,

if k is odd, k = 2r − 1, r ≥ 1 and∣∣RB
k,j(x)

∣∣ ≤ Λkαjnk

(k + 1)!

n− j + 1

n

2n(b− a)k+1(
n
j

) (Γk+1 − γk+1) ,

if k is even and where Λk is defined by (38).

Proof. The proof follows immediately from Corollary 16 and Lemma 19. 2

Remark 22. Here we also have an additional estimate∣∣RB
k,j(x)

∣∣ ≤ Γk+1 − γk+1

2
√

(2k)!

√
|B2k|αjnk

n− j + 1

n

2n(b− a)k+1(
n
j

) .
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We now consider the interpolation formula given in Corollary 6.
First we recall some properties of the Euler polynomials. The Euler poly-

nomials are defined by the relation

2ext

et + 1
=
∞∑

k=0

Ek(x)
tk

k!
, |t| < π,

such that

E0(x) = 1, E1(x) = x− 1

2
, E2(x) = x2 − x, ...

The numbers Ek = 2kEk(1
2
) are Euler numbers; E0 = 1, E2 = −1, E4 = 5,

E2k+1 = 0, k = 1, 2, ....
We have the properties

E ′k(x) = kEk−1(x), k = 1, 2, ...,

Ek(1− x) = (−1)kEk(x), k = 0, 1, 2, ...,∫ x

a

Ek(t)dt =
Ek+1(x)− Ek+1(a)

k + 1
,

(−1)kE2k(x) > 0, k = 1, 2, ..., 0 < x <
1

2
,

(−1)kE2k−1(x) > 0, k = 1, 2, ..., 0 < x <
1

2
,

0 < (−1)kE2k(x) < 4−k |E2k| , k = 1, 2, ..., 0 < x <
1

2
,

0 < (−1)kE2k−1(x) <
4(2k − 1)!

π2k

(
1 +

1

22k − 2

)
, k = 1, 2, ..., 0 < x <

1

2
.

Further properties of these polynomials can be found in [1].
We specially have∫ 1

0

|Ek(t)| dt = 2

∣∣∣∣∣
∫ 1

2

0

Ek(t)dt

∣∣∣∣∣ = 2

∣∣∣∣Ek+1(1
2
)− Ek+1(0)

k + 1

∣∣∣∣ (47)

= 2

∣∣∣∣2−k−1Ek+1 − Ek+1(0)

k + 1

∣∣∣∣ .
We also introduce the notation

θk = 2
∣∣2−k−1Ek+1 − Ek+1(0)

∣∣ . (48)
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Theorem 23. Under the assumptions of Corollary 6 we have∣∣RE
k,j(x)

∣∣ ≤ θk

(k + 1)!
Gj(f

(k+1))Ck(x) |ωn(x)| ,

where θk is defined by (48).

Proof. We substitute the polynomials (10) in Theorem 10 and note that∣∣∣∣∫ x

xi

∣∣∣∣Ek

(
t− xi

x− xi

)∣∣∣∣ dt∣∣∣∣ = |x− xi|
∫ 1

0

|Ek(t)| dt =
θk

k + 1
|x− xi| . (49)

2

Theorem 24. Let the assumptions of Corollary 6 hold. If γk+1, Γk+1 are real
numbers such that γk+1 ≤ f (k+1(t) ≤ Γk+1, t ∈ [a, b], k = 0, 1, ..., n− 1, then∣∣RE

k,j(x)
∣∣ ≤ θk

2(k + 1)!
(Γk+1 − γk+1) |ωn(x)|Ck(x),

where ωn(x) is defined by (5). We also have∣∣RE
k,j(x)

∣∣ ≤ 4−k/2 |Ek|
k!

|ωn(x)|Fk(x),∣∣RE
k,j(x)

∣∣ ≤ 4−k/2 |Ek|
k!

|ωn(x)|Dk(x),

if k = 4r, r = 1, 2, ..., and∣∣RE
k,j(x)

∣∣ ≤ 4

πk+1

(
1 +

1

2k+1 − 2

)
|ωn(x)|Fk(x),

∣∣RE
k,j(x)

∣∣ ≤ 4

πk+1

(
1 +

1

2k+1 − 2

)
|ωn(x)|Dk(x),

if k = 4r − 1, r = 1, 2, ....

Proof. We substitute the polynomials (10) in Theorem 11 and use the follow-
ing properties of Euler polynomials:

max
t∈[0,1]

|Ek(t)| ≤ 4−k/2 |Ek| , k = 4r, r = 1, 2, ...,

max
t∈[0,1]

|Ek(t)| ≤ 4k!

πk+1

(
1 +

1

2k+1 − 2

)
, k = 4r − 1, r = 1, 2, ....

2
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Corollary 25. Under the assumptions of Lemma 19 and Theorem 24 we have∣∣RE
k,j(x)

∣∣ ≤ θkαjnk

(k + 1)!

n− j + 1

n

2n−1(b− a)k+1(
n
j

) (Γk+1 − γk+1) .

Proof. The proof follows immediately from Theorem 24 and Lemma 19. 2

Remark 26. Some of the above inequalities ( for this choice of polynomials
Pk(t)) are improvements of corresponding error inequalities obtained in [11].

Finally, we consider the interpolation formula given in Corollary 9.

Theorem 27. Under the assumptions of Corollary 9 we have∣∣RT
k,j(x)

∣∣ ≤ Gj(f
(k+1))

(k + 1)!
Ck(x) |ωn(x)| .

Proof. We substitute the polynomials (23) in Theorem 10. 2

Theorem 28. Let the assumptions of Corollary 9 hold. If γk+1, Γk+1 are real
numbers such that γk+1 ≤ f (k+1(t) ≤ Γk+1, t ∈ [a, b], k = 0, 1, ..., n− 1, then∣∣RT

k,j(x)
∣∣ ≤ Γk+1 − γk+1

2(k + 1)!
Ck(x) |ωn(x)| ,

where ωn(x) is defined by (5). We also have∣∣RT
k,j(x)

∣∣ ≤ |ωn(x)|
k!

Fk(x)

and ∣∣RT
k,j(x)

∣∣ ≤ |ωn(x)|
k!

Dk(x).

Proof. We substitute the polynomials (23) in Theorem 11. 2

Corollary 29. Under the assumptions of Lemma 19 and Theorem 28 we have∣∣RT
k,j(x)

∣∣ ≤ αjnk

(k + 1)!

n− j + 1

n

2n−1(b− a)k+1(
n
j

) (Γk+1 − γk+1) .

Proof. The proof follows immediately from Theorem 28 and Lemma 19. 2
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