Wavelet Transform Associated with the q-Dunkl Operator

Néji Bettaibi, Rym H. Bettaieb ${ }^{\dagger}$
Institut Préparatoire aux Études d'Ingénieur de Monastir, 5000 Monastir, Tunisia
and
Slim Bouaziz ${ }^{\ddagger}$
Institut Préparatoire aux Études d'Ingénieur Elmanar, 1060 Tunis, Tunisia

Received September 23, 2008, Accepted October 25, 2008.

Abstract

In this paper, we present some new elements of harmonic analysis related to the q-Dunkl operator introduced in [1], we define and study the q-wavelets and the continuous q-wavelet transforms associated with this operator. Next, as an application, we give inversion formulas for the q-Dunkl intertwining operator and its dual using q-wavelets.

1. Introduction

In [11, 12], R. L. Rubin constructed a q^{2}-analogue Fourier analysis associated with a q^{2}-analogue differential operator ∂_{q}. Using this q-harmonic analysis, the

[^0]authors studied in [4] the q-wavelets and the continuous q-wavelet transforms associated with the operator ∂_{q}.

In [1], the authors introduced a q-analogue of the Dunkl operator on \mathbb{R} and they defined and studied its associated Fourier transform $F_{D}^{\alpha, q}$, called q-Dunkl transform, which is a q-analogue of the Bessel-Dunkl transform. They, also, studied the q-Dunkl intertwining operator $V_{\alpha, q}$ and its dual ${ }^{t} V_{\alpha, q}$ via the q-analogues of the Riemann-Liouville and Weyl transforms $R_{\alpha, q}$ and ${ }^{t} R_{\alpha, q}$, studied in [5]. In particular, they proved that $V_{\alpha, q}$ and its dual are automorphism of some spaces $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ and $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$, respectively and they gave their inversion operators using $R_{\alpha, q}$ and ${ }^{t} R_{\alpha, q}$.

In this paper, we define the generalized q-Dunkl translation operator and its related convolution product, we give some of their properties, then, we are interested by studying the q-wavelets and the continuous q-wavelet transforms associated with the q-Dunkl operator. Next, we establish an inversion formulas for the q-Dunkl intertwining operator $V_{\alpha, q}$ and its dual ${ }^{t} V_{\alpha, q}$ using q-wavelets.

This paper is organized as follows: in Section 2, we present some preliminaries results and notations that will be useful in the sequel. In Section 3, we recall some results and properties concerning the q-Dunkl transform studied in [1], we introduce the generalized q-Dunkl translation operator and its related convolution product and we give some of their properties. In Section 4 , we define and study the q-wavelet and the continuous q-wavelet transform associated with the q-Dunkl operator, and we provide for this transform a Plancherel formula and an inversion theorem. Section 5 is devoted to give some inversion formulas for the q-Dunkl intertwining operator and its dual on some new spaces (other than $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ and $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$). Finally, in Section 6, we give some relations between the continuous q-wavelet transform associated with the q-Dunkl operator and those associated with the q^{2}-analogue differential operator ∂_{q}, studied in [4]. Next, by the help of these relations, we derive the inversion formulas of the q-Dunkl intertwining operator and its dual using q-wavelets.

2. Notations and Preliminaries

For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions used in this paper, we will follow the notations of $[11,12]$. We fix $q \in] 0,1[$ and we refer to the book by G. Gasper and M. Rahman [6] for the definitions, notations and properties of the q-shifted factorials and the q-hypergeometric functions.

We will write
$\mathbb{R}_{q}=\left\{ \pm q^{n} \quad: \quad n \in \mathbb{Z}\right\}, \widetilde{\mathbb{R}}_{q}=\left\{ \pm q^{n} \quad: \quad n \in \mathbb{Z}\right\} \cup\{0\}$.
For $a \in \mathbb{C}$, the q-shifted factorials are defined by

$$
\begin{equation*}
(a ; q)_{0}=1 ; \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2, \ldots ; \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \tag{1}
\end{equation*}
$$

We also denote

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad x \in \mathbb{C} ; \quad[n]_{q}!=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

The q^{2}-analogue differential operator is (see [12], [11]),

$$
\partial_{q}(f)(z)=\left\{\begin{array}{cl}
\frac{f\left(q^{-1} z\right)+f\left(-q^{-1} z\right)-f(q z)+f(-q z)-2 f(-z)}{2(1-q) z} & \text { if } z \neq 0 \tag{3}\\
\lim _{x \rightarrow 0} \partial_{q}(f)(x) \quad\left(\text { in } \mathbb{R}_{q}\right) & \text { if } z=0
\end{array}\right.
$$

Note that if f is differentiable at z, then $\lim _{q \rightarrow 1} \partial_{q}(f)(z)=f^{\prime}(z)$.
The q-trigonometric functions q-cosine and q-sine are defined by (see $[11,12]$):

$$
\begin{equation*}
\cos \left(x ; q^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n}}{[2 n]_{q}!} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \left(x ; q^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n+1}}{[2 n+1]_{q}!} . \tag{5}
\end{equation*}
$$

These functions induce a $\partial_{q^{-}}$-adapted q^{2}-analogue exponential function by

$$
\begin{equation*}
e\left(z ; q^{2}\right)=\cos \left(-i z ; q^{2}\right)+i \sin \left(-i z ; q^{2}\right) \tag{6}
\end{equation*}
$$

$e\left(z ; q^{2}\right)$ is absolutely convergent for all z in the plane since both of its component functions are. $\lim _{q \rightarrow 1^{-}} e\left(z ; q^{2}\right)=e^{z}$ (exponential function) pointwise and uniformly on compacts.
Using the same technique as in [11], one can prove that for all $x \in \mathbb{R}_{q}$, we have

$$
\left|\cos \left(x ; q^{2}\right)\right| \leq \frac{1}{(q ; q)_{\infty}} \quad \text { and } \quad\left|\sin \left(x ; q^{2}\right)\right| \leq \frac{1}{(q ; q)_{\infty}}
$$

so,

$$
\begin{equation*}
\forall x \in \mathbb{R}_{q}, \quad\left|e\left(-i x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}} \tag{7}
\end{equation*}
$$

The q-Jackson integrals from 0 to $a \in \mathbb{R}$ and from $-\infty$ to $+\infty$ are defined by (see [7], [8], [10], [9])

$$
\begin{equation*}
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty}\left\{f\left(q^{n}\right)+f\left(-q^{n}\right)\right\} q^{n} \tag{9}
\end{equation*}
$$

provided the sums converge absolutely.
The following result can be verified by direct computation.
Lemma 1. If $\int_{-\infty}^{\infty} f(t) d_{q} t$ exists, then for all $a \in \mathbb{R}_{q}$,

$$
\int_{-\infty}^{\infty} f(a t) d_{q} t=|a|^{-1} \int_{-\infty}^{\infty} f(t) d_{q} t
$$

In the sequel, we will need the following spaces:

- $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ the space of functions f defined on \mathbb{R}_{q}, satisfying
$\forall n \in \mathbb{N}, \quad a \geq 0, \quad P_{n, a}(f)=\sup \left\{\left|\partial_{q}^{k} f(x)\right| ; 0 \leq k \leq n ; x \in[-a, a] \cap \mathbb{R}_{q}\right\}<\infty$ and

$$
\lim _{x \rightarrow 0} \partial_{q}^{n} f(x) \quad\left(\text { in } \quad \mathbb{R}_{q}\right) \quad \text { exists. }
$$

We provide it with the topology defined by the semi norms $P_{n, a}$.

- $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ the space of functions f defined on \mathbb{R}_{q} satisfying

$$
\forall n, m \in \mathbb{N}, \quad P_{n, m, q}(f)=\sup _{x \in \mathbb{R}_{q}}\left|x^{m} \partial_{q}^{n} f(x)\right|<+\infty
$$

and

$$
\lim _{x \rightarrow 0} \partial_{q}^{n} f(x) \quad\left(\text { in } \quad \mathbb{R}_{q}\right) \quad \text { exists. }
$$

- $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ the subspace of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ constituted of functions with compact supports.
- $L_{\alpha, q}^{p}\left(\mathbb{R}_{q}\right)=\left\{f:\|f\|_{p, \alpha, q}=\left(\int_{-\infty}^{\infty}|f(x)|^{p}|x|^{2 \alpha+1} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}, \quad p>0$ and $\alpha \in \mathbb{R}$.
- $L_{q}^{\infty}\left(\mathbb{R}_{q}\right)=\left\{f:\|f\|_{\infty, q}=\sup _{x \in \mathbb{R}_{q}}|f(x)|<\infty\right\}$.

3. Elements of q-Dunkl Harmonic Analysis

In this section, we collect some basic results and properties from the q-Dunkl operator theory, studied in [1], and we introduce and study a generalized q Dunkl translation as well as its related convolution product.

For $\alpha \geq-\frac{1}{2}$, the q-Dunkl transform is defined on $L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$ by (see [1])

$$
\begin{equation*}
F_{D}^{\alpha, q}(f)(\lambda)=c_{\alpha, q} \int_{-\infty}^{+\infty} f(x) \psi_{-\lambda}^{\alpha, q}(x) \cdot|x|^{2 \alpha+1} d_{q} x, \quad \lambda \in \widetilde{\mathbb{R}}_{q} \tag{10}
\end{equation*}
$$

where $c_{\alpha, q}=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \quad$ and $\quad \psi_{\lambda}^{\alpha, q}$ is the q-Dunkl kernel defined by

$$
\begin{equation*}
\psi_{\lambda}^{\alpha, q}: x \longmapsto j_{\alpha}\left(\lambda x ; q^{2}\right)+\frac{i \lambda x}{[2 \alpha+2]_{q}} j_{\alpha+1}\left(\lambda x ; q^{2}\right), \tag{11}
\end{equation*}
$$

with $j_{\alpha}\left(x ; q^{2}\right)$ is the normalized third Jackson's q-Bessel function given by:
$j_{\alpha}\left(x ; q^{2}\right)=\sum_{n=0}^{+\infty}(-1)^{n} \frac{\Gamma_{q^{2}}(\alpha+1) q^{n(n+1)}}{\Gamma_{q^{2}}(\alpha+n+1) \Gamma_{q^{2}}(n+1)}\left(\frac{x}{1+q}\right)^{2 n}$.

It was proved in [1] that for all $\lambda \in \mathbb{C}$, the function: $\quad x \longmapsto \psi_{\lambda}^{\alpha, q}(x)$ is the unique solution of the q-differential-difference equation:

$$
\left\{\begin{array}{cl}
\Lambda_{\alpha, q}(f) & =i \lambda f \tag{12}\\
f(0) & =1
\end{array}\right.
$$

where $\Lambda_{\alpha, q}$ is the q-Dunkl operator defined by

$$
\begin{equation*}
\Lambda_{\alpha, q}(f)(x)=\partial_{q}\left[f_{e}+q^{2 \alpha+1} f_{o}\right](x)+[2 \alpha+1]_{q} \frac{f(x)-f(-x)}{2 x}, \tag{13}
\end{equation*}
$$

with f_{e} and f_{o} are respectively the even and the odd parts of f.
We recall that the q-Dunkl operator $\Lambda_{\alpha, q}$ lives the spaces $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ and $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ invariant. Some other properties of the q-Dunkl kernel and the q-Dunkl transform are given in the following results (see [1]).

Proposition 1.

i) $\psi_{\lambda}^{\alpha, q}(x)=\psi_{x}^{\alpha, q}(\lambda), \quad \psi_{a \lambda}^{\alpha, q}(x)=\psi_{\lambda}^{\alpha, q}(a x), \quad \overline{\psi_{\lambda}^{\alpha, q}(x)}=\psi_{-\lambda}^{\alpha, q}(x), \forall \lambda, x \in \mathbb{R}$, $a \in \mathbb{C}$.
ii) If $\alpha=-\frac{1}{2}$, then $\psi_{\lambda}^{\alpha, q}(x)=e\left(i \lambda x ; q^{2}\right)$.

For $\alpha>-\frac{1}{2}, \quad \psi_{\lambda}^{\alpha, q}$ has the following q-integral representation of Mehler type

$$
\begin{equation*}
\psi_{\lambda}^{\alpha, q}(x)=\frac{(1+q) \Gamma_{q^{2}}(\alpha+1)}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right) \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{-1}^{1} \frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}}(1+t) e\left(i \lambda x t ; q^{2}\right) d_{q} t \tag{14}
\end{equation*}
$$

iii) For all $\lambda \in \mathbb{R}_{q}, \psi_{\lambda}^{\alpha, q}$ is bounded on $\widetilde{\mathbb{R}}_{q}$ and we have

$$
\begin{equation*}
\left|\psi_{\lambda}^{\alpha, q}(x)\right| \leq \frac{4}{(q ; q)_{\infty}}, \quad \forall x \in \widetilde{\mathbb{R}}_{q} \tag{15}
\end{equation*}
$$

iv) For all $\lambda \in \mathbb{R}_{q}, \psi_{\lambda}^{\alpha, q} \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$.
v) The function $\psi_{\lambda}^{\alpha, q}$ verifies the following orthogonality relation: For all $x, y \in$ \mathbb{R}_{q},

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \psi_{\lambda}^{\alpha, q}(x) \overline{\psi_{\lambda}^{\alpha, q}(y)}|\lambda|^{2 \alpha+1} d q \lambda=\frac{4(1+q)^{2 \alpha} \Gamma_{q^{2}}^{2}(\alpha+1) \delta_{x, y}}{(1-q)|x y|^{\alpha+1}} \tag{16}
\end{equation*}
$$

vi) If $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$ then $F_{D}^{\alpha, q}(f) \in L_{q}^{\infty}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
\left\|F_{D}^{\alpha, q}(f)\right\|_{\infty, q} \leq \frac{4 c_{\alpha, q}}{(q ; q)_{\infty}}\|f\|_{1, \alpha, q} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\substack{|\lambda| \rightarrow+\infty \\ \lambda \in \mathbb{R}_{q}}} F_{D}^{\alpha, q}(f)(\lambda)=0, \quad \lim _{\substack{|\lambda| \rightarrow 0 \\ \lambda \in \mathbb{\mathbb { R }}_{q}}} F_{D}^{\alpha, q}(f)(\lambda)=F_{D}^{\alpha, q}(f)(0) \tag{18}
\end{equation*}
$$

vii) For $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
F_{D}^{\alpha, q}\left(\Lambda_{\alpha, q} f\right)(\lambda)=i \lambda F_{D}^{\alpha, q}(f)(\lambda) \tag{19}
\end{equation*}
$$

viii) For $f, g \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) g(\lambda)|\lambda|^{2 \alpha+1} d_{q} \lambda=\int_{-\infty}^{+\infty} f(x) F_{D}^{\alpha, q}(g)(x)|x|^{2 \alpha+1} d_{q} x \tag{20}
\end{equation*}
$$

Theorem 1. For all $f \in L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{align*}
\forall x \in \mathbb{R}_{q}, \quad f(x) & =c_{\alpha, q} \int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x) \cdot|\lambda|^{2 \alpha+1} d_{q} \lambda \tag{21}\\
& =\overline{F_{D}^{\alpha, q}\left(\overline{F_{D}^{\alpha, q}(f)}\right)}(x)
\end{align*}
$$

Theorem 2. i) Plancherel formula
For $\alpha \geq-1 / 2$, the q-Dunkl transform $F_{D}^{\alpha, q}$ is an isomorphism from $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ onto itself. Moreover, for all $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\left\|F_{D}^{\alpha, q}(f)\right\|_{2, \alpha, q}=\|f\|_{2, \alpha, q} \tag{22}
\end{equation*}
$$

ii) Plancherel theorem

The q-Dunkl transform can be uniquely extended to an isometric isomorphism on $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$. Its inverse transform $\left(F_{D}^{\alpha, q}\right)^{-1}$ is given by :

$$
\begin{equation*}
\left(F_{D}^{\alpha, q}\right)^{-1}(f)(x)=c_{\alpha, q} \int_{-\infty}^{+\infty} f(\lambda) \psi_{\lambda}^{\alpha, q}(x) \cdot|\lambda|^{2 \alpha+1} d_{q} \lambda=F_{D}^{\alpha, q}(f)(-x) \tag{23}
\end{equation*}
$$

We are now in a position to define the generalized q-Dunkl translation operator.

Definition 1. The generalized q-Dunkl translation operator is defined for $f \in$ $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ and $x, y \in \mathbb{R}_{q}$ by

$$
\begin{align*}
T_{y}^{\alpha ; q}(f)(x) & =c_{\alpha, q} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x) \psi_{\lambda}^{\alpha, q}(y)|\lambda|^{2 \alpha+1} d_{q} \lambda, \tag{24}\\
T_{0}^{\alpha ; q}(f) & =f .
\end{align*}
$$

It verifies the following properties.

Proposition 2.

1) For all $f \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ and all $x \in \mathbb{R}_{q}$,

$$
\lim _{\substack{y \rightarrow 0 \\ y \in \mathbb{R}_{q}}} T_{y}^{\alpha ; q}(f)(x)=f(x) .
$$

2) For all $x, y \in \mathbb{R}_{q}, T_{y}^{\alpha ; q}(f)(x)=T_{x}^{\alpha ; q}(f)(y)$.
3) If $f \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right) \quad$ (resp. $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$) then $T_{y}^{\alpha ; q}(f) \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right) \quad$ (resp. $\left.\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$ and we have

$$
\begin{equation*}
\left\|T_{y}^{\alpha ; q}(f)\right\|_{2, \alpha, q} \leq \frac{4}{(q ; q)_{\infty}}\|f\|_{2, \alpha, q} \tag{25}
\end{equation*}
$$

4) For all $x, y, \lambda \in \mathbb{R}_{q}, T_{y}^{\alpha ; q}\left(\psi_{\lambda}^{\alpha, q}\right)(x)=\psi_{\lambda}^{\alpha, q}(x) \psi_{\lambda}^{\alpha, q}(y)$.
5) For $f \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right), x, y \in \mathbb{R}_{q}$, we have

$$
\begin{equation*}
F_{D}^{\alpha, q}\left(T_{y}^{\alpha ; q} f\right)(\lambda)=\psi_{\lambda}^{\alpha, q}(y) F_{D}^{\alpha, q}(f)(\lambda) \tag{26}
\end{equation*}
$$

6) For $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ and $y \in \mathbb{R}_{q}$, we have

$$
\Lambda_{\alpha, q} T_{y}^{\alpha ; q} f=T_{y}^{\alpha ; q} \Lambda_{\alpha, q} f
$$

Proof.

1) Since $\psi_{\lambda}^{\alpha, q}$ is bounded on \mathbb{R}_{q}, then the Lebesgue theorem and Theorem 1 give the result.
2) Follows from the definition of the generalized q-Dunkl translation.
3) Since $f \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right) \quad$ (resp. $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$), $\psi_{y}^{\alpha, q}$ is bounded for all y (resp. $\psi_{y}^{\alpha, q} \in$ $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$) and $F_{D}^{\alpha, q}$ is an automorphism of $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right) \quad\left(\right.$ resp. $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$), then $F_{D}^{\alpha, q}(f) \cdot \psi_{y}^{\alpha, q}$ is in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right) \quad\left(\right.$ resp. $\left.\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$. So, by the help of the Plancherel theorem, we have for all $y \in \mathbb{R}_{q}, T_{y}^{\alpha ; q} f=\left(F_{D}^{\alpha, q}\right)^{-1}\left(F_{D}^{\alpha, q}(f) . \psi_{y}^{\alpha, q}\right)$ is in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ (resp. $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$). Moreover, using the Plancherel formula and the relation (15), we obtain

$$
\begin{aligned}
\left\|T_{y}^{\alpha ; q} f\right\|_{2, \alpha, q} & =\left\|\left(F_{D}^{\alpha, q}\right)^{-1}\left(F_{D}^{\alpha, q}(f) \cdot \psi_{y}^{\alpha, q}\right)\right\|_{2, \alpha, q} \\
& =\left\|F_{D}^{\alpha, q}(f) \cdot \psi_{y}^{\alpha, q}\right\|_{2, \alpha, q} \leq \frac{4}{(q ; q)_{\infty}}\|f\|_{2, \alpha, q}
\end{aligned}
$$

4) Using the orthogonality relation (16), we obtain

$$
F_{D}^{\alpha, q}\left(\psi_{\lambda}^{\alpha, q}\right)(y)=\frac{2(1+q)^{\alpha} \Gamma_{q^{2}}(\alpha+1)}{(1-q)|\lambda y|^{\alpha+1}} \delta_{\lambda, y}, \quad \lambda, y \in \mathbb{R}_{q}
$$

witch implies that $T_{y}^{\alpha ; q}\left(\psi_{\lambda}^{\alpha, q}\right)(x)=\psi_{\lambda}^{\alpha, q}(x) \psi_{\lambda}^{\alpha, q}(y)$.
5) From the fact that for $f \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ and $y \in \mathbb{R}_{q}, T_{y}^{\alpha ; q} f=\left(F_{D}^{\alpha, q}\right)^{-1}\left[F_{D}^{\alpha, q}(f) \cdot \psi_{y}^{\alpha, q}\right]$, we get

$$
F_{D}^{\alpha, q}\left(T_{y}^{\alpha ; q} f\right)(\lambda)=\left[F_{D}^{\alpha, q}(f) \cdot \psi_{y}^{\alpha, q}\right](\lambda)=\psi_{\lambda}^{\alpha, q}(y) \cdot F_{D}^{\alpha, q}(f)(\lambda)
$$

6) For $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
F_{D}^{\alpha, q}\left(\Lambda_{\alpha, q} T_{y}^{\alpha ; q} f\right)(\lambda)=i \lambda F_{D}^{\alpha, q}\left(T_{y}^{\alpha ; q} f\right)(\lambda)=i \lambda \psi_{\lambda}^{\alpha, q}(y) F_{D}^{\alpha, q}(f)(\lambda)
$$

and

$$
F_{D}^{\alpha, q}\left(T_{y}^{\alpha ; q} \Lambda_{\alpha, q} f\right)(\lambda)=\psi_{\lambda}^{\alpha, q}(y) F_{D}^{\alpha, q}\left(\Lambda_{\alpha, q} f\right)(\lambda)=i \lambda \psi_{\lambda}^{\alpha, q}(y) F_{D}^{\alpha, q}(f)(\lambda)
$$

The result follows, then, from the fact that $F_{D}^{\alpha, q}$ is an automorphism of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$.

Definition 2. The q-convolution product is defined for $f, g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ by:

$$
\begin{equation*}
f * g(x)=c_{\alpha, q} \int_{-\infty}^{\infty} T_{x}^{\alpha ; q} f(-y) g(y)|y|^{2 \alpha+1} d_{q} y \tag{27}
\end{equation*}
$$

In the following proposition, we present some of its properties.
Proposition 3. For $f, g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have
i) $F_{D}^{\alpha, q}(f * g)=F_{D}^{\alpha, q}(f) \cdot F_{D}^{\alpha, q}(g)$.
ii) $f * g=g * f$.
iii) $(f * g) * h=f *(g * h)$.

Proof.
i) Let $f, g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. Then, with the help of the relation (15), we have for all $x, y \in \mathbb{R}_{q}$,

$$
\begin{aligned}
\left|T_{x}^{\alpha ; q} f(-y)\right| & \leq c_{\alpha, q} \int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x) \psi_{\lambda}^{\alpha, q}(-y)\right||\lambda|^{2 \alpha+1} d_{q} \lambda \\
& \leq c_{\alpha, q}\left(\frac{4}{(q ; q)_{\infty}}\right)^{2}\left\|F_{D}^{\alpha, q}(f)\right\|_{1, \alpha, q}
\end{aligned}
$$

So, since for $\lambda \in \mathbb{R}_{q}, \psi_{-\lambda}^{\alpha, q} \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we obtain

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|T_{x}^{\alpha ; q} f(-y) g(y) \psi_{-\lambda}^{\alpha, q}(x) \| y\right|^{2 \alpha+1}|x|^{2 \alpha+1} d_{q} y d_{q} x \\
\leq & \frac{16 c_{\alpha, q}}{(q ; q)_{\infty}^{2}}\left\|F_{D}^{\alpha, q}(f)\right\|_{1, \alpha, q}\|g\|_{1, \alpha, q}\left\|\psi_{-\lambda}^{\alpha, q}\right\|_{1, \alpha, q} .
\end{aligned}
$$

Hence, using the Fubini's theorem and the properties of the generalized q Dunkl translation, we get

$$
\begin{aligned}
F_{D}^{\alpha, q}(f * g)(\lambda) & =c_{\alpha, q} \int_{-\infty}^{\infty}(f * g)(x) \psi_{-\lambda}^{\alpha, q}(x)|x|^{2 \alpha+1} d_{q} x \\
& =c_{\alpha, q}^{2} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} T_{x}^{\alpha ; q} f(-y) g(y)|y|^{2 \alpha+1} d_{q} y\right] \psi_{-\lambda}^{\alpha, q}(x)|x|^{2 \alpha+1} d_{q} x \\
& =c_{\alpha, q}^{2} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} T_{-y}^{\alpha ; q} f(x) \psi_{-\lambda}^{\alpha, q}(x)|x|^{2 \alpha+1} d_{q} x\right] g(y)|y|^{2 \alpha+1} d_{q} y \\
& =c_{\alpha, q} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}\left(T_{-y}^{\alpha ; q} f\right)(\lambda) g(y)|y|^{2 \alpha+1} d_{q} y \\
& =c_{\alpha, q} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(-y) g(y)|y|^{2 \alpha+1} d_{q} y \\
& =c_{\alpha, q} F_{D}^{\alpha, q}(f)(\lambda) \int_{-\infty}^{\infty} \psi_{-\lambda}^{\alpha, q}(y) g(y)|y|^{2 \alpha+1} d_{q} y \\
& =F_{D}^{\alpha, q}(f)(\lambda) F_{D}^{\alpha, q}(g)(\lambda) .
\end{aligned}
$$

ii) and iii) follows from i).

Proposition 4. Let f and g be in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. Then

1) $f * g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$,
2)

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f * g(x)|^{2}|x|^{2 \alpha+1} d_{q} x=\int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(f)(x)\right|^{2}\left|F_{D}^{\alpha, q}(g)(x)\right|^{2}|x|^{2 \alpha+1} d_{q} x \tag{28}
\end{equation*}
$$

Proof. The proof is a direct consequence of Theorem 2 and the fact that $F_{D}^{\alpha, q}(f * g)=F_{D}^{\alpha, q}(f) F_{D}^{\alpha, q}(g)$.

4. q-wavelet Transforms Associated with the q-Dunkl Operator

Definition 3. A q-wavelet, associated with the q-Dunkl operator, is a square q-integrable function g on \mathbb{R}_{q} satisfying the following admissibility condition

$$
\begin{equation*}
0<C_{\alpha, g}=\int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(g)(a)\right|^{2} \frac{d_{q} a}{|a|}<\infty . \tag{29}
\end{equation*}
$$

Remark 1.

1) For all $\lambda \in \mathbb{R}_{q}$, we have

$$
C_{\alpha, g}=\int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(g)(a \lambda)\right|^{2} \frac{d_{q} a}{|a|} .
$$

2) Let f be a nonzero function in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. Then $g=\Lambda_{\alpha, q} f$ is a q-wavelet, in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ and we have

$$
C_{\alpha, g}=\int_{-\infty}^{\infty}|a|\left|F_{D}^{\alpha, q}(f)(a)\right|^{2} d_{q} a
$$

Proposition 5. Let $g \neq 0$ be a function in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ satisfying:
(1) $F_{D}^{\alpha, q}(g)$ is continuous at 0.

$$
\text { (2) } \exists \beta>0 \text { such that } F_{D}^{\alpha, q}(g)(x)-F_{D}^{\alpha, q}(g)(0)=O\left(x^{\beta}\right) \text {, as } x \rightarrow 0, x \in \mathbb{R}_{q} \text {. }
$$

Then, the admissibility condition (29) is equivalent to

$$
\begin{equation*}
F_{D}^{\alpha, q}(g)(0)=0 \tag{30}
\end{equation*}
$$

Proof. Assume that (29) is satisfied. If $F_{D}^{\alpha, q}(g)(0) \neq 0$, then there exist $p_{0} \in \mathbb{N}$ and $M>0$, such that

$$
\forall n \geq p_{0}, \quad\left|F_{D}^{\alpha, q}(g)\left(\pm q^{n}\right)\right| \geq M
$$

So, the q-integral in (29) would be equal to ∞.

- Conversely, assume that $F_{D}^{\alpha, q}(g)(0)=0$.

Since $g \neq 0$, we deduce from Theorem 2, that the first inequality in (29) holds.

On the other hand, from the assertion (2), there exist $n_{0} \in \mathbb{N}$ and $\epsilon>0$, such that for all $n \geq n_{0}$, we have

$$
\left|F_{D}^{\alpha, q}(g)\left(\pm q^{n}\right)\right| \leq \epsilon q^{n \beta} .
$$

Then using the definition of the q-integral and Theorem 2, we obtain

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(g)(a)\right|^{2} \frac{d_{q} a}{|a|} & =(1-q) \sum_{n=-\infty}^{\infty}\left[\left|F_{D}^{\alpha, q}(g)\left(q^{n}\right)\right|^{2}+\left|F_{D}^{\alpha, q}(g)\left(-q^{n}\right)\right|^{2}\right] \\
& \leq \frac{\left\|F_{D}^{\alpha, q}(g)\right\|_{2, \alpha, q}^{2}}{q^{(2 \alpha+2) n_{0}}}+\frac{2(1-q)}{1-q^{2 \beta}} \epsilon^{2}
\end{aligned}
$$

This proves the second inequality of (29).

Remark 2.

Using the relation (18), the continuity assumption in the previous proposition will certainly hold if g is moreover in $L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$. Then (30) can be equivalently written as

$$
\int_{-\infty}^{\infty} g(x)|x|^{2 \alpha+1} d_{q} x=0
$$

which implies that g must have sign changes on \mathbb{R}_{q}. It will also decay to 0 as t tends to $\pm \infty$ (in \mathbb{R}_{q}). This explains the name " q-wavelet".

Proposition 6. For $a \in \mathbb{R}_{q}$ and $g \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ (resp. $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$), the function

$$
g_{a}: x \mapsto \frac{1}{|a|^{2 \alpha+2}} g\left(\frac{x}{a}\right)
$$

belongs to $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)\left(\right.$ resp. $\left.\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$ and we have

$$
\begin{equation*}
\left\|g_{a}\right\|_{2, \alpha, q}=\frac{1}{|a|^{\alpha+1}}\|g\|_{2, \alpha, q} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{D}^{\alpha, q}\left(g_{a}\right)(\lambda)=F_{D}^{\alpha, q}(g)(a \lambda), \quad \lambda \in \widetilde{\mathbb{R}}_{q} \tag{32}
\end{equation*}
$$

Proof. The change of variables $u=\frac{x}{a}$ gives the result.

Proposition 7. Let g be a q-wavelet, associated with he q-Dunkl operator, in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ (resp. $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$). Then, for all $a \in \mathbb{R}_{q}$ and $b \in \widetilde{\mathbb{R}}_{q}$, the function $g_{(a, b), \alpha}$ defined by

$$
\begin{equation*}
g_{(a, b), \alpha}(x)=\sqrt{|a|} T_{b}^{\alpha ; q}\left(g_{a}\right)(x), \quad x \in \mathbb{R}_{q} \tag{33}
\end{equation*}
$$

is a q-wavelet associated with he q-Dunkl operator in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)\left(\operatorname{resp} . \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right.$) and we have

$$
\begin{equation*}
C_{\alpha, g_{(a, b), \alpha}}=|a| \int_{-\infty}^{\infty}\left|\psi_{b}^{\alpha, q}\left(\frac{x}{a}\right)\right|^{2}\left|F_{D}^{\alpha, q}(g)(x)\right|^{2} \frac{d_{q} x}{|x|}, \tag{34}
\end{equation*}
$$

with $T_{b}^{\alpha ; q}$ is the generalized q-Dunkl translation operator defined by (24).
Proof. Using Proposition 2, Proposition 6 and the properties of the generalized q-Dunkl translation, we obtain $g_{(a, b), \alpha}$ is in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)\left(\right.$ resp. $\left.\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\right)$.
From Lemma 1 and the relations (26) and (32), we get for $a \in \mathbb{R}_{q}$ and $b \in \widetilde{\mathbb{R}}_{q}$,

$$
\begin{aligned}
C_{\alpha, g_{(a, b), \alpha}} & =|a| \int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}\left[T_{b}^{\alpha ; q}\left(g_{a}\right)\right](x)\right|^{2} \frac{d_{q} x}{|x|} \\
& =|a| \int_{-\infty}^{\infty}\left|\psi_{b}^{\alpha, q}\left(\frac{x}{a}\right)\right|^{2}\left|F_{D}^{\alpha, q}(g)(x)\right|^{2} \frac{d_{q} x}{|x|}
\end{aligned}
$$

Thus, since $g \neq 0$, we have, from the Plancherel theorem, $F_{D}^{\alpha, q}(g) \neq 0$ and

$$
0<C_{\alpha, g_{(a, b), \alpha}} \leq|a|\left(\frac{4}{(q ; q)_{\infty}}\right)^{2} \int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(g)(x)\right|^{2} \frac{d_{q} x}{|x|}=\frac{16|a|}{(q ; q)_{\infty}^{2}} C_{\alpha, g}<+\infty
$$

Proposition 8. Let g be a q-wavelet, associated with the q-Dunkl operator, in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$. Then the mapping

$$
F:(a, b) \mapsto g_{(a, b), \alpha}
$$

is continuous from $\mathbb{R}_{q} \times \widetilde{\mathbb{R}}_{q}$ into $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$, via the induced topology on $\mathbb{R}_{q} \times \widetilde{\mathbb{R}}_{q}$ by that of $\mathbb{R} \times \mathbb{R}$.

Proof. It is clear, from the previous proposition, that F is a mapping from $\mathbb{R}_{q} \times \widetilde{\mathbb{R}}_{q}$ into $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ and it is continuous on $\mathbb{R}_{q} \times \mathbb{R}_{q}$, since every element of
$\mathbb{R}_{q} \times \mathbb{R}_{q}$ is an isolated point.
Now, let $a \in \mathbb{R}_{q}$. For $b \in \widetilde{\mathbb{R}}_{q}$, we have

$$
\begin{aligned}
\|F(a, b)-F(a, 0)\|_{2, \alpha, q}^{2} & =|a|\left\|T_{b}^{\alpha ; q}\left(g_{a}\right)-g_{a}\right\|_{2, \alpha, q}^{2} \\
& =|a|\left\|F_{D}^{\alpha, q}\left(T_{b}^{\alpha ; q}\left(g_{a}\right)-g_{a}\right)\right\|_{2, \alpha, q}^{2} \\
& =|a| \int_{-\infty}^{\infty}\left|1-\psi_{b}^{\alpha, q}(x)\right|^{2}\left|F_{D}^{\alpha, q}\left(g_{a}\right)\right|^{2}(x)|x|^{2 \alpha+1} d_{q} x .
\end{aligned}
$$

Using the relation (15), the fact that $F_{D}^{\alpha, q}\left(g_{a}\right) \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$ and the Lebesgue theorem we obtain

$$
\lim _{\substack{b \rightarrow 0 \\ b \in \tilde{\mathbb{R}}_{q}}}\|F(a, b)-F(a, 0)\|_{2, \alpha, q}=0
$$

Definition 4. Let g be a q-wavelet, associated with the q-Dunkl operator, in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. We define the continuous q-wavelet transform associated with the q Dunkl operator for $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, by

$$
\begin{equation*}
\Psi_{q, g}^{\alpha}(f)(a, b)=c_{\alpha, q} \int_{-\infty}^{\infty} f(x) \overline{g_{(a, b), \alpha}}(-x)|x|^{2 \alpha+1} d_{q} x, \quad a \in \mathbb{R}_{q}, \quad b \in \widetilde{\mathbb{R}}_{q} \tag{35}
\end{equation*}
$$

Remark that (35) is equivalent to

$$
\begin{aligned}
\Psi_{q, g}^{\alpha}(f)(a, b) & =\sqrt{|a|} f * \overline{g_{a}}(b) \\
& =\sqrt{|a|} F_{D}^{\alpha, q}\left[F_{D}^{\alpha, q}\left(f * \overline{g_{a}}\right)\right](-b) \\
& =\sqrt{|a|} F_{D}^{\alpha, q}\left[F_{D}^{\alpha, q}(f) \cdot F_{D}^{\alpha, q}\left(\overline{g_{a}}\right)\right](-b) \\
& =\sqrt{|a|} c_{\alpha, q} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}(f)(x) \cdot F_{D}^{\alpha, q}(\bar{g})(a x) \psi_{b}^{\alpha, q}(x)|x|^{2 \alpha+1} d_{q} x,
\end{aligned}
$$

where $c_{\alpha, q}$ is given by (10).
The following propositions give some properties of $\Psi_{q, g}^{\alpha}$.
Proposition 9. Let g be a q-wavelet, associated with the q-Dunkl operator, in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ and $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. Then
i) For all $a \in \mathbb{R}_{q}$ and $b \in \widetilde{\mathbb{R}}_{q}$, we have

$$
\begin{equation*}
\left|\Psi_{q, g}^{\alpha}(f)(a, b)\right| \leq \frac{4 c_{\alpha, q}}{|a|^{\alpha+\frac{1}{2}}(q ; q)_{\infty}}\|f\|_{2, \alpha, q}\|g\|_{2, \alpha, q} \tag{36}
\end{equation*}
$$

ii) For all $a \in \mathbb{R}_{q}$, the mapping $b \mapsto \Psi_{q, g}^{\alpha}(f)(a, b)$ is continuous on $\widetilde{\mathbb{R}}_{q}$, via the induced topology on $\widetilde{\mathbb{R}}_{q}$ by that of \mathbb{R}, and we have

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \Psi_{q, g}^{\alpha}(f)(a, b)=0 \tag{37}
\end{equation*}
$$

Proof. i) Using the properties of the generalized q-Dunkl translation operator, the Cauchy-Schwartz inequality and Lemma 1, we obtain for $a \in \mathbb{R}_{q}$ and $b \in \widetilde{\mathbb{R}}_{q}$,

$$
\begin{aligned}
\left|\Psi_{q, g}^{\alpha}(f)(a, b)\right| & =\left.c_{\alpha, q}\left|\int_{-\infty}^{\infty} f(x) \overline{g_{(a, b), \alpha}}(-x)\right| x\right|^{2 \alpha+1} d_{q} x \mid \\
& \leq \sqrt{|a|} c_{\alpha, q} \int_{-\infty}^{\infty}\left|f(x) \| T_{b}^{\alpha ; q} g_{a}(-x)\right||x|^{2 \alpha+1} d_{q} x \\
& \leq \frac{4 c_{\alpha, q}}{|a|^{\alpha+\frac{1}{2}}(q ; q)_{\infty}}\|f\|_{2, \alpha, q}\|g\|_{2, \alpha, q} .
\end{aligned}
$$

ii) Since every element of \mathbb{R}_{q} is an isolated point, it is sufficient to prove the continuity at 0 . For $b \in \widetilde{\mathbb{R}}_{q}$, we have

$$
\Psi_{q, g}^{\alpha}(f)(a, b)=\sqrt{|a|} F_{D}^{\alpha, q}\left[F_{D}^{\alpha, q}(f) \cdot F_{D}^{\alpha, q}\left(\overline{g_{a}}\right)\right](-b)
$$

Since $f, g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, then from Theorem 2, we have $F_{D}^{\alpha, q}(f)$ and $F_{D}^{\alpha, q}\left(\overline{g_{a}}\right)$ are in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ and the product $F_{D}^{\alpha, q}(f) \cdot F_{D}^{\alpha, q}\left(\overline{g_{a}}\right)$ is in $L_{\alpha, q}^{1}\left(\mathbb{R}_{q}\right)$. Thus, using the relation (15), the Lebesgue theorem, gives

$$
\begin{aligned}
\lim _{\substack{b \rightarrow 0 \\
b \in \mathbb{R}_{q}}} \Psi_{q, g}^{\alpha}(f)(a, b) & =\lim _{\substack{b \rightarrow 0 \\
b \in \mathbb{R}_{q}}} \sqrt{|a|} c_{\alpha, q} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}(f)(x) \cdot F_{D}^{\alpha, q}\left(\overline{g_{a}}\right)(x) \psi_{b}^{\alpha, q}(x) d_{q} x \\
& =\Psi_{q, g}^{\alpha}(f)(a, 0)
\end{aligned}
$$

Which proves the continuity of $\Psi_{q, g}^{\alpha}(f)(a,$.$) at 0$.
Finally, the relation (18) implies that

$$
\Psi_{q, g}^{\alpha}(a, b)=\sqrt{|a|} F_{D}^{\alpha, q}\left[F_{D}^{\alpha, q}(f) \cdot F_{D}^{\alpha, q}\left(\overline{g_{a}}\right)\right](-b)
$$

tends to 0 when b tends to ∞.
Let us now establish a Plancherel and a Parseval formulas for $\Psi_{q, g}^{\alpha}$.

Theorem 3. Let $g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ be a q-wavelet, associated with the q-Dunkl operator.
i) Plancherel formula

For $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\frac{1}{C_{\alpha, g}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\Psi_{q, g}^{\alpha}(f)(a, b)\right|^{2}|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}}=\|f\|_{2, \alpha, q}^{2} \tag{38}
\end{equation*}
$$

ii) Parseval formula

For $f_{1}, f_{2} \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{1}(x) \bar{f}_{2}(x)|x|^{2 \alpha+1} d_{q} x=\frac{1}{C_{\alpha, g}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_{q, g}^{\alpha}\left(f_{1}\right)(a, b) \overline{\Psi_{q, g}^{\alpha}\left(f_{2}\right)}(a, b)|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}} \tag{39}
\end{equation*}
$$

Proof. The use of the Fubini's theorem, Theorem 2, the relations (28) and (32) gives

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\Psi_{q, g}^{\alpha}(f)(a, b)\right|^{2}|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}} \\
= & \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}\left|f * \overline{g_{a}}(b)\right|^{2}|b|^{2 \alpha+1} d_{q} b\right) \frac{d_{q} a}{|a|} \\
= & \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}\left|\left[F_{D}^{\alpha, q}(f) F_{D}^{\alpha, q}\left(\overline{g_{a}}\right)\right](b)\right|^{2}|b|^{2 \alpha+1} d_{q} b\right) \frac{d_{q} a}{|a|} \\
= & \int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(f)(b)\right|^{2}|b|^{2 \alpha+1}\left(\int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(g)(a b)\right|^{2} \frac{d_{q} a}{|a|}\right) d_{q} b \\
= & C_{\alpha, g} \int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(f)(b)\right|^{2}|b|^{2 \alpha+1} d_{q} b=C_{\alpha, g}\|f\|_{2, \alpha, q}^{2} .
\end{aligned}
$$

ii) The result follows from (38).

Theorem 4. Let $g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ be a q-wavelet, associated with the q-Dunkl operator. Then for $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
f(x)=\frac{c_{\alpha, q}}{C_{\alpha, g}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_{q, g}^{\alpha}(f)(a, b) g_{(a, b), \alpha}(-x)|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}}, \quad x \in \mathbb{R}_{q} \tag{40}
\end{equation*}
$$

Proof. Let $x \in \mathbb{R}_{q}$ and put $h=\delta_{x}$. It is easy to see that $h \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$. According to the relation (39) of the previous theorem and the definition of $\Psi_{q, g}^{\alpha}$ and the q-Jackson integral, we have,

$$
\begin{aligned}
& (1-q)|x|^{2 \alpha+2} f(x)=\int_{-\infty}^{\infty} f(t) \bar{h}(t)|t|^{2 \alpha+1} d_{q} t \\
= & \frac{1}{C_{\alpha, g}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_{q, g}^{\alpha}(f)(a, b) \overline{\Psi_{q, g}^{\alpha}}(h)(a, b)|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}} \\
= & \frac{c_{\alpha, q}}{C_{\alpha, g}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_{q, g}^{\alpha}(f)(a, b)\left(\int_{-\infty}^{\infty} \bar{h}(t) g_{(a, b), \alpha}(-t)|t|^{2 \alpha+1} d_{q} t\right)|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}} \\
= & (1-q)|x|^{2 \alpha+2} \frac{c_{\alpha, q}}{C_{\alpha, g}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_{q, g}^{\alpha}(f)(a, b) g_{(a, b), \alpha}(-x)|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}}
\end{aligned}
$$

5. Inversion Formulas for the q-Dunkl Intertwining Operator and its Dual

In the what follows, we will need the following spaces:

- $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)=\left\{f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right): \int_{-\infty}^{+\infty} f(x) x^{k}|x|^{2 \alpha+1} d_{q} x=0, k=0,1, \ldots\right\}$.
- $\mathcal{S}_{q}^{0}\left(\mathbb{R}_{q}\right)=\left\{f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right): \quad \partial_{q}^{k} f(0)=0, \quad k=0,1, \ldots\right\}$.

We recall that the q-Dunkl intertwining operator $V_{\alpha, q}$ is defined on $\mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ by (see [1])

$$
\begin{equation*}
V_{\alpha, q}(f)(x)=\frac{(1+q)}{2} \frac{\Gamma_{q^{2}}(\alpha+1)}{\Gamma_{q^{2}}\left(\frac{1}{2}\right) \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{-1}^{1} \frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}}(1+t) f(x t) d_{q} t \tag{41}
\end{equation*}
$$

The dual operator of $V_{\alpha, q}$ is defined on $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ by (see [1])

$$
\begin{equation*}
\left({ }^{t} V_{\alpha, q}\right)(f)(t)=\frac{(1+q)^{-\alpha+\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{|x| \geq q|t|} \frac{\left(\left(\frac{t}{x}\right)^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(\left(\frac{t}{x}\right)^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}}\left(1+\frac{t}{x}\right) f(x) \frac{|x|^{2 \alpha+1}}{x} d_{q} x \tag{42}
\end{equation*}
$$

These two operators satisfy the following properties:
Proposition 10. i) $V_{\alpha, q}\left(e\left(-i \lambda x ; q^{2}\right)\right)=\psi_{-\lambda}^{\alpha, q}(x), \lambda, x \in \mathbb{R}_{q}$.
ii) For $f \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$

$$
\begin{equation*}
c_{\alpha, q} \int_{-\infty}^{+\infty} V_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x=\frac{(1+q)^{\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right)} \int_{-\infty}^{+\infty} f(t)\left({ }^{t} V_{\alpha, q}\right)(g)(t) d_{q} t . \tag{43}
\end{equation*}
$$

iii) $V_{\alpha, q}$ and ${ }^{t} V_{\alpha, q}$ verify the following transmutation relations

$$
\begin{gather*}
\Lambda_{\alpha, q} V_{\alpha, q}(f)=V_{\alpha, q}\left(\partial_{q} f\right), \quad V_{\alpha, q}(f)(0)=f(0), \quad f \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right), \tag{44}\\
\partial_{q}\left({ }^{t} V_{\alpha, q}\right)(f)=\left({ }^{t} V_{\alpha, q}\right)\left(\Lambda_{\alpha, q}\right)(f), \quad f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right) . \tag{45}
\end{gather*}
$$

iv) The q-Dunkl transform and the q^{2}-analogue Fourier transform \mathcal{F}_{q}, studied in ([11], [12]), are linked by the following relation (see [1]):

$$
\begin{equation*}
\forall f \in \mathcal{D}_{q}\left(\mathbb{R}_{q}\right), \quad F_{D}^{\alpha, q}(f)=\mathcal{F}_{q} \circ \quad{ }^{t} V_{\alpha, q}(f) \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}_{q}(f)(x)=F_{D}^{-\frac{1}{2}, q}(f)(x)=\frac{(1+q)^{\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right)} \int_{-\infty}^{\infty} f(t) e\left(-i t x ; q^{2}\right) d_{q} t \tag{47}
\end{equation*}
$$

We state the following results, useful in the sequel.
Theorem 5. The q^{2}-analogue Fourier transform \mathcal{F}_{q} is an isomorphism from $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ into $\mathcal{S}_{q}^{0}\left(\mathbb{R}_{q}\right)$.
Proof. The result follows from the fact that $\partial_{q} e\left(-i x ; q^{2}\right)=-i e\left(-i x ; q^{2}\right)$.
Similarly, we have the following result.
Theorem 6. The q-Dunkl transform $F_{D}^{\alpha, q}$ is an isomorphism from $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$ into $\mathcal{S}_{q}^{0}\left(\mathbb{R}_{q}\right)$.

Proof. On the one hand, we have for all $k \in \mathbb{N}$,

$$
\partial_{q}^{k} F_{D}^{\alpha, q}(f)(\lambda)=\int_{-\infty}^{+\infty} f(x)|x|^{2 \alpha+1} \partial_{q, \lambda}^{k}\left[\psi_{-\lambda}^{\alpha, q}(x)\right] d_{q} x
$$

On the other hand, from the relation (14), we have
$\partial_{q, \lambda}^{k}\left[\psi_{-\lambda}^{\alpha, q}\right](x)=\frac{(1+q) \Gamma_{q^{2}}(\alpha+1)}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right) \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)}(-i)^{k} x^{k} \int_{-1}^{1} \frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}}(1+t) t^{k} e\left(-i \lambda x t, q^{2}\right) d_{q} t$, which gives the result.

Corollary 1. The operator ${ }^{t} V_{\alpha, q}$ is an isomorphism from $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$ into $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$.

Proof. We deduce the result from the relation $F_{D}^{\alpha, q}=\mathcal{F}_{q} \circ{ }^{t} V_{\alpha, q}$ and Theorems 5 and 6.

Proposition 11. For f in $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ (resp. $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$) and g in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ the function $f *_{q} g$ (resp. $f * g$) belongs to $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ (resp. $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$).
where "*${ }_{q}$ " is the q-convolution product associated with the operator ∂_{q} studied in [11].

Proof. The result follows from Theorem 5 (resp. 6) and the fact that $f *_{q} g=\mathcal{F}_{q}^{-1}\left(\mathcal{F}_{q}(f) . \mathcal{F}_{q}(g)\right.$) (resp. $f * g=\left(F_{D}^{\alpha, q}\right)^{-1}\left(F_{D}^{\alpha, q}(f) . F_{D}^{\alpha, q}(g)\right)$.

Using the Taylor formula for the Jackson's q-derivative (see [3, 2]), we provide in the following lemma a Taylor formula for the operator ∂_{q}.

Lemma 2. Let f be a function N times continuously q-differentiable on $\widetilde{\mathbb{R}}_{q}$, $N \in \mathbb{N}$. Then,

$$
f(x)=\sum_{n=0}^{N} q^{\left(E\left(\frac{n+1}{2}\right)\right)^{2}} \frac{\partial_{q}^{n} f(0)}{[n]_{q}!} x^{n}+\frac{x^{N}}{[N]_{q}!} \int_{0}^{1}(t q ; q)_{N} \quad H_{q, N+1}(f)(x t) d_{q} t
$$

where for $n \in \mathbb{N}, E\left(\frac{n+1}{2}\right)$ is the integer part of $\frac{n+1}{2}$ and $H_{q, n}$ is the operator defined by

$$
H_{q, n}(f)(t)=q^{a_{n}} \partial_{q}^{n} f_{o}\left(t q^{E\left(1+\frac{n}{2}\right)}\right)+q^{b_{n}} \partial_{q}^{n} f_{e}\left(t q^{E\left(\frac{n+1}{2}\right)}\right)
$$

with f_{o} and f_{e} are respectively the odd and the even parts of f,
$a_{n}=\left\{\begin{array}{ll}\frac{n(n+2)}{4}, & \text { if } n \text { is even, } \\ \frac{(n+1)^{2}}{4}, & \text { if } n \text { is odd, }\end{array} \quad\right.$ and $\quad b_{n}=\left\{\begin{array}{lll}\frac{n^{2}}{4}, & \text { if } n \text { is even, } \\ \frac{(n-1)(n+1)}{4}, & \text { if } n \text { is odd. } .\end{array}\right.$
Proposition 12. The operator $K_{\alpha, q, 1}$ defined by

$$
K_{\alpha, q, 1}(f)=\frac{\Gamma_{q^{2}}(1 / 2)}{(1+q)^{(\alpha+1 / 2)} \Gamma_{q^{2}}(\alpha+1)} \mathcal{F}_{q}^{-1}\left(|\lambda|^{2 \alpha+1} \mathcal{F}_{q}(f)\right)
$$

is an isomorphism from $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ onto itself.

Proof. Using the previous lemma, one can prove that the multiplication operator $f \mapsto \frac{\Gamma_{q^{2}}(1 / 2)}{(1+q)^{(\alpha+1 / 2)} \Gamma_{q^{2}}(\alpha+1)}|\lambda|^{2 \alpha+1} f \quad$ is an isomorphism from $\mathcal{S}_{q}^{0}\left(\mathbb{R}_{q}\right)$ onto itself, its inverse is given by $f \mapsto \frac{(1+q)^{(\alpha+1 / 2)} \Gamma_{q^{2}}(\alpha+1)}{\Gamma_{q^{2}}(1 / 2)|\lambda|^{2 \alpha+1}} f$. The result follows, then, from Theorem 5.

Proposition 13. The operator $K_{\alpha, q, 2}$ defined by

$$
K_{\alpha, q, 2}(f)(x)=\frac{\Gamma_{q^{2}}(1 / 2)}{(1+q)^{(\alpha+1 / 2)} \Gamma_{q^{2}}(\alpha+1)}\left(F_{D}^{\alpha, q}\right)^{-1}\left(|\lambda|^{2 \alpha+1} F_{D}^{\alpha, q}(f)\right)(x)
$$

is an isomorphism from $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$ onto itself.
Proof. From the relation $F_{D}^{\alpha, q}=\mathcal{F}_{q} \circ{ }^{t} V_{\alpha, q}$ and the definition of $K_{\alpha, q, 1}$, we have for all $f \in \mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
K_{\alpha, q, 2}=\left({ }^{t} V_{\alpha, q}\right)^{-1} \circ K_{\alpha, q, 1} \circ{ }^{t} V_{\alpha, q} . \tag{48}
\end{equation*}
$$

We deduce the result from Proposition 12 and Corollary 1.

Proposition 14.

i) For all $f \in \mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ and $g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
K_{\alpha, q, 1}\left(f *_{q} g\right)=K_{\alpha, q, 1}(f) *_{q} g
$$

ii) For all $f \in \mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$ and $g \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, we have

$$
K_{\alpha, q, 2}(f * g)=K_{\alpha, q, 2}(f) * g
$$

Proof. The result follows from the properties of the q-convolution product and the definitions of $K_{\alpha, q, 1}$ and $K_{\alpha, q, 2}$.

Theorem 7. For all $f \in \mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$, we have the following inversion formulas for the operator $V_{\alpha, q}$

$$
\begin{equation*}
f=V_{\alpha, q} \circ K_{\alpha, q, 1} \circ{ }^{t} V_{\alpha, q}(f) \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
f=V_{\alpha, q} \circ t V_{\alpha, q} \circ K_{\alpha, q, 2}(f) \tag{50}
\end{equation*}
$$

Proof. Using the properties of the operator $V_{\alpha, q}$, studied in [1], Theorem 1 and relation (46), we obtain for $x \in \widetilde{\mathbb{R}}_{q}$,

$$
\begin{aligned}
f(x) & =c_{\alpha, q} \int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x) \cdot|\lambda|^{2 \alpha+1} d_{q} \lambda \\
& =V_{\alpha, q}\left[c_{\alpha, q} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}(f)(\lambda) e\left(i \lambda_{\bullet} ; q^{2}\right)|\lambda|^{2 \alpha+1} d_{q} \lambda\right](x) \\
& =V_{\alpha, q}\left\{\frac{c_{\alpha, q}}{c_{-1 / 2, q}} \mathcal{F}_{q}^{-1}\left[|\lambda|^{2 \alpha+1} \mathcal{F}_{q} \circ{ }^{t} V_{\alpha, q}(f)\right]\right\}(x) \\
& =V_{\alpha, q} \circ K_{\alpha, q, 1} \circ{ }^{t} V_{\alpha, q}(f)(x) .
\end{aligned}
$$

We deduce the second from the first relation and the the relation (48).
Corollary 2. The operator $V_{\alpha, q}$ is an isomorphism from $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ into $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$.

Proof. We deduce the result from Proposition 12, Corollary 1 and the relation (49).

Similarly, we have the following result.
Theorem 8. For all $f \in \mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$, we have the following inversion formulas for the operator ${ }^{t} V_{\alpha, q}$

$$
\begin{equation*}
f={ }^{t} V_{\alpha, q} \circ V_{\alpha, q} \circ K_{\alpha, q, 1}(f) \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
f={ }^{t} V_{\alpha, q} \circ K_{\alpha, q, 2} \circ V_{\alpha, q}(f) \tag{52}
\end{equation*}
$$

Proof. For $f \in \mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$, Corollary 1 (resp. 2) implies that ${ }^{t} V_{\alpha, q}^{-1}(f)$ (resp. $V_{\alpha, q}(f)$) belongs to $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$. Then by writing the relation (49) (resp. (50)) for ${ }^{t} V_{\alpha, q}^{-1}(f)$ (resp. $V_{\alpha, q}(f)$), we obtain the result.

Corollary 3. i) For all $f, g \in \mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
{ }^{t} V_{\alpha, q}(f * g)={ }^{t} V_{\alpha, q}(f) *{ }_{q}{ }^{t} V_{\alpha, q}(g) \tag{53}
\end{equation*}
$$

ii) For all $f, g \in \mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ we have

$$
\begin{equation*}
V_{\alpha, q}\left(f *_{q} g\right)=V_{\alpha, q}(f) *{ }^{t} V_{\alpha, q}^{-1}(g) \tag{54}
\end{equation*}
$$

6. Inversion of the q-Dunkl Intertwining Operator and of its Dual using Wavelets

In this section, we assume that the reader is familiar with the notions and notations presented in [4], where the authors studied the particular case $\alpha=$ $-\frac{1}{2}$. In particular, we recall the following notations

$$
\begin{gathered}
H_{a}(f)(x)=\frac{1}{\sqrt{|a|}} f\left(\frac{x}{a}\right), \quad C_{g}=\int_{-\infty}^{\infty}\left|\mathcal{F}_{q}(g)\right|^{2}(a) \frac{d_{q} a}{|a|} \\
g_{a, b}=g_{(a, b),-1 / 2} \quad \text { and } \quad \Phi_{q, g}=\Psi_{q, g}^{-1 / 2}
\end{gathered}
$$

We begin by the following useful and easily verified result.
Proposition 15. For all $a \in \mathbb{R}_{q}$ and all $g \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{aligned}
g_{a}=\frac{1}{|a|^{2 \alpha+3 / 2}} H_{a}(g) & =\frac{1}{\sqrt{|a|}}\left(F_{D}^{\alpha, q}\right)^{-1} \circ H_{a^{-1}} \circ F_{D}^{\alpha, q}(g) \\
& =\frac{1}{\sqrt{|a|}}{ }^{t} V_{\alpha, q}^{-1} \circ H_{a} \circ{ }^{t} V_{\alpha, q}(g) .
\end{aligned}
$$

Proposition 16. Let $g \in \mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$ be a q-wavelet, associated with the q-Dunkl operator. Then, for all f in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{equation*}
\Psi_{q, g}^{\alpha}(f)(a, .)={ }^{t} V_{\alpha, q}^{-1}\left[\Phi_{q, \quad{ }^{t} V_{\alpha, q}(g)}\left({ }^{t} V_{\alpha, q}(f)\right)(a, .)\right], \quad a \in \mathbb{R}_{q} . \tag{55}
\end{equation*}
$$

Proof. Let $a \in \mathbb{R}_{q}$, from the properties of the continuous q-wavelet transform (see [4]), the relation (53) and Proposition (15), we have

$$
\begin{aligned}
\Psi_{q, g}^{\alpha}(f)(a, .) & =\sqrt{|a|} f * \overline{g_{a}}=\sqrt{|a|}{ }^{t} V_{\alpha, q}^{-1}\left[{ }^{t} V_{\alpha, q}(f) *_{q}{ }^{t} V_{\alpha, q}\left(\overline{g_{a}}\right)\right] \\
& ={ }^{t} V_{\alpha, q}^{-1}\left[{ }^{t} V_{\alpha, q}(f) *_{q} \overline{H_{a} \circ{ }^{t} V_{\alpha, q}(g)}\right] \\
& ={ }^{t} V_{\alpha, q}^{-1}\left[\Phi_{q,}{ }^{t} V_{\alpha, q}(g)\left({ }^{t} V_{\alpha, q}(f)\right)(a, .)\right] .
\end{aligned}
$$

Theorem 9. Let $g \in \mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$ be a q-wavelet, associated with the q-Dunkl operator. Then,

1) For all f in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$, we have for $a \in \mathbb{R}_{q}$ and $b \in \widetilde{\mathbb{R}}_{q}$,

$$
\begin{equation*}
\Psi_{q, g}^{\alpha}(f)(a, b)=V_{\alpha, q}\left[\Phi_{q,} \quad{ }^{t} V_{\alpha, q}(g)\left(V_{\alpha, q}^{-1}(f)\right)(a, .)\right](b), \tag{56}
\end{equation*}
$$

2) For all f in $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$, we have for $a \in \mathbb{R}_{q}$ and $b \in \widetilde{\mathbb{R}}_{q}$,

$$
\begin{equation*}
\Phi_{q,}{ }^{t} V_{\alpha, q}(g)(f)(a, b)={ }^{t} V_{\alpha, q}\left[\Psi_{q, g}^{\alpha}\left({ }^{t} V_{\alpha, q}^{-1}(f)\right)(a, .)\right](b) . \tag{57}
\end{equation*}
$$

Proof. We deduce the result from Proposition 15, Corollary 3, the properties of the continuous q-wavelet transform (see [4]) and the relation (55).
Proposition 17. 1) If g is a q-wavelet (associated with the operator ∂_{q}) in $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$, then $K_{\alpha, q, 1}(g)$ is a q-wavelet in $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$ and we have

$$
\begin{equation*}
K_{\alpha, q, 1} \circ H_{a}(g)=\frac{1}{|a|^{2 \alpha+1}} H_{a} \circ K_{\alpha, q, 1}(g), \quad a \in \mathbb{R}_{q} \tag{58}
\end{equation*}
$$

2) If g is a q-wavelet, associated with the q-Dunkl operator, in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$, then $K_{\alpha, q, 2}(g)$ is a q-wavelet, associated with the q-Dunkl operator, in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$ and we have

$$
\begin{equation*}
K_{\alpha, q, 2}\left(g_{a}\right)=\frac{1}{|a|^{2 \alpha+1}}\left(K_{\alpha, q, 2}(g)\right)_{a}, \quad a \in \mathbb{R}_{q} \tag{59}
\end{equation*}
$$

Proof. 1) Let g be a q-wavelet in $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$. From the definition of $K_{\alpha, q, 1}$, we have for $\lambda \in \mathbb{R}_{q}, \mathcal{F}_{q}\left(K_{\alpha, q, 1}(g)\right)(\lambda)=\frac{\Gamma_{q^{2}}(1 / 2)}{(1+q)^{(\alpha+1 / 2)} \Gamma_{q^{2}}(\alpha+1)}|\lambda|^{2 \alpha+1} \mathcal{F}_{q}(g)(\lambda)$.
Proposition 5 of [4], implies that $K_{\alpha, q, 1}(g)$ is a q-wavelet. On the other hand, using the fact $\mathcal{F}_{q} \circ H_{a}=H_{a^{-1}} \circ \mathcal{F}_{q}, \quad a \in \mathbb{R}_{q}$ and the above equality, we obtain
$\mathcal{F}_{q}\left(H_{a} \circ K_{\alpha, q, 1}(g)\right)(\lambda)=|a|^{2 \alpha+1} \frac{\Gamma_{q^{2}}(1 / 2)}{(1+q)^{(\alpha+1 / 2)} \Gamma_{q^{2}}(\alpha+1)}|\lambda|^{2 \alpha+1} \mathcal{F}_{q}\left(H_{a}(g)\right)(\lambda)$,
which gives the result.
2) The same way of 1) leads to the result.

Theorem 10. Let g be a q-wavelet, associated with the q-Dunkl operator, in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$. Then for $a \in \mathbb{R}_{q}$ and $b \in \mathbb{R}_{q}$, we have:

1) For all f in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
\Psi_{q, g}^{\alpha}(f)(a, b)=\frac{1}{|a|^{2 \alpha+1}} V_{\alpha, q}\left[\Phi_{q, K_{\alpha, q, 1} \circ} \quad{ }^{t} V_{\alpha, q}(g)\left({ }^{t} V_{\alpha, q}(f)\right)(a, .)\right](b) ; \tag{60}
\end{equation*}
$$

2) For all f in $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
\Phi_{q,}{ }^{t} V_{\alpha, q}(g)(f)(a, b)=\frac{1}{|a|^{2 \alpha+1}}{ }^{t} V_{\alpha, q}\left[\Psi_{q, K_{\alpha, q, 2}(g)}^{\alpha}\left(V_{\alpha, q}(f)\right)(a, .)\right](b) . \tag{61}
\end{equation*}
$$

Proof. 1) Let f be in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right), a \in \mathbb{R}_{q}$ and $b \in \widetilde{\mathbb{R}}_{q}$. Using Corollary 3, we obtain $\Psi_{q, g}^{\alpha}(f)(a, b)=\sqrt{|a|} f * \overline{g_{a}}(b)=\sqrt{|a|} V_{\alpha, q}\left[{ }^{t} V_{\alpha, q}(f) *_{q} V_{\alpha, q}^{-1}\left(\overline{g_{a}}\right)\right](b)$. So, Theorem 7, Proposition 17 and the relation (55) achieve the proof.
2) Follows from Corollary 3, Theorem 8, and Propositions 14 and 17.

Theorem 11. Let g be a q-wavelet, associated with the q-Dunkl operator, in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$. Then for all $x \in \mathbb{R}_{q}$,

1) For all f in $\mathcal{S}_{q,-1 / 2}\left(\mathbb{R}_{q}\right)$, we have

$$
\begin{aligned}
&{ }^{t} V_{\alpha, q}^{-1}(f)(x) \\
&= \frac{c_{\alpha, q}}{C_{\alpha, g}} \int_{-\infty}^{\infty}\left(\int _ { - \infty } ^ { \infty } V _ { \alpha , q } \left[\Phi_{q, K_{\alpha, q, 1} \circ}{ }^{t} V_{\alpha, q}(g)\right.\right. \\
&\left.(f)(a, .)](b) \times g_{(a, b), \alpha}(-x) \frac{|b|^{2 \alpha+1}}{|a|^{2 \alpha+3}} d_{q} b\right) d_{q} a ;
\end{aligned}
$$

2) For all f in $\mathcal{S}_{q, \alpha}\left(\mathbb{R}_{q}\right)$, we have
$V_{\alpha, q}^{-1}(f)(x)=\frac{c_{-\frac{1}{2}, q}}{C_{g}} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}{ }^{t} V_{\alpha, q}\left[\Psi_{q, K_{\alpha, q, 2}(g)}^{\alpha}(f)(a,).\right](b) g_{a, b}(-x) \frac{d_{q} b}{|a|^{2 \alpha+3}}\right) d_{q} a$.
Proof. The result derives from the previous theorem, Theorem 4 and ([4], Theorem 5).

References

[1] N. Bettaibi and R. H. Bettaieb, q-Aanalogue of the Dunkl transform on the real line, arXiv:0801. 0069v1 [math. QA], Tamsui Oxford Journal of Mathematical Sciences, 25(2)(2007), 117-205
[2] T. Ernst, A New Notation for q-Calculus and a New q-Taylor Formula, U. U. D. M. Report 1999:25, ISSN 1101-3591, Department of Mathematics, Uppsala University, (1999).
[3] T. Ernst, The history of q-Calculus and a New Method, U. U. D. M. Report 2000:16, ISSN 1101-3591, Department of Mathematics, Uppsala University, (2000).
[4] A. Fitouhi and R. H. Bettaieb, Wavelet transform in the q^{2}-analogue Fourier analysis, to appear in Math. Sci. Res. Journal.
[5] A. Fitouhi, M. M. Hamza, and F. Bouzeffour, The $q-j_{\alpha}$ Bessel function. J. Approx. Theory, 115, (2002), 144-166.
[6] G. Gasper and M. Rahmen, Basic Hypergeometric Series, Encyclopedia of Mathematics and its application, Vol 35 Cambridge Univ. Press, Cambridge, UK, 1990.
[7] F. H. Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41(1910),193-203.
[8] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, SpringerVerlag, New York, (2002).
[9] T. H. Koornwinder, q-Special Functions, a Tutorial, in Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff (eds), Contemp. Math. 134, Amer. Math. Soc., (1992).
[10] T. H. Koornwinder, Special Functions and q-Commuting Variables, in Special Functions, q-Series and related Topics, M. E. H. Ismail, D. R. Masson and M. Rahman (eds), Fields Institute Communications 14, American Mathematical Society, (1997), pp. 131-166; arXiv:q-alg/9608008.
[11] Richard L. Rubin, A q^{2}-Analogue Operator for q^{2}-analogue Fourier Analysis, J. Math. Analys. App. 212,(1997), 571-582.
[12] Richard L. Rubin, Duhamel Solutions of non-Homogenous q^{2}-Analogue Wave Equations, Proc. of Amer. Math. Soc., V 135, Nr 3,(2007), 777785.

[^0]: *Corresponding author. E-mail: neji.bettaibi@yahoo.fr
 †E-mail: rym.bettaieb@yahoo.fr
 ${ }^{\ddagger}$ E-mail: slimbouaziz@yahoo.fr

