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Abstract

In this paper, we present some new elements of harmonic analysis re-
lated to the q-Dunkl operator introduced in [1], we define and study
the q-wavelets and the continuous q-wavelet transforms associated with
this operator. Next, as an application, we give inversion formulas for
the q-Dunkl intertwining operator and its dual using q-wavelets.

1. Introduction

In [11, 12], R. L. Rubin constructed a q2-analogue Fourier analysis associated
with a q2-analogue differential operator ∂q. Using this q-harmonic analysis, the
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authors studied in [4] the q-wavelets and the continuous q-wavelet transforms
associated with the operator ∂q.

In [1], the authors introduced a q-analogue of the Dunkl operator on R and
they defined and studied its associated Fourier transform Fα,q

D , called q-Dunkl
transform, which is a q-analogue of the Bessel-Dunkl transform. They, also,
studied the q-Dunkl intertwining operator Vα,q and its dual tVα,q via the
q-analogues of the Riemann-Liouville and Weyl transforms Rα,q and tRα,q,
studied in [5]. In particular, they proved that Vα,q and its dual are automor-
phism of some spaces Eq(Rq) and Dq(Rq), respectively and they gave their
inversion operators using Rα,q and tRα,q.

In this paper, we define the generalized q-Dunkl translation operator and
its related convolution product, we give some of their properties, then, we are
interested by studying the q-wavelets and the continuous q-wavelet transforms
associated with the q-Dunkl operator. Next, we establish an inversion formulas
for the q-Dunkl intertwining operator Vα,q and its dual tVα,q using q-wavelets.

This paper is organized as follows: in Section 2, we present some prelim-
inaries results and notations that will be useful in the sequel. In Section 3,
we recall some results and properties concerning the q-Dunkl transform stud-
ied in [1], we introduce the generalized q-Dunkl translation operator and its
related convolution product and we give some of their properties. In Section
4, we define and study the q-wavelet and the continuous q-wavelet transform
associated with the q-Dunkl operator, and we provide for this transform a
Plancherel formula and an inversion theorem. Section 5 is devoted to give
some inversion formulas for the q-Dunkl intertwining operator and its dual
on some new spaces (other than Eq(Rq) and Dq(Rq)). Finally, in Section 6,
we give some relations between the continuous q-wavelet transform associated
with the q-Dunkl operator and those associated with the q2-analogue differen-
tial operator ∂q, studied in [4]. Next, by the help of these relations, we derive
the inversion formulas of the q-Dunkl intertwining operator and its dual using
q-wavelets.
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2. Notations and Preliminaries

For the convenience of the reader,we provide in this section a summary of the
mathematical notations and definitions used in this paper, we will follow the
notations of [11, 12]. We fix q ∈]0, 1[ and we refer to the book by G. Gasper
and M. Rahman [6] for the definitions, notations and properties of the q-shifted
factorials and the q-hypergeometric functions.

We will write
Rq = {±qn : n ∈ Z}, R̃q = {±qn : n ∈ Z} ∪ {0}.
For a ∈ C, the q-shifted factorials are defined by

(a; q)0 = 1; (a; q)n =
n−1∏
k=0

(1− aqk), n = 1, 2, . . . ; (a; q)∞ =
∞∏
k=0

(1− aqk).

(1)
We also denote

[x]q =
1− qx

1− q
, x ∈ C ; [n]q! =

(q; q)n
(1− q)n

, n ∈ N. (2)

The q2-analogue differential operator is (see [12], [11]),

∂q(f)(z) =


f (q−1z) + f (−q−1z)− f (qz) + f (−qz)− 2f(−z)

2(1− q)z
if z 6= 0,

lim
x→0

∂q(f)(x) (in Rq) if z = 0.

(3)
Note that if f is differentiable at z, then lim

q→1
∂q(f)(z) = f ′(z).

The q-trigonometric functions q-cosine and q-sine are defined by ( see [11, 12]):

cos(x; q2) =
∞∑
n=0

(−1)nqn(n+1) x2n

[2n]q!
(4)

and

sin(x; q2) =
∞∑
n=0

(−1)nqn(n+1) x2n+1

[2n+ 1]q!
. (5)

These functions induce a ∂q-adapted q2-analogue exponential function by

e(z; q2) = cos(−iz; q2) + i sin(−iz; q2). (6)
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e(z; q2) is absolutely convergent for all z in the plane since both of its com-
ponent functions are. lim

q→1−
e(z; q2) = ez (exponential function) pointwise and

uniformly on compacts.
Using the same technique as in [11], one can prove that for all x ∈ Rq, we have

| cos(x; q2)| ≤ 1

(q; q)∞
and | sin(x; q2)| ≤ 1

(q; q)∞
,

so,

∀x ∈ Rq, |e(−ix; q2)| ≤ 2

(q; q)∞
. (7)

The q-Jackson integrals from 0 to a ∈ R and from −∞ to +∞ are defined by
(see [7], [8], [10], [9])∫ a

0

f(x)dqx = (1− q)a
∞∑
n=0

f(aqn)qn, (8)

and ∫ +∞

−∞
f(x)dqx = (1− q)

∞∑
n=−∞

{f(qn) + f(−qn)} qn, (9)

provided the sums converge absolutely.
The following result can be verified by direct computation.

Lemma 1. If

∫ ∞
−∞

f(t)dqt exists, then for all a ∈ Rq,

∫ ∞
−∞

f(at)dqt = |a|−1

∫ ∞
−∞

f(t)dqt.

In the sequel, we will need the following spaces:
• Eq(Rq) the space of functions f defined on Rq, satisfying

∀n ∈ N, a ≥ 0, Pn,a(f) = sup
{
|∂kq f(x)|; 0 ≤ k ≤ n;x ∈ [−a, a] ∩ Rq

}
<∞

and
lim
x→0

∂nq f(x) (in Rq) exists.

We provide it with the topology defined by the semi norms Pn,a.
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• Sq(Rq) the space of functions f defined on Rq satisfying

∀n,m ∈ N, Pn,m,q(f) = sup
x∈Rq
| xm∂nq f(x) |< +∞

and

lim
x→0

∂nq f(x) (in Rq) exists.

• Dq(Rq) the subspace of Sq(Rq) constituted of functions with compact sup-
ports.

• Lpα,q(Rq) =

{
f : ‖f‖p,α,q =

(∫ ∞
−∞
|f(x)|p|x|2α+1dqx

) 1
p

<∞

}
, p > 0 and

α ∈ R.

• L∞q (Rq) =

{
f : ‖f‖∞,q = sup

x∈Rq
|f(x)| <∞

}
.

3. Elements of q-Dunkl Harmonic Analysis

In this section, we collect some basic results and properties from the q-Dunkl
operator theory, studied in [1], and we introduce and study a generalized q-
Dunkl translation as well as its related convolution product.

For α ≥ −1

2
, the q-Dunkl transform is defined on L1

α,q(Rq) by (see [1])

Fα,q
D (f)(λ) = cα,q

∫ +∞

−∞
f(x)ψα,q−λ(x).|x|2α+1dqx, λ ∈ R̃q, (10)

where cα,q =
(1 + q)−α

2Γq2(α + 1)
and ψα,qλ is the q-Dunkl kernel defined by

ψα,qλ : x 7−→ jα(λx; q2) +
iλx

[2α + 2]q
jα+1(λx; q2), (11)

with jα(x; q2) is the normalized third Jackson’s q-Bessel function given by:

jα(x; q2) =
+∞∑
n=0

(−1)n
Γq2(α + 1)qn(n+1)

Γq2(α + n+ 1)Γq2(n+ 1)

(
x

1 + q

)2n

.
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It was proved in [1] that for all λ ∈ C, the function: x 7−→ ψα,qλ (x) is the
unique solution of the q-differential-difference equation:{

Λα,q(f) = iλf
f(0) = 1,

(12)

where Λα,q is the q-Dunkl operator defined by

Λα,q(f)(x) = ∂q
[
fe + q2α+1fo

]
(x) + [2α + 1]q

f(x)− f(−x)

2x
, (13)

with fe and fo are respectively the even and the odd parts of f.
We recall that the q-Dunkl operator Λα,q lives the spaces Dq(Rq) and Sq(Rq)
invariant. Some other properties of the q-Dunkl kernel and the q-Dunkl trans-
form are given in the following results (see [1]).

Proposition 1.
i) ψα,qλ (x) = ψα,qx (λ), ψα,qaλ (x) = ψα,qλ (ax), ψα,qλ (x) = ψα,q−λ(x), ∀λ, x ∈ R,
a ∈ C.

ii) If α = −1

2
, then ψα,qλ (x) = e(iλx; q2).

For α > −1

2
, ψα,qλ has the following q-integral representation of Mehler type

ψα,qλ (x) =
(1 + q)Γq2(α + 1)

2Γq2(
1
2
)Γq2(α + 1

2
)

∫ 1

−1

(t2q2; q2)∞
(t2q2α+1; q2)∞

(1 + t)e(iλxt; q2)dqt. (14)

iii) For all λ ∈ Rq, ψ
α,q
λ is bounded on R̃q and we have

| ψα,qλ (x) |≤ 4

(q; q)∞
, ∀x ∈ R̃q. (15)

iv) For all λ ∈ Rq, ψ
α,q
λ ∈ Sq(Rq).

v) The function ψα,qλ verifies the following orthogonality relation: For all x, y ∈
Rq, ∫ +∞

−∞
ψα,qλ (x)ψα,qλ (y)|λ|2α+1dqλ =

4(1 + q)2αΓ2
q2(α + 1)δx,y

(1− q)|xy|α+1
. (16)

vi) If f ∈ L1
α,q(Rq) then Fα,q

D (f) ∈ L∞q (Rq),

‖Fα,q
D (f)‖∞,q ≤

4cα,q
(q; q)∞

‖f‖1,α,q, (17)
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and
lim
|λ|→+∞
λ∈Rq

Fα,q
D (f)(λ) = 0, lim

|λ|→0

λ∈R̃q

Fα,q
D (f)(λ) = Fα,q

D (f)(0). (18)

vii) For f ∈ L1
α,q(Rq),

Fα,q
D (Λα,qf)(λ) = iλFα,q

D (f)(λ). (19)

viii) For f, g ∈ L1
α,q(Rq),∫ +∞

−∞
Fα,q
D (f)(λ)g(λ)|λ|2α+1dqλ =

∫ +∞

−∞
f(x)Fα,q

D (g)(x)|x|2α+1dqx. (20)

Theorem 1. For all f ∈ L1
α,q(Rq), we have

∀x ∈ Rq, f(x) = cα,q

∫ +∞

−∞
Fα,q
D (f)(λ)ψα,qλ (x).|λ|2α+1dqλ

= Fα,q
D (Fα,q

D (f))(x).

(21)

Theorem 2. i) Plancherel formula
For α ≥ −1/2, the q-Dunkl transform Fα,q

D is an isomorphism from Sq(Rq)
onto itself. Moreover, for all f ∈ Sq(Rq), we have

‖Fα,q
D (f)‖2,α,q = ‖f‖2,α,q. (22)

ii) Plancherel theorem
The q-Dunkl transform can be uniquely extended to an isometric isomorphism
on L2

α,q(Rq). Its inverse transform (Fα,q
D )−1 is given by :

(Fα,q
D )−1(f)(x) = cα,q

∫ +∞

−∞
f(λ)ψα,qλ (x).|λ|2α+1dqλ = Fα,q

D (f)(−x). (23)

We are now in a position to define the generalized q-Dunkl translation
operator.

Definition 1. The generalized q-Dunkl translation operator is defined for f ∈
L2
α,q(Rq) and x, y ∈ Rq by

Tα;q
y (f)(x) = cα,q

∫ ∞
−∞

Fα,q
D (f)(λ)ψα,qλ (x)ψα,qλ (y)|λ|2α+1dqλ, (24)

Tα;q
0 (f) = f .
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It verifies the following properties.

Proposition 2.
1) For all f ∈ L2

α,q(Rq) and all x ∈ Rq,

lim
y→0
y∈Rq

Tα;q
y (f)(x) = f(x).

2) For all x, y ∈ Rq, T
α;q
y (f)(x) = Tα;q

x (f)(y).
3) If f ∈ L2

α,q(Rq) (resp. Sq(Rq)) then Tα;q
y (f) ∈ L2

α,q(Rq) (resp. Sq(Rq))
and we have

‖ Tα;q
y (f) ‖2,α,q≤

4

(q; q)∞
‖ f ‖2,α,q . (25)

4) For all x, y, λ ∈ Rq, T
α;q
y (ψα,qλ ) (x) = ψα,qλ (x)ψα,qλ (y).

5) For f ∈ L2
α,q(Rq), x, y ∈ Rq, we have

Fα,q
D (Tα;q

y f)(λ) = ψα,qλ (y)Fα,q
D (f)(λ). (26)

6) For f ∈ Sq(Rq) and y ∈ Rq, we have

Λα,qT
α;q
y f = Tα;q

y Λα,qf.

Proof.
1) Since ψα,qλ is bounded on Rq, then the Lebesgue theorem and Theorem 1
give the result.
2) Follows from the definition of the generalized q-Dunkl translation.
3) Since f ∈ L2

α,q(Rq) (resp. Sq(Rq)), ψ
α,q
y is bounded for all y (resp. ψα,qy ∈

Sq(Rq)) and Fα,q
D is an automorphism of L2

α,q(Rq) (resp. Sq(Rq)), then
Fα,q
D (f).ψα,qy is in L2

α,q(Rq) (resp. Sq(Rq)). So, by the help of the Plancherel

theorem, we have for all y ∈ Rq, T
α;q
y f = (Fα,q

D )−1
(
Fα,q
D (f).ψα,qy

)
is in L2

α,q(Rq)
(resp. Sq(Rq)). Moreover, using the Plancherel formula and the relation

(15), we obtain

‖ Tα;q
y f ‖2,α,q = ‖ (Fα,q

D )−1(Fα,q
D (f).ψα,qy ) ‖2,α,q

= ‖ Fα,q
D (f).ψα,qy ‖2,α,q≤

4

(q; q)∞
‖ f ‖2,α,q .
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4) Using the orthogonality relation (16), we obtain

Fα,q
D (ψα,qλ ) (y) =

2(1 + q)αΓq2(α + 1)

(1− q)|λy|α+1
δλ,y, λ, y ∈ Rq,

witch implies that Tα;q
y (ψα,qλ ) (x) = ψα,qλ (x)ψα,qλ (y).

5) From the fact that for f ∈ L2
α,q(Rq) and y ∈ Rq, T

α;q
y f = (Fα,q

D )−1
[
Fα,q
D (f).ψα,qy

]
,

we get

Fα,q
D (Tα;q

y f)(λ) =
[
Fα,q
D (f).ψα,qy

]
(λ) = ψα,qλ (y).Fα,q

D (f)(λ).

6) For f ∈ Sq(Rq), we have

Fα,q
D

(
Λα,qT

α;q
y f

)
(λ) = iλFα,q

D

(
Tα;q
y f

)
(λ) = iλψα,qλ (y)Fα,q

D (f)(λ)

and

Fα,q
D

(
Tα;q
y Λα,qf

)
(λ) = ψα,qλ (y)Fα,q

D (Λα,qf) (λ) = iλψα,qλ (y)Fα,q
D (f)(λ).

The result follows, then, from the fact that Fα,q
D is an automorphism of Sq(Rq).

2

Definition 2. The q-convolution product is defined for f, g ∈ Sq(Rq) by:

f ∗ g(x) = cα,q

∫ ∞
−∞

Tα;q
x f(−y)g(y)|y|2α+1dqy. (27)

In the following proposition, we present some of its properties.

Proposition 3. For f, g ∈ Sq(Rq), we have
i) Fα,q

D (f ∗ g) = Fα,q
D (f).Fα,q

D (g).
ii) f ∗ g = g ∗ f .
iii) (f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof.
i) Let f, g ∈ Sq(Rq). Then, with the help of the relation (15), we have for all
x, y ∈ Rq,

|Tα;q
x f(−y)| ≤ cα,q

∫ ∞
−∞
|Fα,q
D (f)(λ)ψα,qλ (x)ψα,qλ (−y)| |λ|2α+1dqλ

≤ cα,q

(
4

(q; q)∞

)2

‖Fα,q
D (f)‖1,α,q.
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So, since for λ ∈ Rq, ψ
α,q
−λ ∈ Sq(Rq), we obtain

∫ ∞
−∞

∫ ∞
−∞
|Tα;q
x f(−y)g(y)ψα,q−λ(x)||y|2α+1|x|2α+1dqydqx

≤ 16cα,q
(q; q)2

∞
‖Fα,q

D (f)‖1,α,q‖g‖1,α,q‖ψα,q−λ‖1,α,q.

Hence, using the Fubini’s theorem and the properties of the generalized q-
Dunkl translation, we get

Fα,q
D (f ∗ g)(λ) = cα,q

∫ ∞
−∞

(f ∗ g)(x)ψα,q−λ(x)|x|2α+1dqx

= c2α,q

∫ ∞
−∞

[∫ ∞
−∞

Tα;q
x f(−y)g(y)|y|2α+1dqy

]
ψα,q−λ(x)|x|2α+1dqx

= c2α,q

∫ ∞
−∞

[∫ ∞
−∞

Tα;q
−y f(x)ψα,q−λ(x)|x|2α+1dqx

]
g(y)|y|2α+1dqy

= cα,q

∫ ∞
−∞

Fα,q
D (Tα;q

−y f)(λ)g(y)|y|2α+1dqy

= cα,q

∫ ∞
−∞

Fα,q
D (f)(λ)ψα,qλ (−y)g(y)|y|2α+1dqy

= cα,qF
α,q
D (f)(λ)

∫ ∞
−∞

ψα,q−λ(y)g(y)|y|2α+1dqy

= Fα,q
D (f)(λ)Fα,q

D (g)(λ).

ii) and iii) follows from i). 2

Proposition 4. Let f and g be in Sq(Rq). Then
1) f ∗ g ∈ Sq(Rq),
2)∫ ∞
−∞
| f ∗ g(x) |2 |x|2α+1dqx =

∫ ∞
−∞
| Fα,q

D (f)(x) |2| Fα,q
D (g)(x) |2 |x|2α+1dqx.

(28)

Proof. The proof is a direct consequence of Theorem 2 and the fact that
Fα,q
D (f ∗ g) = Fα,q

D (f)Fα,q
D (g). �
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4. q-wavelet Transforms Associated with the

q-Dunkl Operator

Definition 3. A q-wavelet, associated with the q-Dunkl operator, is a square
q-integrable function g on Rq satisfying the following admissibility condition

0 < Cα,g =

∫ ∞
−∞
| Fα,q

D (g)(a) |2 dqa
|a|

<∞. (29)

Remark 1.
1) For all λ ∈ Rq, we have

Cα,g =

∫ ∞
−∞
| Fα,q

D (g)(aλ) |2 dqa
|a|

.

2) Let f be a nonzero function in Sq(Rq). Then g = Λα,qf is a q-wavelet, in
Sq(Rq) and we have

Cα,g =

∫ ∞
−∞
|a| | Fα,q

D (f)(a) |2 dqa.

Proposition 5. Let g 6= 0 be a function in L2
α,q(Rq) satisfying:

(1) Fα,q
D (g) is continuous at 0.

(2)∃β > 0 such that Fα,q
D (g)(x)−Fα,q

D (g)(0) = O(xβ), as x→ 0, x ∈ Rq.

Then, the admissibility condition (29) is equivalent to

Fα,q
D (g)(0) = 0. (30)

Proof. Assume that (29) is satisfied.
If Fα,q

D (g)(0) 6= 0, then there exist p0 ∈ N and M > 0, such that

∀n ≥ p0, | Fα,q
D (g)(±qn) |≥M.

So, the q-integral in (29) would be equal to ∞.
- Conversely, assume that Fα,q

D (g)(0) = 0.
Since g 6= 0, we deduce from Theorem 2, that the first inequality in (29) holds.
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On the other hand, from the assertion (2), there exist n0 ∈ N and ε > 0, such
that for all n ≥ n0, we have

| Fα,q
D (g)(±qn) |≤ εqnβ.

Then using the definition of the q-integral and Theorem 2, we obtain∫ ∞
−∞
| Fα,q

D (g)(a) |2 dqa
|a|

= (1− q)
∞∑

n=−∞

[
| Fα,q

D (g)(qn) |2 + | Fα,q
D (g)(−qn) |2

]
≤
‖Fα,q

D (g)‖22,α,q
q(2α+2)n0

+
2(1− q)
1− q2β

ε2.

This proves the second inequality of (29). 2

Remark 2.
Using the relation (18), the continuity assumption in the previous proposition
will certainly hold if g is moreover in L1

α,q(Rq). Then (30) can be equivalently
written as ∫ ∞

−∞
g(x)|x|2α+1dqx = 0,

which implies that g must have sign changes on Rq. It will also decay to 0 as
t tends to ±∞ (in Rq ). This explains the name ”q-wavelet”.

Proposition 6. For a ∈ Rq and g ∈ L2
α,q(Rq) (resp. Sq(Rq)), the function

ga : x 7→ 1

|a|2α+2
g
(x
a

)
belongs to L2

α,q(Rq) (resp. Sq(Rq)) and we have

‖ga‖2,α,q =
1

|a|α+1
‖g‖2,α,q (31)

and

Fα,q
D (ga)(λ) = Fα,q

D (g)(aλ), λ ∈ R̃q. (32)

Proof. The change of variables u =
x

a
gives the result. 2
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Proposition 7. Let g be a q-wavelet, associated with he q-Dunkl operator, in
L2
α,q(Rq) (resp. Sq(Rq)). Then, for all a ∈ Rq and b ∈ R̃q, the function g(a,b),α

defined by

g(a,b),α(x) =
√
|a|Tα;q

b (ga)(x), x ∈ Rq, (33)

is a q-wavelet associated with he q-Dunkl operator in L2
α,q(Rq) (resp. Sq(Rq))

and we have

Cα,g(a,b),α = |a|
∫ ∞
−∞

∣∣∣ψα,qb (x
a

)∣∣∣2 | Fα,q
D (g)(x) |2 dqx

|x|
, (34)

with Tα;q
b is the generalized q-Dunkl translation operator defined by (24).

Proof. Using Proposition 2, Proposition 6 and the properties of the general-
ized q-Dunkl translation, we obtain g(a,b),α is in L2

α,q(Rq) (resp. Sq(Rq)).

From Lemma 1 and the relations (26) and (32), we get for a ∈ Rq and b ∈ R̃q,

Cα,g(a,b),α = |a|
∫ ∞
−∞
|Fα,q
D [Tα;q

b (ga)] (x)|2 dqx
|x|

= |a|
∫ ∞
−∞
|ψα,qb

(x
a

)
|2 | Fα,q

D (g)(x) |2 dqx
|x|

.

Thus, since g 6= 0, we have, from the Plancherel theorem, Fα,q
D (g) 6= 0 and

0 < Cα,g(a,b),α ≤ |a|
(

4

(q; q)∞

)2 ∫ ∞
−∞
| Fα,q

D (g)(x) |2 dqx
|x|

=
16|a|

(q; q)2
∞
Cα,g < +∞.

2

Proposition 8. Let g be a q-wavelet, associated with the q-Dunkl operator,
in L2

α,q(Rq). Then the mapping

F : (a, b) 7→ g(a,b),α

is continuous from Rq× R̃q into L2
α,q(Rq), via the induced topology on Rq× R̃q

by that of R× R.

Proof. It is clear, from the previous proposition, that F is a mapping from
Rq × R̃q into L2

α,q(Rq) and it is continuous on Rq ×Rq, since every element of
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Rq × Rq is an isolated point.

Now, let a ∈ Rq. For b ∈ R̃q, we have

‖ F (a, b)− F (a, 0) ‖22,α,q = |a| ‖ Tα;q
b (ga)− ga ‖22,α,q

= |a| ‖ Fα,q
D (Tα;q

b (ga)− ga) ‖22,α,q

= |a|
∫ ∞
−∞
| 1− ψα,qb (x) |2| Fα,q

D (ga) |2 (x)|x|2α+1dqx.

Using the relation (15), the fact that Fα,q
D (ga) ∈ L2

α,q(Rq) and the Lebesgue
theorem we obtain

lim
b→0
b∈R̃q

‖ F (a, b)− F (a, 0) ‖2,α,q= 0.

2

Definition 4. Let g be a q-wavelet, associated with the q-Dunkl operator, in
Sq(Rq). We define the continuous q-wavelet transform associated with the q-
Dunkl operator for f ∈ Sq(Rq), by

Ψα
q,g(f)(a, b) = cα,q

∫ ∞
−∞

f(x)g(a,b),α(−x)|x|2α+1dqx, a ∈ Rq, b ∈ R̃q. (35)

Remark that (35) is equivalent to

Ψα
q,g(f)(a, b) =

√
|a|f ∗ ga(b)

=
√
|a|Fα,q

D [Fα,q
D (f ∗ ga)] (−b)

=
√
|a|Fα,q

D [Fα,q
D (f).Fα,q

D (ga)] (−b)

=
√
|a|cα,q

∫ ∞
−∞

Fα,q
D (f)(x).Fα,q

D (g)(ax)ψα,qb (x)|x|2α+1dqx,

where cα,q is given by (10).
The following propositions give some properties of Ψα

q,g.

Proposition 9. Let g be a q-wavelet, associated with the q-Dunkl operator,
in Sq(Rq) and f ∈ Sq(Rq). Then

i) For all a ∈ Rq and b ∈ R̃q, we have

| Ψα
q,g(f)(a, b) |≤ 4cα,q

|a|α+ 1
2 (q; q)∞

‖f‖2,α,q‖g‖2,α,q; (36)
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ii) For all a ∈ Rq, the mapping b 7→ Ψα
q,g(f)(a, b) is continuous on R̃q, via the

induced topology on R̃q by that of R, and we have

lim
b→∞

Ψα
q,g(f)(a, b) = 0. (37)

Proof. i) Using the properties of the generalized q-Dunkl translation operator,
the Cauchy-Schwartz inequality and Lemma 1, we obtain for a ∈ Rq and

b ∈ R̃q,

| Ψα
q,g(f)(a, b) | = cα,q |

∫ ∞
−∞

f(x)g(a,b),α(−x)|x|2α+1dqx |

≤
√
|a|cα,q

∫ ∞
−∞
| f(x) || Tα;q

b ga(−x) | |x|2α+1dqx

≤ 4cα,q

|a|α+ 1
2 (q; q)∞

‖f‖2,α,q‖g‖2,α,q.

ii) Since every element of Rq is an isolated point, it is sufficient to prove the

continuity at 0. For b ∈ R̃q, we have

Ψα
q,g(f)(a, b) =

√
|a|Fα,q

D [Fα,q
D (f).Fα,q

D (ga)] (−b).

Since f, g ∈ Sq(Rq), then from Theorem 2, we have Fα,q
D (f) and Fα,q

D (ga)
are in Sq(Rq) and the product Fα,q

D (f).Fα,q
D (ga) is in L1

α,q(Rq). Thus, using the
relation (15), the Lebesgue theorem, gives

lim
b→0
b∈R̃q

Ψα
q,g(f)(a, b) = lim

b→0
b∈R̃q

√
|a|cα,q

∫ ∞
−∞

Fα,q
D (f)(x).Fα,q

D (ga)(x)ψα,qb (x)dqx

= Ψα
q,g(f)(a, 0).

Which proves the continuity of Ψα
q,g(f)(a, .) at 0.

Finally, the relation (18) implies that

Ψα
q,g(a, b) =

√
|a|Fα,q

D [Fα,q
D (f).Fα,q

D (ga)](−b)

tends to 0 when b tends to ∞. 2

Let us now establish a Plancherel and a Parseval formulas for Ψα
q,g.
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Theorem 3. Let g ∈ Sq(Rq) be a q-wavelet, associated with the q-Dunkl op-
erator.
i) Plancherel formula
For f ∈ Sq(Rq), we have

1

Cα,g

∫ ∞
−∞

∫ ∞
−∞
| Ψα

q,g(f)(a, b) |2 |b|2α+1dqadqb

|a|2
= ‖f‖22,α,q. (38)

ii) Parseval formula
For f1, f2 ∈ Sq(Rq), we have∫ ∞
−∞

f1(x)f 2(x)|x|2α+1dqx =
1

Cα,g

∫ ∞
−∞

∫ ∞
−∞

Ψα
q,g(f1)(a, b)Ψα

q,g(f2)(a, b)|b|2α+1dqadqb

|a|2
.

(39)

Proof. The use of the Fubini’s theorem, Theorem 2, the relations (28) and
(32) gives ∫ ∞

−∞

∫ ∞
−∞
| Ψα

q,g(f)(a, b) |2 |b|2α+1dqadqb

|a|2

=

∫ ∞
−∞

(∫ ∞
−∞
| f ∗ ga(b) |2 |b|2α+1dqb

)
dqa

|a|

=

∫ ∞
−∞

(∫ ∞
−∞
|[Fα,q

D (f)Fα,q
D (ga)] (b)|2 |b|2α+1dqb

)
dqa

|a|

=

∫ ∞
−∞
| Fα,q

D (f)(b) |2 |b|2α+1

(∫ ∞
−∞
| Fα,q

D (g)(ab) |2 dqa
|a|

)
dqb

= Cα,g

∫ ∞
−∞
| Fα,q

D (f)(b) |2 |b|2α+1dqb = Cα,g‖f‖22,α,q.

ii) The result follows from (38). 2

Theorem 4. Let g ∈ Sq(Rq) be a q-wavelet, associated with the q-Dunkl op-
erator. Then for f ∈ Sq(Rq), we have

f(x) =
cα,q
Cα,g

∫ ∞
−∞

∫ ∞
−∞

Ψα
q,g(f)(a, b)g(a,b),α(−x)|b|2α+1dqadqb

|a|2
, x ∈ Rq.

(40)
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Proof. Let x ∈ Rq and put h = δx. It is easy to see that h ∈ Sq(Rq).
According to the relation (39) of the previous theorem and the definition of
Ψα
q,g and the q-Jackson integral, we have,

(1− q)|x|2α+2f(x) =

∫ ∞
−∞

f(t)h(t)|t|2α+1dqt

=
1

Cα,g

∫ ∞
−∞

∫ ∞
−∞

Ψα
q,g(f)(a, b)Ψα

q,g(h)(a, b)|b|2α+1dqadqb

|a|2
.

=
cα,q
Cα,g

∫ ∞
−∞

∫ ∞
−∞

Ψα
q,g(f)(a, b)

(∫ ∞
−∞

h(t)g(a,b),α(−t)|t|2α+1dqt

)
|b|2α+1dqadqb

|a|2

= (1− q)|x|2α+2 cα,q
Cα,g

∫ ∞
−∞

∫ ∞
−∞

Ψα
q,g(f)(a, b)g(a,b),α(−x)|b|2α+1dqadqb

|a|2
.

2

5. Inversion Formulas for the q-Dunkl Inter-

twining Operator and its Dual

In the what follows, we will need the following spaces:

• Sq,α(Rq) =

{
f ∈ Sq(Rq) :

∫ +∞

−∞
f (x)xk|x|2α+1dqx = 0, k = 0, 1, ...

}
.

• S0
q (Rq) =

{
f ∈ Sq(Rq) : ∂kq f(0) = 0, k = 0, 1, ...

}
.

We recall that the q-Dunkl intertwining operator Vα,q is defined on Eq(Rq) by
(see [1])

Vα,q(f)(x) =
(1 + q)

2

Γq2(α + 1)

Γq2(
1
2
)Γq2(α + 1

2
)

∫ 1

−1

(t2q2; q2)∞
(t2q2α+1; q2)∞

(1 + t)f(xt)dqt. (41)

The dual operator of Vα,q is defined on Dq(Rq) by (see [1])

(tVα,q)(f)(t) =
(1 + q)−α+ 1

2

2Γq2(α + 1
2
)

∫
|x|≥q|t|

(
( t
x
)2q2; q2

)
∞(

( t
x
)2q2α+1; q2

)
∞

(
1 +

t

x

)
f(x)

|x|2α+1

x
dqx.

(42)
These two operators satisfy the following properties:

Proposition 10. i) Vα,q(e(−iλx; q2)) = ψα,q−λ(x), λ, x ∈ Rq.
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ii) For f ∈ Eq(Rq) and g ∈ Dq(Rq)

cα,q

∫ +∞

−∞
Vα,q(f)(x)g(x)|x|2α+1dqx =

(1 + q)
1
2

2Γq2
(

1
2

) ∫ +∞

−∞
f(t)(tVα,q)(g)(t)dqt.

(43)
iii) Vα,q and tVα,q verify the following transmutation relations

Λα,qVα,q(f) = Vα,q(∂qf), Vα,q(f)(0) = f(0), f ∈ Eq(Rq), (44)

∂q(
tVα,q)(f) = (tVα,q)(Λα,q)(f), f ∈ Dq(Rq). (45)

iv) The q-Dunkl transform and the q2-analogue Fourier transform Fq, studied
in ([11], [12]), are linked by the following relation (see [1]):

∀f ∈ Dq(Rq), Fα,q
D (f) = Fq ◦ tVα,q(f), (46)

where

Fq(f)(x) = F
− 1

2
,q

D (f)(x) =
(1 + q)

1
2

2Γq2
(

1
2

) ∫ ∞
−∞

f(t)e(−itx; q2)dqt. (47)

We state the following results, useful in the sequel.

Theorem 5. The q2-analogue Fourier transform Fq is an isomorphism from
Sq,−1/2(Rq) into S0

q (Rq).

Proof. The result follows from the fact that ∂qe(−ix; q2) = −ie(−ix; q2). 2

Similarly, we have the following result.

Theorem 6. The q-Dunkl transform Fα,q
D is an isomorphism from Sq,α(Rq)

into S0
q (Rq).

Proof. On the one hand, we have for all k ∈ N,

∂kqF
α,q
D (f)(λ) =

∫ +∞

−∞
f(x)|x|2α+1∂kq,λ

[
ψα,q−λ(x)

]
dqx.

On the other hand, from the relation (14), we have

∂kq,λ
[
ψα,q−λ

]
(x) =

(1 + q)Γq2(α + 1)

2Γq2(
1
2
)Γq2(α + 1

2
)
(−i)kxk

∫ 1

−1

(t2q2; q2)∞
(t2q2α+1; q2)∞

(1+t)tke(−iλxt, q2)dqt,

which gives the result. 2



Wavelet Transform Associated with the q-Dunkl Operator 95

Corollary 1. The operator tVα,q is an isomorphism from Sq,α(Rq) into
Sq,−1/2(Rq).

Proof. We deduce the result from the relation Fα,q
D = Fq◦ tVα,q and Theorems

5 and 6. 2

Proposition 11. For f in Sq,−1/2(Rq) (resp. Sq,α(Rq)) and g in Sq(Rq) the
function f ∗q g (resp. f ∗ g) belongs to Sq,−1/2(Rq) (resp. Sq,α(Rq)).
where ”∗q” is the q- convolution product associated with the operator ∂q studied
in [11].

Proof. The result follows from Theorem 5 (resp. 6) and the fact that
f ∗q g = F−1

q (Fq(f).Fq(g)) (resp. f ∗ g = (Fα,q
D )−1(Fα,q

D (f).Fα,q
D (g)). 2

Using the Taylor formula for the Jackson’s q-derivative (see [3, 2]), we
provide in the following lemma a Taylor formula for the operator ∂q.

Lemma 2. Let f be a function N times continuously q-differentiable on R̃q,
N ∈ N. Then,

f(x) =
N∑
n=0

q(E(n+1
2

))2
∂nq f(0)

[n]q!
xn +

xN

[N ]q!

∫ 1

0

(tq; q)N Hq,N+1(f)(xt)dqt,

where for n ∈ N, E
(
n+1

2

)
is the integer part of n+1

2
and Hq,n is the operator

defined by

Hq,n(f)(t) = qan∂nq fo(tq
E(1+n

2
)) + qbn∂nq fe(tq

E(n+1
2

)),

with fo and fe are respectively the odd and the even parts of f ,

an =

{
n(n+2)

4
, if n is even,

(n+1)2

4
, if n is odd,

and bn =

{
n2

4
, if n is even,

(n−1)(n+1)
4

, if n is odd.

Proposition 12. The operator Kα,q,1 defined by

Kα,q,1(f) =
Γq2 (1/2)

(1 + q)(α+1/2)Γq2(α + 1)
F−1
q (|λ|2α+1Fq(f))

is an isomorphism from Sq,−1/2(Rq) onto itself.
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Proof. Using the previous lemma, one can prove that the multiplication

operator f 7→
Γq2 (1/2)

(1 + q)(α+1/2)Γq2(α + 1)
|λ|2α+1 f is an isomorphism from

S0
q (Rq) onto itself, its inverse is given by f 7→

(1 + q)(α+1/2)Γq2(α + 1)

Γq2 (1/2) |λ|2α+1 f. The

result follows, then, from Theorem 5. 2

Proposition 13. The operator Kα,q,2 defined by

Kα,q,2(f)(x) =
Γq2 (1/2)

(1 + q)(α+1/2)Γq2(α + 1)
(Fα,q

D )−1(|λ|2α+1 Fα,q
D (f))(x)

is an isomorphism from Sq,α(Rq) onto itself.

Proof. From the relation Fα,q
D = Fq ◦ tVα,q and the definition of Kα,q,1, we

have for all f ∈ Sq,α(Rq),

Kα,q,2 = (tVα,q)
−1 ◦Kα,q,1 ◦ tVα,q. (48)

We deduce the result from Proposition 12 and Corollary 1. 2

Proposition 14.
i) For all f ∈ Sq,−1/2(Rq) and g ∈ Sq(Rq), we have

Kα,q,1(f ∗q g) = Kα,q,1(f) ∗q g.

ii) For all f ∈ Sq,α(Rq) and g ∈ Sq(Rq), we have

Kα,q,2(f ∗ g) = Kα,q,2(f) ∗ g.

Proof. The result follows from the properties of the q-convolution product
and the definitions of Kα,q,1 and Kα,q,2. 2

Theorem 7. For all f ∈ Sq,α(Rq), we have the following inversion formulas
for the operator Vα,q

f = Vα,q ◦Kα,q,1 ◦ tVα,q(f) (49)

and

f = Vα,q ◦t Vα,q ◦Kα,q,2(f). (50)
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Proof. Using the properties of the operator Vα,q, studied in [1], Theorem 1

and relation (46), we obtain for x ∈ R̃q,

f(x) = cα,q

∫ +∞

−∞
Fα,q
D (f)(λ)ψα,qλ (x).|λ|2α+1dqλ

= Vα,q

[
cα,q

∫ ∞
−∞

Fα,q
D (f)(λ)e(iλ�; q2)|λ|2α+1dqλ

]
(x)

= Vα,q

{
cα,q
c−1/2,q

F−1
q

[
|λ|2α+1Fq ◦ tVα,q(f)

]}
(x)

= Vα,q ◦Kα,q,1 ◦ tVα,q(f)(x).

We deduce the second from the first relation and the the relation (48). 2

Corollary 2. The operator Vα,q is an isomorphism from Sq,−1/2(Rq) into
Sq,α(Rq).

Proof. We deduce the result from Proposition 12, Corollary 1 and the relation
(49). 2

Similarly, we have the following result.

Theorem 8. For all f ∈ Sq,−1/2(Rq), we have the following inversion formulas
for the operator tVα,q

f = tVα,q ◦ Vα,q ◦Kα,q,1(f) (51)

and
f = tVα,q ◦Kα,q,2 ◦ Vα,q(f). (52)

Proof. For f ∈ Sq,−1/2(Rq), Corollary 1 (resp. 2) implies that tV −1
α,q (f) (resp.

Vα,q(f)) belongs to Sq,α(Rq). Then by writing the relation (49) ( resp. (50))
for tV −1

α,q (f) (resp. Vα,q(f)), we obtain the result. 2

Corollary 3. i) For all f, g ∈ Sq,α(Rq), we have

tVα,q (f ∗ g) = tVα,q(f) ∗q tVα,q(g). (53)

ii) For all f, g ∈ Sq,−1/2(Rq) we have

Vα,q (f ∗q g) = Vα,q (f) ∗ tV −1
α,q (g). (54)
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6. Inversion of the q-Dunkl Intertwining Oper-

ator and of its Dual using Wavelets

In this section, we assume that the reader is familiar with the notions and
notations presented in [4], where the authors studied the particular case α =

−1

2
. In particular, we recall the following notations

Ha(f)(x) =
1√
|a|
f
(x
a

)
, Cg =

∫ ∞
−∞
|Fq(g)|2(a)

dqa

|a|
,

ga,b = g(a,b),−1/2 and Φq,g = Ψ−1/2
q,g .

We begin by the following useful and easily verified result.

Proposition 15. For all a ∈ Rq and all g ∈ L2
α,q(Rq), we have

ga =
1

|a|2α+3/2
Ha(g) =

1√
|a|

(Fα,q
D )−1 ◦Ha−1 ◦ Fα,q

D (g)

=
1√
|a|

tV −1
α,q ◦Ha ◦ tVα,q(g).

Proposition 16. Let g ∈ Sq,α(Rq) be a q-wavelet, associated with the q-Dunkl
operator. Then, for all f in Sq,α(Rq), we have

Ψα
q,g(f)(a, .) = tV −1

α,q

[
Φq, tVα,q(g)

(
tVα,q(f)

)
(a, .)

]
, a ∈ Rq. (55)

Proof. Let a ∈ Rq, from the properties of the continuous q-wavelet transform
(see [4]), the relation (53) and Proposition (15), we have

Ψα
q,g(f)(a, .) =

√
|a|f ∗ ga =

√
|a| tV −1

α,q

[
tVα,q(f) ∗q tVα,q(ga)

]
= tV −1

α,q

[
tVα,q(f) ∗q Ha ◦ tVα,q(g)

]
= tV −1

α,q

[
Φq, tVα,q(g)

(
tVα,q(f)

)
(a, .)

]
.

2

Theorem 9. Let g ∈ Sq,α(Rq) be a q-wavelet, associated with the q-Dunkl
operator. Then,
1) For all f in Sq,α(Rq), we have for a ∈ Rq and b ∈ R̃q,

Ψα
q,g(f)(a, b) = Vα,q

[
Φq, tVα,q(g)

(
V −1
α,q (f)

)
(a, .)

]
(b), (56)
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2) For all f in Sq,−1/2(Rq), we have for a ∈ Rq and b ∈ R̃q,

Φq, tVα,q(g)(f)(a, b) = tVα,q
[
Ψα
q,g

(
tV −1
α,q (f)

)
(a, .)

]
(b). (57)

Proof. We deduce the result from Proposition 15, Corollary 3, the properties
of the continuous q-wavelet transform (see [4]) and the relation (55). 2

Proposition 17. 1) If g is a q-wavelet (associated with the operator ∂q) in
Sq,−1/2(Rq), then Kα,q,1(g) is a q-wavelet in Sq,−1/2(Rq) and we have

Kα,q,1 ◦Ha(g) =
1

|a|2α+1
Ha ◦Kα,q,1(g), a ∈ Rq. (58)

2) If g is a q-wavelet, associated with the q-Dunkl operator, in Sq,α(Rq), then
Kα,q,2(g) is a q-wavelet, associated with the q-Dunkl operator, in Sq,α(Rq) and
we have

Kα,q,2(ga) =
1

|a|2α+1
(Kα,q,2(g))a, a ∈ Rq. (59)

Proof. 1) Let g be a q-wavelet in Sq,−1/2(Rq). From the definition of Kα,q,1, we

have for λ ∈ Rq, Fq(Kα,q,1(g))(λ) =
Γq2 (1/2)

(1 + q)(α+1/2)Γq2(α + 1)
|λ|2α+1Fq(g)(λ).

Proposition 5 of [4], implies that Kα,q,1(g) is a q-wavelet. On the other hand,
using the fact Fq ◦Ha = Ha−1 ◦Fq, a ∈ Rq and the above equality, we obtain

Fq(Ha ◦Kα,q,1(g))(λ) = |a|2α+1 Γq2 (1/2)

(1 + q)(α+1/2)Γq2(α + 1)
|λ|2α+1Fq (Ha(g)) (λ),

which gives the result.
2) The same way of 1) leads to the result. 2

Theorem 10. Let g be a q-wavelet, associated with the q-Dunkl operator, in
Sq,α(Rq). Then for a ∈ Rq and b ∈ R̃q, we have:
1) For all f in Sq,α(Rq),

Ψα
q,g(f)(a, b) =

1

|a|2α+1
Vα,q

[
Φq,Kα,q,1◦ tVα,q(g)(

tVα,q(f))(a, .)
]

(b); (60)

2) For all f in Sq,−1/2(Rq),

Φq, tVα,q(g)(f)(a, b) =
1

|a|2α+1
tVα,q

[
Ψα
q,Kα,q,2(g)(Vα,q(f))(a, .)

]
(b). (61)
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Proof. 1) Let f be in Sq,α(Rq), a ∈ Rq and b ∈ R̃q. Using Corollary 3, we

obtain Ψα
q,g(f)(a, b) =

√
|a|f ∗ ga(b) =

√
|a|Vα,q

[
tVα,q(f) ∗q V −1

α,q (ga)
]

(b).
So, Theorem 7, Proposition 17 and the relation (55) achieve the proof.
2) Follows from Corollary 3, Theorem 8, and Propositions 14 and 17. 2

Theorem 11. Let g be a q-wavelet, associated with the q-Dunkl operator, in
Sq,α(Rq). Then for all x ∈ Rq,
1) For all f in Sq,−1/2(Rq), we have

tV −1
α,q (f)(x)

=
cα,q
Cα,g

∫ ∞
−∞

(∫ ∞
−∞

Vα,q[Φq,Kα,q,1◦ tVα,q(g)(f)(a, .)](b)× g(a,b),α(−x)
|b|2α+1

|a|2α+3
dqb

)
dqa;

2) For all f in Sq,α(Rq), we have

V −1
α,q (f)(x) =

c− 1
2
,q

Cg

∫ ∞
−∞

(∫ ∞
−∞

tVα,q

[
Ψα
q,Kα,q,2(g)(f)(a, .)

]
(b)ga,b(−x)

dqb

|a|2α+3

)
dqa.

Proof. The result derives from the previous theorem, Theorem 4 and ([4],
Theorem 5 ). 2
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