# A Generalzation of Ostrowski-grüss Type Inequality for First Differentiable Mappings * 

Fiza Zafar ${ }^{\dagger}$<br>CASPAM, Bahauddin Zakariya University, Multan 60800, Pakistan.<br>and<br>Nazir Ahmad Mir ${ }^{\ddagger}$<br>Dept. of Mathematics, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan.

Received September 15, 2008, Accepted October 20, 2008.


#### Abstract

In this paper, we improve and further generalize some OstrowskiGrüss type inequalities involving first differentiable functions and apply them to probability density functions, generalized beta random variable and special means.


Keywords and Phrases: Ostrowski-Grüss inequality, Euclidean norm.

[^0]
## 1. Introduction

In 1938, A. Ostrowski [8] proved the following integral inequality.
Theorem 1. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping in $I^{0}$ (interior of $I$ ), and let $a, b \in I^{0}$ with $a<b$. If $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on $(a, b)$ with $\sup _{t \in[a, b]}\left|f^{\prime}(t)\right| \leq M$, then we have

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a) M \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b]$.
The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller one.

This inequality provides an upper bound for the approximation of integral mean of a function $f$ by the functional value $f(x)$ at $x \in[a, b]$. In 1997, Dragomir and Wang [3], by the use of the Grüss inequality proved the following Ostrowski-Grüss type integral inequality.

Theorem 2. Let $f: I \rightarrow \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, be a mapping differentiable in the interior $I^{0}$ of $I$, and let $a, b \in I^{0}$ with $a<b$. If $\gamma \leq$ $f^{\prime}(x) \leq \Gamma, x \in[a, b]$ for some constants $\gamma, \Gamma \in \mathbb{R}$, then

$$
\begin{align*}
& \left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+b}{2}\right)\right| \\
\leq & \frac{1}{4}(b-a)(\Gamma-\gamma) \tag{1.2}
\end{align*}
$$

for all $x \in[a, b]$.
This inequality provides a connection between Ostrowski inequality [8] and the Grüss inequality [5]. In 2000, M. Matić, J. Pecarić and N. Ujević [7], by the use of pre-Grüss inequality improved the factor of the right membership of (1.2) with $\frac{1}{4 \sqrt{3}}$ as follows.

Theorem 3. Under the assumption of Theorem 2, we have

$$
\begin{align*}
& \left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+b}{2}\right)\right| \\
\leq & \frac{1}{4 \sqrt{3}}(\Gamma-\gamma)(b-a), \tag{1.3}
\end{align*}
$$

for all $x \in[a, b]$.
In 2000, Barnett et al.[1], by the use of Chebyshev's functional, improved the Matić-Pecarić-Ujević result by providing first membership of the right side of (1.3) in terms of Euclidean norm as follows.

Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function whose derivative $f^{\prime} \in L_{2}[a, b]$. Then we have the inequality

$$
\begin{align*}
& \left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+b}{2}\right)\right| \\
\leq & \frac{(b-a)}{2 \sqrt{3}}\left[\frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}\right]^{\frac{1}{2}}, \\
& \left(\leq \frac{(b-a)(\Gamma-\gamma)}{4 \sqrt{3}} \text { if } \gamma \leq f^{\prime}(t) \leq \Gamma \text { for a.e } t \text { on }[a, b] .\right) \tag{1.4}
\end{align*}
$$

for all $x \in[a, b]$.
We define for two mappings $f, g:[a, b] \rightarrow \mathbb{R}$, the Chebyshev functional as

$$
T(f, g)=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\left(\frac{1}{b-a} \int_{a}^{b} f(t) d t\right)\left(\frac{1}{b-a} \int_{a}^{b} g(t) d t\right)
$$

provided that $f, g$ and $f g$ are integrable on $[a, b]$.
Also in [1] we can find the pre-Grüss inequality as

$$
T^{2}(f, g) \leq T(f, f) T(g, g)
$$

where $f, g \in L_{2}[a, b]$ and $T(f, g)$ is the Chebyshev functional as defined above.
In this paper, we give a generalization of (1.4) and then apply it to probability density functions, generalized beta random variable and special means.

## 2. Main Results

Theorem 5. Let $f:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function whose first derivative $f^{\prime} \in L_{2}[a, b]$. Then, we have the inequality

$$
\begin{align*}
&\left|(1-h)\left[f(x)-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+b}{2}\right)\right]+h \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \\
& \leq {\left[\frac{(b-a)^{2}}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)\left(x-\frac{a+b}{2}\right)^{2}\right]^{\frac{1}{2}} } \\
& \times\left[\frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}\right]^{\frac{1}{2}}, \\
& \leq \frac{1}{2}(\Gamma-\gamma)\left[\frac{(b-a)^{2}}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)\left(x-\frac{a+b}{2}\right)^{2}\right]^{\frac{1}{2}} \\
& \quad\left(i f \gamma \leq f^{\prime}(t) \leq \Gamma \text { almost everywhere } t \text { on }(a, b) .\right) \tag{2.1}
\end{align*}
$$

for all $x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right]$ and $h \in[0,1]$.
Proof. We consider the kernel $p:[a, b]^{2} \rightarrow \mathbb{R}$ as defined in [2]:

$$
p(x, t)= \begin{cases}t-\left(a+h \frac{b-a}{2}\right), & \text { if } t \in[a, x] \\ t-\left(b-h \frac{b-a}{2}\right), & \text { if } t \in(x, b] .\end{cases}
$$

Using Korkine's identity

$$
T(f, g):=\frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(f(t)-f(s))(g(t)-g(s)) d t d s
$$

we obtain

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} p(x, t) f^{\prime}(t) d t-\frac{1}{b-a} \int_{a}^{b} p(x, t) d t \frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) d t \\
= & \frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(p(x, t)-p(x, s))\left(f^{\prime}(t)-f^{\prime}(s)\right) d t d s . \tag{2.2}
\end{align*}
$$

Since,

$$
\begin{gathered}
\frac{1}{b-a} \int_{a}^{b} p(x, t) f^{\prime}(t) d t=(1-h) f(x)+h \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \\
\frac{1}{b-a} \int_{a}^{b} p(x, t) d t=(1-h)\left(x-\frac{a+b}{2}\right)
\end{gathered}
$$

and

$$
\frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) d t=\frac{f(b)-f(a)}{b-a}
$$

then by (2.2) we get the following identity

$$
\begin{align*}
& (1-h)\left[f(x)-\frac{f(b)-f(a)}{b-a}\left(x-\frac{a+b}{2}\right)\right] \\
& +h \frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t \\
= & \frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(p(x, t)-p(x, s))\left(f^{\prime}(t)-f^{\prime}(s)\right) d t d s \tag{2.3}
\end{align*}
$$

for all $x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right]$ and $h \in[0,1]$.
Using the Cauchy-Bunaikowski-Schwartz inequality for double integrals, we may write

$$
\begin{align*}
& \frac{1}{2(b-a)^{2}}\left|\int_{a}^{b} \int_{a}^{b}(p(x, t)-p(x, s))\left(f^{\prime}(t)-f^{\prime}(s)\right) d t d s\right| \\
\leq & \left(\frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(p(x, t)-p(x, s))^{2} d t d s\right)^{\frac{1}{2}} \\
& \times\left(\frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}\left(f^{\prime}(t)-f^{\prime}(s)\right)^{2} d t d s\right)^{\frac{1}{2}} \tag{2.4}
\end{align*}
$$

However,

$$
\begin{align*}
& \frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(p(x, t)-p(x, s))^{2} d t d s \\
= & \frac{1}{b-a} \int_{a}^{b} p^{2}(x, t) d t-\left(\frac{1}{b-a} \int_{a}^{b} p(x, t) d t\right)^{2} \\
= & \frac{1}{b-a}\left[\frac{\left(x-\left(a+h \frac{b-a}{2}\right)\right)^{3}+\left(b-h \frac{b-a}{2}-x\right)^{3}}{3}+\frac{h^{3}(b-a)^{3}}{12}\right] \\
& -(1-h)^{2}\left(x-\frac{a+b}{2}\right)^{2} . \tag{2.5}
\end{align*}
$$

In addition simple calculations shows that

$$
\begin{align*}
& \left(x-\left(a+h \frac{b-a}{2}\right)\right)^{3}+\left(b-h \frac{b-a}{2}-x\right)^{3} \\
= & (b-a)(1-h)\left[3\left(x-\frac{a+b}{2}\right)^{2}+\frac{(1-h)^{2}(b-a)^{2}}{4}\right], \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}\left(f^{\prime}(t)-f^{\prime}(s)\right)^{2} d t d s \\
= & \frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}-\left(\frac{f(b)-f(a)}{b-a}\right)^{2} . \tag{2.7}
\end{align*}
$$

Using (2.3) - (2.7), we deduce the first inequality.
Moreover, if $\gamma \leq f^{\prime}(t) \leq \Gamma$ almost everywhere $t$ on ( $a, b$ ), then, by using Grüss inequality, we have

$$
0 \leq \frac{1}{b-a} \int_{a}^{b}\left(f^{\prime}(t)\right)^{2} d t-\left(\frac{1}{b-a} \int_{a}^{b} f^{\prime}(t) d t\right)^{2} \leq \frac{1}{4}(\Gamma-\gamma)^{2}
$$

which proves the last inequality of (2.1).

Remark 1. Since

$$
3 h^{2}-3 h+1 \leq 1, \forall h \in[0,1] .
$$

and is minimum for $h=\frac{1}{2}$.
Thus, (2.1) shows an overall improvement in the inequality obtained by Barnett et al. [5].

The following corollary contains some special cases of (2.1).
Corollary 1. 1. For $h=1$, i.e., $x=\frac{a+b}{2}$, (2.1) gives

$$
\begin{align*}
& \left|(b-a) \frac{f(a)+f(b)}{2}-\int_{a}^{b} f(t) d t\right| \\
\leq & \frac{(b-a)^{2}}{2 \sqrt{3}}\left[\frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}\right]^{\frac{1}{2}}, \\
\leq & \frac{1}{4 \sqrt{3}}(\Gamma-\gamma)(b-a)^{2} . \\
& \left(\text { if } \gamma \leq f^{\prime}(t) \leq \Gamma \text { almost everywhere } t \text { on }(a, b) .\right) \tag{2.8}
\end{align*}
$$

which is trapezoid inequality.
2. For $h=0$ and $x=\frac{a+b}{2}$, (2.1) gives

$$
\begin{align*}
& \left|(b-a) f\left(\frac{a+b}{2}\right)-\int_{a}^{b} f(t) d t\right| \\
\leq & \frac{(b-a)^{2}}{2 \sqrt{3}}\left[\frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}\right]^{\frac{1}{2}}, \\
\leq & \frac{1}{4 \sqrt{3}}(\Gamma-\gamma)(b-a)^{2} . \\
& \left(i f \gamma \leq f^{\prime}(t) \leq \Gamma \text { almost everywhere } t \text { on }(a, b) .\right) \tag{2.9}
\end{align*}
$$

which is mid-point inequality.
3. For $h=\frac{1}{2}$ and $x=\frac{a+b}{2}$, (2.1) gives

$$
\begin{align*}
& \left|\frac{f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)}{4}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \\
\leq & \frac{(b-a)^{2}}{4 \sqrt{3}}\left[\frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}\right]^{\frac{1}{2}}, \\
\leq & \frac{1}{8 \sqrt{3}}(\Gamma-\gamma)(b-a)^{2} . \\
& \quad\left(\text { if } \gamma \leq f^{\prime}(t) \leq \Gamma \text { almost everywhere } t \text { on }(a, b) .\right) \tag{2.10}
\end{align*}
$$

which is an averaged mid-point and trapezoid inequality.
4. For $h=\frac{1}{3}$ and $x=\frac{a+b}{2}$, (2.1) gives

$$
\begin{align*}
& \left|(b-a) \frac{f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)}{6}-\int_{a}^{b} f(t) d t\right| \\
\leq & \frac{(b-a)^{2}}{6}\left[\frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}\right]^{\frac{1}{2}} \\
\leq & \frac{1}{12}(\Gamma-\gamma)(b-a)^{2} \\
& \left(i f \gamma \leq f^{\prime}(t) \leq \Gamma \text { almost everywhere } t \text { on }(a, b) \cdot\right) \tag{2.11}
\end{align*}
$$

which is a variant of Simpson's inequality for first differentiable function $f, f^{\prime}$ is integrable and there exist constants $\gamma, \Gamma \in R$ such that $\gamma \leq f^{\prime}(t) \leq \Gamma, t \in$ $(a, b)$.

## 3. Applications

### 3.1 Application for P.D.F's

Let $X$ be a random variable having the p.d.f $f:[a, b] \rightarrow \mathbb{R}_{+}$and the cumulative distribution function $F:[a, b] \rightarrow[0,1]$, i.e.,

$$
F(x)=\int_{a}^{x} f(t) d t, x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right] \subset[a, b],
$$

and

$$
E(X)=\int_{a}^{b} t f(t) d t
$$

is the expectation of the random variable $X$ on the interval $[a, b]$. Then, we may have the following.

Theorem 6. Under the above assumptions and if the p.d.f belongs to $L_{2}[a, b]$, then, we have the inequality:

$$
\begin{align*}
& \left|(1-h)\left[F(x)-\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)\right]+\frac{h}{2}-\frac{b-E(X)}{b-a}\right| \\
\leq & \frac{1}{b-a}\left[\frac{1}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)\left(x-\frac{a+b}{2}\right)^{2}\right]^{\frac{1}{2}} \\
& \times\left[(b-a)\|f\|_{2}^{2}-1\right]^{\frac{1}{2}}, \\
\leq & \frac{(M-m)}{2(b-a)}\left[\frac{1}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)\left(x-\frac{a+b}{2}\right)^{2}\right]^{\frac{1}{2}}, \\
& (\text { if } m \leq f \leq M \text { almost everywhere on }[a, b] .) \tag{3.1}
\end{align*}
$$

for all $x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right]$.
Proof. Put in (2.1) $F$ instead of $f$ to get (3.1) and the details are omitted.

Corollary 2. Under the above assumptions, we have

$$
\begin{align*}
& \left|(1-h) \operatorname{Pr}\left(X \leq \frac{a+b}{2}\right)+\frac{h}{2}-\frac{b-E(X)}{b-a}\right| \\
\leq & \frac{1}{2 \sqrt{3}}\left(3 h^{2}-3 h+1\right)^{\frac{1}{2}}\left[(b-a)\|f\|_{2}^{2}-1\right]^{\frac{1}{2}}, \\
\leq & \frac{1}{4 \sqrt{3}}\left(3 h^{2}-3 h+1\right)^{\frac{1}{2}}(M-m), m \leq f \leq M \text { as above. } \tag{3.2}
\end{align*}
$$

### 3.2 Applications for generalized beta random variable

If $X$ is a beta random variable with parameters $\beta_{3}>-1, \beta_{4}>-1$ and for $\beta_{2}>0$ and any $\beta_{1}$, the generalized beta random variable

$$
Y=\beta_{1}+\beta_{2} X
$$

is said to have a generalized beta distribution [4] and the probability density function of the generalized beta distribution of beta random variable is,

$$
f(x)=\left\{\begin{array}{cl}
\frac{\left(x-\beta_{1}\right)^{\beta_{3}\left(\beta_{1}+\beta_{2}-x\right)^{\beta_{4}}}}{\beta\left(\beta_{3}+1, \beta_{4}+1\right) \beta_{2}^{\left(\beta_{3}+\beta_{4}+1\right)}}, & \text { for } \beta_{1}<x<\beta_{1}+\beta_{2} \\
0, & \text { otherwise. }
\end{array}\right.
$$

where $\beta(l, m)$ is the beta function with $l, m>0$ and is defined as

$$
\beta(l, m)=\int_{0}^{1} x^{l-1}(1-x)^{m-1} d x
$$

For $p, q>0$ and $h \in[0,1)$, we choose,

$$
\begin{aligned}
\beta_{1} & =\frac{h}{2} \\
\beta_{2} & =(1-h) \\
\beta_{3} & =p-1 \\
\beta_{4} & =q-1 .
\end{aligned}
$$

Then, the probability density function associated with generalized beta random variable

$$
Y=\frac{h}{2}+(1-h) X
$$

takes the form

$$
f(x)=\left\{\begin{array}{cl}
\frac{\left(x-\frac{h}{2}\right)^{p-1}\left(1-\frac{h}{2}-x\right)^{q-1}}{\beta(p, q)(1-h)^{p+q-1}}, & \frac{h}{2}<x<1-\frac{h}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

Now,

$$
\begin{align*}
E(Y) & =\int_{\frac{h}{2}}^{1-\frac{h}{2}} x f(x) d x \\
& =(1-h) \frac{p}{p+q}+\frac{h}{2} \tag{3.3}
\end{align*}
$$

and

$$
\|f(. ; p, q)\|_{2}^{2}=\frac{1}{(1-h) \beta^{2}(p, q)} \beta(2 p-1,2 q-1)
$$

Then, by Theorem 6 , we may state the following.
Proposition 1. Let $X$ be a beta random variable with parameters $(p, q)$. Then for generalized beta random variable

$$
Y=\frac{h}{2}+(1-h) X
$$

we have the inequality

$$
\begin{align*}
& \left|\left[\operatorname{Pr}(Y \leq x)-x+\frac{1}{2}\right]-\frac{q}{p+q}\right| \\
\leq & {\left[\frac{1}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)\left(x-\frac{1}{2}\right)^{2}\right]^{\frac{1}{2}} } \\
& \times \frac{\left[\beta(2 p-1,2 q-1)-(1-h) \beta^{2}(p, q)\right]^{\frac{1}{2}}}{(1-h)^{\frac{3}{2}} \beta(p, q)} . \tag{3.4}
\end{align*}
$$

for all $x \in\left[\frac{h}{2}, 1-\frac{h}{2}\right]$.
In particular, for $x=\frac{1}{2}$ in (3.4), we have:

$$
\begin{aligned}
& \left|\operatorname{Pr}\left(Y \leq \frac{1}{2}\right)-\frac{q}{p+q}\right| \\
\leq & \frac{1}{2 \sqrt{3}}\left(3 h^{2}-3 h+1\right)^{\frac{1}{2}} \frac{\left[\beta(2 p-1,2 q-1)-(1-h) \beta^{2}(p, q)\right]^{\frac{1}{2}}}{(1-h)^{\frac{3}{2}} \beta(p, q)}
\end{aligned}
$$

### 3.3 Applications for Special Means

Example 1. Consider the mapping $f(x)=x^{p}, p \in \mathbb{R} \backslash\{-1,0\}$. Then

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(t) d t & =L_{p}^{p}(a, b) \\
\frac{f(b)-f(a)}{b-a} & =p L_{p-1}^{p-1} \\
\frac{f(a)+f(b)}{2} & =\frac{a^{p}+b^{p}}{2}=A\left(a^{p}, b^{p}\right),
\end{aligned}
$$

and

$$
\frac{1}{b-a}\left\|f^{\prime}\right\|_{2}^{2}=\frac{1}{b-a} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t=p^{2} L_{2(p-1)}^{2(p-1)}
$$

Therefore, (2.1) takes the form

$$
\begin{align*}
& \left|(1-h)\left[x^{p}-p L_{p-1}^{p-1}(x-A(a, b))\right]+h A\left(a^{p}, b^{p}\right)-L_{p}^{p}\right| \\
\leq & |p|\left[\frac{(b-a)^{2}}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)(x-A(a, b))^{2}\right]^{\frac{1}{2}} \\
& \times\left[L_{2(p-1)}^{2(p-1)}-L_{p-1}^{2(p-1)}\right]^{\frac{1}{2}} \tag{3.5}
\end{align*}
$$

Choose $x=A(a, b)$ in (3.5), to get

$$
\begin{aligned}
& \left|(1-h) A^{p}(a, b)+h A\left(a^{p}, b^{p}\right)-L_{p}^{p}\right| \\
\leq & \frac{(b-a)}{2 \sqrt{3}}\left(3 h^{2}-3 h+1\right)^{\frac{1}{2}}|p|\left[L_{2(p-1)}^{2(p-1)}-L_{p-1}^{2(p-1)}\right]^{\frac{1}{2}} .
\end{aligned}
$$

which is minimum for $h=\frac{1}{2}$. Moreover for $h=1$,

$$
\begin{aligned}
& \left|A\left(a^{p}, b^{p}\right)-L_{p}^{p}\right| \\
\leq & \frac{(b-a)}{2 \sqrt{3}}|p|\left[L_{2(p-1)}^{2(p-1)}-L_{p-1}^{2(p-1)}\right]^{\frac{1}{2}}
\end{aligned}
$$

Example 2. Consider the mapping $f(x)=\frac{1}{x},\left(x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right] \subset(0, \infty)\right)$.

Then,

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(t) d t & =\frac{1}{L} \\
\frac{f(b)-f(a)}{b-a} & =-\frac{1}{G^{2}} \\
\frac{f(a)+f(b)}{2} & =\frac{A(a, b)}{G^{2}} \\
\frac{1}{b-a} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t & =\frac{a^{2}+a b+b^{2}}{3 a^{3} b^{3}},
\end{aligned}
$$

and

$$
\frac{1}{b-a} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}=\frac{(b-a)^{2}}{3 a^{3} b^{3}}
$$

Therefore, (2.1) becomes,

$$
\begin{align*}
& \left|(1-h)\left[\frac{1}{x}+\frac{1}{G^{2}}(x-A(a, b))\right]+h \frac{A(a, b)}{G^{2}}-\frac{1}{L}\right| \\
\leq & {\left[\frac{(b-a)^{2}}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)(x-A(a, b))^{2}\right]^{\frac{1}{2}} } \\
& \times \frac{(b-a)}{\sqrt{3} G^{3}} . \tag{3.6}
\end{align*}
$$

Choosing $x=A(a, b)$ in (3.6),

$$
\begin{aligned}
& \left|(1-h) \frac{1}{A}+h \frac{A(a, b)}{G^{2}}-\frac{1}{L}\right| \\
\leq & \frac{(b-a)^{2}}{6 G^{3}}\left(3 h^{2}-3 h+1\right)^{\frac{1}{2}} .
\end{aligned}
$$

If we choose $x=L$ in (3.6), we get

$$
\begin{aligned}
& \left|(1-h) \frac{L}{G^{2}}+(2 h-1) \frac{A(a, b)}{G^{2}}-h \frac{1}{L}\right| \\
\leq & {\left[\frac{(b-a)^{2}}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)(L-A(a, b))^{2}\right]^{\frac{1}{2}} } \\
& \times \frac{(b-a)}{\sqrt{3} G^{3}} .
\end{aligned}
$$

Example 3. Finally, let us consider the mapping $f(x)=\ln x, \quad\left(x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right] \subset(0, \infty)\right)$. Then

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(t) d t & =\ln I, \\
\frac{f(b)-f(a)}{b-a} & =\frac{1}{L}, \\
\frac{f(a)+f(b)}{2} & =\ln G, \\
\frac{1}{b-a} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t & =\frac{1}{G^{2}},
\end{aligned}
$$

and

$$
\frac{1}{b-a} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t-\left(\frac{f(b)-f(a)}{b-a}\right)^{2}=\frac{L^{2}-G^{2}}{L^{2} G^{2}}
$$

Thus, (2.1) takes the form,

$$
\begin{align*}
& \left|\ln \frac{x^{(1-h)} G^{h}}{I}-(1-h) \frac{x-A(a, b)}{L}\right| \\
\leq & {\left[\frac{(b-a)^{2}}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)(x-A(a, b))^{2}\right]^{\frac{1}{2}} } \\
& \times \frac{\left(L^{2}-G^{2}\right)^{\frac{1}{2}}}{L G} \tag{3.7}
\end{align*}
$$

For $x=A(a, b)$ in (3.7), we get:

$$
\begin{aligned}
& \left|\ln \frac{(A(a, b))^{(1-h)} G^{h}}{I}\right| \\
\leq & \frac{(b-a)\left(3 h^{2}-3 h+1\right)^{\frac{1}{2}}}{2 \sqrt{3}} \frac{\left(L^{2}-G^{2}\right)^{\frac{1}{2}}}{L G}
\end{aligned}
$$

which for $h=1$, takes the form

$$
\begin{aligned}
& \left|\ln \frac{G}{I}\right| \\
\leq & \frac{(b-a)\left(L^{2}-G^{2}\right)^{\frac{1}{2}}}{2 \sqrt{3} L G}
\end{aligned}
$$

Also, choosing $x=I$, we get

$$
\begin{aligned}
& \left|\ln \frac{G^{h}}{I^{h}}-(1-h) \frac{I-A(a, b)}{L}\right| \\
\leq & {\left[\frac{(b-a)^{2}}{12}\left(3 h^{2}-3 h+1\right)+h(1-h)(I-A(a, b))^{2}\right]^{\frac{1}{2}} } \\
& \times \frac{\left(L^{2}-G^{2}\right)^{\frac{1}{2}}}{L G} .
\end{aligned}
$$

## References

[1] N. S. Barnett, S. S. Dragomir, and A. Sofo, Better bounds for an inequality of Ostrowski type with applications, Demonstratio Mathematica, 34 no. 3 (2001), 533-542 Preprint RGMIA Res. Rep. Coll., 3 no. 1 (2000), Article 11.
[2] S. S. Dragomir, P. Cerone, and J. Roumeliotis, A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration, Appl. Math. Lett.,13 (2000), 19-25.
[3] S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33 no. 11 (1997), 16-20.
[4] Z. A. Karian and E. J. Dudewicz, Fitting Statistical Distributions, CRC Press, (2000).
[5] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht/ Boston/London, (1993).
[6] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities for functions and their integrals and derivatives, Kluwer Academic Publishers, (1991).
[7] M. Matić, J. Pecarić, and N. Ujević, Improvements and further generalizations of some inequalities of Ostrowski-Grüss type inequalities, Comput. Math. Appl., 39 (2000), 161-179.
[8] A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226227.


[^0]:    *2000 Mathematics Subject Classification. Primary 26D15; Secondary 41A55.
    ${ }^{\dagger}$ Corresponding author. E-mail: fizazafar@gmail.com
    ${ }^{\ddagger}$ E-mail: nazirahmad.mir@gmail.com

