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Abstract

The main purpose of this paper is to give a new sharp bound for a
general Ostrowski type inequality which provides some improvement of
a previous result.
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1. Introduction

In [1], the author has proved a general sharp Ostrowski-Grüss type in-
equality as follows:

Theorem 1. Let f : [a, b] → R be such that f (n−1) is absolutely continuous
on [a, b] for some n ≥ 1 and there exist constants γn,Γn ∈ R such that γn ≤
f (n)(t) ≤ Γn for a.e.t ∈ [a, b]. Then for all x ∈ [a, b], we have
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|f(x)− (b− x)n + (−1)n−1(x− a)n

(n+ 1)!(b− a)
f (n−1)(x)

+
n−1∑
k=1

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!(b− a)
f (k)(x)

+
(b− x)nf (n−1)(b) + (−1)n−1(x− a)nf (n−1)(a)

(n+ 1)!(b− a)

− 1

b− a

∫ b

a

f(t) dt|

≤ n

(n+ 1)(n+ 1)! n
√
n+ 1

((x− a)n+1 + (b− x)n+1)(Γn − γn).

(1)

The equality in (1) is attained by choosing
f(t) =

∫ t

a
(
∫ yn

a
(· · ·

∫ y2

a
j(y1) dy1 · · · ) dyn−1) dyn,where

j(t) =


γn, a ≤ t < t1 = a+ 1

n√n+1
(x− a),

Γn, t1 ≤ t < x,
γn, x ≤ t < t2 = b− 1

n√n+1
(b− x),

Γn, t2 ≤ t ≤ b.

if n is odd, and

j(t) =


γn, a ≤ t < t1,
Γn, t1 ≤ t < x,
Γn, x ≤ t < t2,
γn, t2 ≤ t ≤ b.

if n is even.

The main purpose of this note is to give a new sharp bound in (1) in terms
of the Euclidean norm of f (n) which is valid also for a larger class of mappings,
i.e., for the mappings f for which f (n) is unbounded on (a, b) but f (n) ∈ L2[a, b].
Some special cases are also considered.
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2. The Results

Theorem 2. Let f : [a, b] → R be such that f (n−1) is absolutely continuous
on [a, b] for some n ≥ 1 and f (n) ∈ L2[a, b]. Then for all x ∈ [a, b], we have

|
∫ b

a

f(t) dt−
n−1∑
k=0

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

+
(b− x)n + (−1)n−1(x− a)n

(n+ 1)!
f (n−1)(x)

−(b− x)nf (n−1)(b) + (−1)n−1(x− a)nf (n−1)(a)

(n+ 1)!
|

≤ n

(n+ 1)!
√

2n+ 1

√
(x− a)2n+1 + (b− x)2n+1

√
σ(f (n))

(2)

where σ(·) is defined by

σ(f) = ‖f‖22 −
1

b− a
(

∫ b

a

f(t) dt)2 (3)

and

‖f‖2 := [

∫ b

a

f 2(t) dt]
1
2 . (4)

The inequality (2) is sharp in the sense that the constant n
(n+1)!

√
2n+1

cannot

be replaced by a smaller one.

Proof. From Lemma 3 in [1], for all x ∈ [a, b], we have the identity:
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∫ b

a

f(t) dt =
n−1∑
k=0

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

−(b− x)n + (−1)n−1(x− a)n

(n+ 1)!
f (n−1)(x)

+
(b− x)nf (n−1)(b) + (−1)n−1(x− a)nf (n−1)(a)

(n+ 1)!

+(−1)n

∫ b

a

Hn(x, t)f (n)(t) dt,

(5)

where the kernel Hn : [a, b]2 → R is given by

Hn(x, t) :=

{
(t−a)n

n!
− (x−a)n

(n+1)!
, a ≤ t < x,

(t−b)n

n!
− (x−b)n

(n+1)!
, x ≤ t ≤ b.

(6)

By elemently calculus, it is not difficult to get∫ b

a

Hn(x, t) dt = 0 (7)

and

∫ b

a

H2
n(x, t) dt =

n2

[(n+ 1)!]2(2n+ 1)
[(x− a)2n+1 + (b− x)2n+1]. (8)

From (3)-(8),we can easily get
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|
∫ b

a

f(t) dt−
n−1∑
k=0

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

+
(b− x)n + (−1)n−1(x− a)n

(n+ 1)!
f (n−1)(x)

−(b− x)nf (n−1)(b) + (−1)n−1(x− a)nf (n−1)(a)

(n+ 1)!
|

= |
∫ b

a

Hn(x, t)f (n)(t) dt|

= |
∫ b

a

Hn(x, t)[f (n)(t)− 1

b− a

∫ b

a

f (n)(s) ds] dt|

≤ (

∫ b

a

H2
n(x, t) dt)

1
2 (

∫ b

a

[f (n)(t)− f (n−1)(b)− f (n−1)(a)

b− a
]2 dt)

1
2

= (
n2

(2n+ 1)[(n+ 1)!]2
[(x− a)2n+1 + (b− x)2n+1])

1
2

×(‖f (n)‖22 −
[f (n−1)(b)− f (n−1)(a)]2

b− a
)

1
2

=
n

(n+ 1)!
√

2n+ 1

√
(x− a)2n+1 + (b− x)2n+1

√
σ(f (n)).

We now suppose that (2) holds with a constant C > 0 as

|
∫ b

a

f(t) dt−
n−1∑
k=0

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

+
(b− x)n + (−1)n−1(x− a)n

(n+ 1)!
f (n−1)(x)

−(b− x)nf (n−1)(b) + (−1)n−1(x− a)nf (n−1)(a)

(n+ 1)!
|

≤ C
√

(x− a)2n+1 + (b− x)2n+1

√
σ(f (n))

(9)

We may find a function f : [a, b]→ R such that f (n−1) is absolutely continuous
on [a, b] as
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f (n−1)(t) :=

{
(t−a)n+1

(n+1)!
− (x−a)n

(n+1)!
(t− a), a ≤ t < x,

(t−b)n+1

(n+1)!
− (x−b)n

(n+1)!
(t− b), x ≤ t ≤ b.

It follows

f (n)(t) :=

{
(t−a)n

n!
− (x−a)n

(n+1)!
, a ≤ t < x,

(t−b)n

n!
− (x−b)n

(n+1)!
, x ≤ t ≤ b.

(10)

By (3)-(6), (8) and (10), it is not difficult to find that the left-hand side of the
inequality (9) becomes

L.H.S.(9) =
n2

(2n+ 1)[(n+ 1)!]2
[(x− a)2n+1 + (b− x)2n+1]. (11)

and the right-hand side of the inequality (9) is

R.H.S.(9) = C
n

(n+ 1)!
√

2n+ 1
[(x− a)2n+1 + (b− x)2n+1]. (12)

From (9), (11) and (12), we get that C ≥ n
(n+1)!

√
2n+1

, proving that the

constant n
(n+1)!

√
2n+1

is the best possible in (2).

Remark 1. If we take n = 1 in Theorem 2. Then for all x ∈ [a, b], we have

|
∫ b

a

f(t) dt− b− a
2

f(x)− (b− x)f(b) + (x− a)f(a)

2
|

≤ 1

2
√

3

√
(x− a)3 + (b− x)3

√
σ(f ′).

(13)

The constant 1
2
√

3
is sharp.

If we take x = a or x = b in (13), then we recapture the sharp trapezoid
type inequality

|
∫ b

a

f(t) dt− b− a
2

[f(a) + f(b)]| ≤ (b− a)
3
2

2
√

3

√
σ(f ′)

which has been appeared in [2].
If we further take x = a+b

2
in (13), then we recapture the sharp averaged

midpoint-trapezoid type inequality
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|
∫ b

a

f(t) dt− b− a
4

[f(a) + 2f(
a+ b

2
) + f(b)]| ≤ (b− a)

3
2

4
√

3

√
σ(f ′)

which also has been appeared in [2].

Remark 2. If we take n = 2 in Theorem 2. Then for all x ∈ [a, b], we have

|
∫ b

a

f(t) dt− (b− a)f(x) +
2(b− a)

3
(x− a+ b

2
)f ′(x)− (b− x)2f ′(b)− (x− a)2f ′(a)

2
|

≤ 1
3
√

5

√
(x− a)5 + (b− x)5

√
σ(f ′′). (14)

The constant 1
3
√

5
is sharp.

If we further take x = a+b
2

in (13), then we recapture the sharp perturbed
midpoint type inequality

|
∫ b

a

f(t) dt− (b− a)f(
a+ b

2
)− (b− a)2

24
[f ′(b)− f ′(a)]| ≤ (b− a)

5
2

12
√

5

√
σ(f ′′)

which has been appeared in [3].
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