New Sharp Bound for a General Ostrowski Type Inequality *

Zheng Liu ${ }^{\dagger}$
Institute of Applied Mathematics, School of Science
University of Science and Technology Liaoning
Anshan 114051, Liaoning, China

Received August 14, 2008, Accepted August 27, 2009.

Abstract

The main purpose of this paper is to give a new sharp bound for a general Ostrowski type inequality which provides some improvement of a previous result.

Keywords and Phrases: Ostrowski type inequality, Absolutely continuous, Sharp bound.

1. Introduction

In [1], the author has proved a general sharp Ostrowski-Grüss type inequality as follows:

Theorem 1. Let $f:[a, b] \rightarrow \mathbf{R}$ be such that $f^{(n-1)}$ is absolutely continuous on $[a, b]$ for some $n \geq 1$ and there exist constants $\gamma_{n}, \Gamma_{n} \in \mathbf{R}$ such that $\gamma_{n} \leq$ $f^{(n)}(t) \leq \Gamma_{n}$ for a.e. $t \in[a, b]$. Then for all $x \in[a, b]$, we have

[^0]\[

$$
\begin{align*}
& \quad \left\lvert\, f(x)-\frac{(b-x)^{n}+(-1)^{n-1}(x-a)^{n}}{(n+1)!(b-a)} f^{(n-1)}(x)\right. \\
& \quad+\sum_{k=1}^{n-1} \frac{(b-x)^{k+1}+(-1)^{k}(x-a)^{k+1}}{(k+1)!(b-a)} f^{(k)}(x) \\
& +\frac{(b-x)^{n} f^{(n-1)}(b)+(-1)^{n-1}(x-a)^{n} f^{(n-1)}(a)}{(n+1)!(b-a)} \\
& \left.\quad-\frac{1}{b-a} \int_{a}^{b} f(t) d t \right\rvert\, \\
& \leq \frac{n}{(n+1)(n+1)!\sqrt[n]{n+1}}\left((x-a)^{n+1}+(b-x)^{n+1}\right)\left(\Gamma_{n}-\gamma_{n}\right) \tag{1}
\end{align*}
$$
\]

The equality in (1) is attained by choosing
$f(t)=\int_{a}^{t}\left(\int_{a}^{y_{n}}\left(\cdots \int_{a}^{y_{2}} j\left(y_{1}\right) d y_{1} \cdots\right) d y_{n-1}\right) d y_{n}$, where

$$
j(t)= \begin{cases}\gamma_{n}, & a \leq t<t_{1}=a+\frac{1}{\sqrt[n]{n+1}}(x-a) \\ \Gamma_{n}, & t_{1} \leq t<x \\ \gamma_{n}, & x \leq t<t_{2}=b-\frac{1}{\sqrt[n]{n+1}}(b-x) \\ \Gamma_{n}, & t_{2} \leq t \leq b\end{cases}
$$

if n is odd, and

$$
j(t)= \begin{cases}\gamma_{n}, & a \leq t<t_{1} \\ \Gamma_{n}, & t_{1} \leq t<x \\ \Gamma_{n}, & x \leq t<t_{2} \\ \gamma_{n}, & t_{2} \leq t \leq b\end{cases}
$$

if n is even.
The main purpose of this note is to give a new sharp bound in (1) in terms of the Euclidean norm of $f^{(n)}$ which is valid also for a larger class of mappings, i.e., for the mappings for which $f^{(n)}$ is unbounded on (a, b) but $f^{(n)} \in L_{2}[a, b]$. Some special cases are also considered.

2. The Results

Theorem 2. Let $f:[a, b] \rightarrow \mathbf{R}$ be such that $f^{(n-1)}$ is absolutely continuous on $[a, b]$ for some $n \geq 1$ and $f^{(n)} \in L_{2}[a, b]$. Then for all $x \in[a, b]$, we have

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{(b-x)^{k+1}+(-1)^{k}(x-a)^{k+1}}{(k+1)!} f^{(k)}(x)\right. \\
& +\frac{(b-x)^{n}+(-1)^{n-1}(x-a)^{n}}{(n+1)!} f^{(n-1)}(x) \\
& \left.-\frac{(b-x)^{n} f^{(n-1)}(b)+(-1)^{n-1}(x-a)^{n} f^{(n-1)}(a)}{(n+1)!} \right\rvert\, \\
\leq & \frac{n}{(n+1)!\sqrt{2 n+1}} \sqrt{(x-a)^{2 n+1}+(b-x)^{2 n+1}} \sqrt{\sigma\left(f^{(n)}\right)} \tag{2}
\end{align*}
$$

where $\sigma(\cdot)$ is defined by

$$
\begin{equation*}
\sigma(f)=\|f\|_{2}^{2}-\frac{1}{b-a}\left(\int_{a}^{b} f(t) d t\right)^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{2}:=\left[\int_{a}^{b} f^{2}(t) d t\right]^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

The inequality (2) is sharp in the sense that the constant $\frac{n}{(n+1)!\sqrt{2 n+1}}$ cannot be replaced by a smaller one.

Proof. From Lemma 3 in [1], for all $x \in[a, b]$, we have the identity:

$$
\begin{align*}
\int_{a}^{b} f(t) d t= & \sum_{k=0}^{n-1} \frac{(b-x)^{k+1}+(-1)^{k}(x-a)^{k+1}}{(k+1)!} f^{(k)}(x) \\
& -\frac{(b-x)^{n}+(-1)^{n-1}(x-a)^{n}}{(n+1)!} f^{(n-1)}(x) \\
& +\frac{(b-x)^{n} f^{(n-1)}(b)+(-1)^{n-1}(x-a)^{n} f^{(n-1)}(a)}{(n+1)!} \\
& +(-1)^{n} \int_{a}^{b} H_{n}(x, t) f^{(n)}(t) d t, \tag{5}
\end{align*}
$$

where the kernel $H_{n}:[a, b]^{2} \rightarrow \mathbf{R}$ is given by

$$
H_{n}(x, t):= \begin{cases}\frac{(t-a)^{n}}{n!}-\frac{(x-a)^{n}}{(n+1)!}, & a \leq t<x, \tag{6}\\ \frac{(t-b)^{n}}{n!}-\frac{(x-b)^{n}}{(n+1)!}, & x \leq t \leq b .\end{cases}
$$

By elemently calculus, it is not difficult to get

$$
\begin{equation*}
\int_{a}^{b} H_{n}(x, t) d t=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} H_{n}^{2}(x, t) d t=\frac{n^{2}}{[(n+1)!]^{2}(2 n+1)}\left[(x-a)^{2 n+1}+(b-x)^{2 n+1}\right] . \tag{8}
\end{equation*}
$$

From (3)-(8), we can easily get

$$
\begin{aligned}
& \left\lvert\, \int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{(b-x)^{k+1}+(-1)^{k}(x-a)^{k+1}}{(k+1)!} f^{(k)}(x)\right. \\
& +\frac{(b-x)^{n}+(-1)^{n-1}(x-a)^{n}}{(n+1)!} f^{(n-1)}(x) \\
& \left.-\frac{(b-x)^{n} f^{(n-1)}(b)+(-1)^{n-1}(x-a)^{n} f^{(n-1)}(a)}{(n+1)!} \right\rvert\, \\
= & \left|\int_{a}^{b} H_{n}(x, t) f^{(n)}(t) d t\right| \\
= & \left|\int_{a}^{b} H_{n}(x, t)\left[f^{(n)}(t)-\frac{1}{b-a} \int_{a}^{b} f^{(n)}(s) d s\right] d t\right| \\
\leq & \left(\int_{a}^{b} H_{n}^{2}(x, t) d t\right)^{\frac{1}{2}}\left(\int_{a}^{b}\left[f^{(n)}(t)-\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}\right]^{2} d t\right)^{\frac{1}{2}} \\
= & \left(\frac{n^{2}}{(2 n+1)[(n+1)!]^{2}}\left[(x-a)^{2 n+1}+(b-x)^{2 n+1}\right]\right)^{\frac{1}{2}} \\
& \times\left(\left\|f^{(n)}\right\|_{2}^{2}-\frac{\left[f^{(n-1)}(b)-f^{(n-1)}(a)\right]^{2}}{b-a}\right)^{\frac{1}{2}} \\
= & \frac{n}{(n+1)!\sqrt{2 n+1}} \sqrt{(x-a)^{2 n+1}+(b-x)^{2 n+1}} \sqrt{\sigma\left(f^{(n)}\right)} .
\end{aligned}
$$

We now suppose that (2) holds with a constant $C>0$ as

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{(b-x)^{k+1}+(-1)^{k}(x-a)^{k+1}}{(k+1)!} f^{(k)}(x)\right. \\
& +\frac{(b-x)^{n}+(-1)^{n-1}(x-a)^{n}}{(n+1)!} f^{(n-1)}(x) \\
& -\frac{(b-x)^{n} f^{(n-1)}(b)+(-1)^{n-1}(x-a)^{n} f^{(n-1)}(a)}{(n+1)!} \\
\leq & C \sqrt{(x-a)^{2 n+1}+(b-x)^{2 n+1}} \sqrt{\sigma\left(f^{(n)}\right)} \tag{9}
\end{align*}
$$

We may find a function $f:[a, b] \rightarrow \mathbf{R}$ such that $f^{(n-1)}$ is absolutely continuous on $[a, b]$ as

$$
f^{(n-1)}(t):= \begin{cases}\frac{(t-a)^{n+1}}{(n+1)!}-\frac{(x-a)^{n}}{(n+1)!}(t-a), & a \leq t<x, \\ \frac{(t-b)^{n+1}}{(n+1)!}-\frac{(x-b)^{n}}{(n+1)!}(t-b), & x \leq t \leq b\end{cases}
$$

It follows

$$
f^{(n)}(t):= \begin{cases}\frac{(t-a)^{n}}{n!}-\frac{(x-a)^{n}}{(n+1)!}, & a \leq t<x \tag{10}\\ \frac{(t-b)^{n}}{n!}-\frac{(x-b)^{n}}{(n+1)!}, & x \leq t \leq b\end{cases}
$$

By (3)-(6), (8) and (10), it is not difficult to find that the left-hand side of the inequality (9) becomes

$$
\begin{equation*}
\text { L.H.S. }(9)=\frac{n^{2}}{(2 n+1)[(n+1)!]^{2}}\left[(x-a)^{2 n+1}+(b-x)^{2 n+1}\right] . \tag{11}
\end{equation*}
$$

and the right-hand side of the inequality (9) is

$$
\begin{equation*}
\text { R.H.S. }(9)=C \frac{n}{(n+1)!\sqrt{2 n+1}}\left[(x-a)^{2 n+1}+(b-x)^{2 n+1}\right] . \tag{12}
\end{equation*}
$$

From (9), (11) and (12), we get that $C \geq \frac{n}{(n+1)!} \sqrt{2 n+1}$, proving that the constant $\frac{n}{(n+1)!\sqrt{2 n+1}}$ is the best possible in (2).

Remark 1. If we take $n=1$ in Theorem 2. Then for all $x \in[a, b]$, we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-\frac{b-a}{2} f(x)-\frac{(b-x) f(b)+(x-a) f(a)}{2}\right| \\
\leq & \frac{1}{2 \sqrt{3}} \sqrt{(x-a)^{3}+(b-x)^{3}} \sqrt{\sigma\left(f^{\prime}\right)} \tag{13}
\end{align*}
$$

The constant $\frac{1}{2 \sqrt{3}}$ is sharp.
If we take $x=a$ or $x=b$ in (13), then we recapture the sharp trapezoid type inequality

$$
\left|\int_{a}^{b} f(t) d t-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \frac{(b-a)^{\frac{3}{2}}}{2 \sqrt{3}} \sqrt{\sigma\left(f^{\prime}\right)}
$$

which has been appeared in [2].
If we further take $x=\frac{a+b}{2}$ in (13), then we recapture the sharp averaged midpoint-trapezoid type inequality

$$
\left|\int_{a}^{b} f(t) d t-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \frac{(b-a)^{\frac{3}{2}}}{4 \sqrt{3}} \sqrt{\sigma\left(f^{\prime}\right)}
$$

which also has been appeared in [2].
Remark 2. If we take $n=2$ in Theorem 2. Then for all $x \in[a, b]$, we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-(b-a) f(x)+\frac{2(b-a)}{3}\left(x-\frac{a+b}{2}\right) f^{\prime}(x)-\frac{(b-x)^{2} f^{\prime}(b)-(x-a)^{2} f^{\prime}(a)}{2}\right| \\
\leq & \frac{1}{3 \sqrt{5}} \sqrt{(x-a)^{5}+(b-x)^{5}} \sqrt{\sigma\left(f^{\prime \prime}\right)} . \tag{14}
\end{align*}
$$

The constant $\frac{1}{3 \sqrt{5}}$ is sharp.
If we further take $x=\frac{a+b}{2}$ in (13), then we recapture the sharp perturbed midpoint type inequality

$$
\left|\int_{a}^{b} f(t) d t-(b-a) f\left(\frac{a+b}{2}\right)-\frac{(b-a)^{2}}{24}\left[f^{\prime}(b)-f^{\prime}(a)\right]\right| \leq \frac{(b-a)^{\frac{5}{2}}}{12 \sqrt{5}} \sqrt{\sigma\left(f^{\prime \prime}\right)}
$$

which has been appeared in [3].

References

[1] Z. Liu, Some sharp Ostrowski-Grüss type inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 18 (2006), 14-21.
[2] Z. Liu, Note on a paper by N. Ujević,Appl. Math. Lett. 20(2007), 659-663.
[3] P. Cerone, On perturbed trapezoidal and midpoint rules, Korean J. Comput. Appl. Math., 2(2002),423-435.

[^0]: *2000 Mathematics Subject Classification. 26D15.
 ${ }^{\dagger}$ E-mail: lewzheng@163.net

