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Abstract

By making use of the generalized hypergeometric function, we intro-
duce a new family of integral operators and investigate their univalence
properties. Relevant connections of the results, which are presented in
this paper, with various other known results are also pointed out.
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1. Introduction, Definitions and Preliminaries

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n an ≥ 0, (1)

which are analytic in the open disc U = {z ∈ C : | z |< 1} and S be the class
of functions f ∈ A which are univalent in U .

The Hadamard product of two functions f(z) = z+
∑∞

k=2 akz
k and g(z) =

z +
∑∞

k=2 bkz
k is given by

(f ∗ g)(z) = z +
∞∑
k=2

ak bk z
k.

For complex parameters α1, . . . , αq and β1, . . . , βs (βj ∈ C \ Z−0 ; Z−0 =
0,−1, −2, . . . ; j = 1, . . . , s), we define the generalized hypergeometric func-
tion qFs(α1, . . . , αq; β1, . . . , βs; z) by

qFs(α1, α2, . . . , αq; β1, β2, . . . , βs; z) =
∞∑
k=0

(α1)k . . . (αq)k
(β1)k . . . (βs)k

zk

k!
,

(q ≤ s+ 1; q, s ∈ N0 := N ∪ {0}; z ∈ U)

where N denotes the set of all positive integers and (x)k is the Pochhammer
symbol defined, in terms of the Gamma function Γ, by

(x)k =
Γ(x+ k)

Γ(x)
=

{
1 if k = 0

x(x+ 1)(x+ 2) . . . (x+ k − 1) if k ∈ N = {1, 2, , . . .}.

Corresponding to a function Gq, s(α1, β1; z) defined by

Gq, s(α1, β1; z) := z qFs(α1, α2, . . . , αq; β1, β2, . . . , βs; z). (2)

Recently, the authors [17] defined the linear operatorDm
λ (α1, β1)f : A −→

A by
D0
λ(α1, β1)f(z) = f(z) ∗ Gq, s(α1, β1; z),

D1
λ(α1, β1)f(z) = (1−λ)(f(z)∗Gq, s(α1, β1; z))+λ z(f(z)∗Gq, s(α1, β1; z))

′
,

(3)
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Dm
λ (α1, β1)f(z) = D1

λ(D
m−1
λ (α1, β1)f(z)), (4)

where ‘ ∗ ‘ denotes the usual Hadamard product of analytic functions.
If f ∈ A, then from (3) and (4) we may easily deduce that

Dm
λ (α1, β1)f(z) = z +

∞∑
k=2

[
1 + (k − 1)λ

]m (α1)k−1 . . . (αq)k−1
(β1)k−1 . . . (βs)k−1

akz
k

(k − 1)!
, (5)

where m ∈ N0 = N ∪ {0} and λ ≥ 0. We remark that, for a choice of the
parameter m = 0, the operator D0

λ(α1, β1)f reduces to the well-known Dziok-
Srivastava operator for functions in A [8] (see also [1, 9]), for q = 2, s =
1, α1 = β1, α2 = 1, we get the operator introduced by F.M.Al-Oboudi [2] and
for q = 2, s = 1, α1 = β1, α2 = 1 and λ = 1, we get the operator introduced by
G. Ş. Sălăgean [16]. Also many (well known and new) integral and differential
operators can be obtained by specializing the parameters.

Using the operator Dm
λ (α1, β1)f , we now introduce the following:

For n ∈ N ∪ {0} and γ1, γ2, . . . , γn, δ ∈ C \ {0,−1,−2, . . .}, we define the
integral operator Fγi,δ(λ, m;α1, β1; z) : An −→ An by

Fγi,δ(λ, m;α1, β1; z) =

{
δ

∫ z

0

tδ−1
n∏
i=1

(
Dm
λ (α1, β1)fi(t)

t

) 1
γi

dt

} 1
δ

, (6)

where fi ∈ A.

Remark 1.1 It is interesting to note that the integral operator Fγi,δ(λ, m;α1, β1; z)
generalizes many operators which were introduced and studied recently. Here
we list a few of them

1. Let q = 2, s = 1, α1 = β1, α2 = 1, γi = 1/αi and δ = 1, then the
operator Fγi,δ(λ, m;α1, β1; z) reduces to the integral operator

I(f1, . . . , fm)(z) =

∫ z

0

(
Dm
λ f1(t)

t

)α1

. . .

(
Dm
λ fn(t)

t

)αn
dt, (7)

whereDm
λ f is the well known Al-Oboudi differential operator. I(f1, . . . , fm)

was introduced and studied recently by S. Bulut in [7].
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2. For m = 0, q = 2, s = 1, α1 = β1, α2 = 1, γi = 1/(α − 1) and
δ = n(α − 1) + 1, then the operator Fγi,δ(λ, m;α1, β1; z) reduces to an
integral operator

Fn,α(z) =

[
(n(α−1)+1)

∫ z

0

(
f1(t)

)α−1
. . .
(
fn(t)

)α−1
dt.

] 1
(n(α−1)+1)

, (8)

studied recently by D. Breaz, N. Breaz and H. M. Srivastava in [5].

3. Let m = 0, q = 2, s = 1, α1 = β1, α2 = 1, γi = 1/αi and δ = 1, then the
operator Fγi,δ(λ, m;α1, β1; z) reduces to an operator

Fα(z) =

∫ z

0

(
f1(t)

t

)α1

. . .

(
fn(t)

t

)αn
dt (9)

recently introduced and studied by D.Breaz and N.Breaz in [3].

4. Let m = 0, q = 2, s = 1, α1 = 2, β1 = 1, α2 = 1, γi = 1/αi and δ = 1,
then the operator Fγi,δ(λ, m;α1, β1; z) reduces to an operator

Gα(z) =

∫ z

0

(
f
′

1(t)
)α1 . . .

(
f
′

n(t)
)αn

dt, (10)

recently introduced and studied by D.Breaz and H. Ö. Güney in [4].

Apart from the above several well-known and new integral operators will fol-
low as a special case on specializing the parameters.

We now state the following results which we need to establish our results
in the sequel.

Theorem 1.2 [11] If f ∈ A satisfies the condition∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ ≤ 1, for all z ∈ U , (11)

then the function f is univalent in U .

Theorem 1.3 (Schwartz Lemma) Let f ∈ A satisfy the condition | f(z) |≤ 1,
for all z ∈ U . Then

| f(z) |≤| z |, for all z ∈ U ,
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and equality holds only if f(z) = εz, where | ε |= 1.

Theorem 1.4[12] Let δ be a complex number with Reδ > 0. If f ∈ A satisfies

1− | z |2δ

Re δ

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (z ∈ U),

then the function

Fδ(z) =

[
δ

∫ z

0

tδ−1f
′
(t) dt

] 1
δ

= z + . . .

is analytic and univalent in U .
Pescar [13] has proved the following result

Theorem 1.5 [13]Let δ ∈ C, Reδ > 0 and c ∈ C (| c |≤ 1; c 6= −1).
If f ∈ A satisfies∣∣∣∣c | z |2δ +

(
1− | z |2δ

)zf ′′(z)

δf ′(z)

∣∣∣∣ ≤ 1 (z ∈ U),

then the function

Fδ(z) =

[
δ

∫ z

0

tδ−1f
′
(t) dt

] 1
δ

= z + . . .

is analytic and univalent in U .

Theorem 1.6 [15]Let f ∈ A satisfies the condition (11). Also let

α ∈ R,
(
α ∈

[
1,

3

2

])
and c ∈ C.

If

| c |≤ 3− 2α

α
(c 6= −1) and | f(z) |≤ 1 (z ∈ U)

then the function

Hα(z) =

(
α

∫ z

0

[
g(t)

]α−1
dt

) 1
α

belongs to S.
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2. Main Results

Theorem 2.1 Let each of the functions Dm
λ (α1, β1)fi ∈ A (i ∈ {1, 2, . . . , n})

satisfy the inequality (11). Also for M ≥ 1, let γi, δ be complex numbers such
that

Re δ ≥
n∑
i=1

2M + 1

|γi|
and c ∈ C.

If

| c |≤ 1− 1

Reδ

n∑
i=1

2M + 1

|γi|
(12)

and
| Dm

λ (α1, β1)fi(z) |≤M (z ∈ U ; i ∈ {1, 2, . . . , n}),

then the function Fγi,δ(λ, m;α1, β1; z) defined by (6) is univalent.

Proof. From the definition of the operator Dm
λ (α1, β1)f , it can be easily seen

that
Dm
λ (α1, β1)f(z)

z
6= 0 (z ∈ U)

and moreover for z = 0, we have(
Dm
λ (α1, β1)f1(z)

z

) 1
γ1

. . .

(
Dm
λ (α1, β1)fn(z)

z

) 1
γn

= 1.

We define the function

h(z) =

∫ z

0

n∏
i=1

(
Dm
λ (α1, β1)fi(t)

t

) 1
γi

dt,

so that, obviously

h
′
(z) =

n∏
i=1

(
Dm
λ (α1, β1)fi(z)

z

) 1
γi

and
zh
′′
(z)

h′(z)
=

n∑
i=1

1

γi

(
z(Dm

λ (α1, β1)fi(z))
′

Dm
λ (α1, β1)fi(z)

− 1

)
. (13)
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So, from (13) we have∣∣∣∣c|z|2δ + (1− |z|2δ)zh
′′
(z)

δh′(z)

∣∣∣∣
=

∣∣∣∣c|z|2δ + (1− |z|2δ)1

δ

n∑
i=1

1

γi

(
z(Dm

λ (α1, β1)fi(z))
′

Dm
λ (α1, β1)fi(z)

− 1

)∣∣∣∣
≤ |c|+ 1

|δ|

n∑
i=1

1

|γi|

(∣∣∣∣z2(Dm
λ (α1, β1)fi(z))

′[
Dm
λ (α1, β1)fi(z)

]2 ∣∣∣∣ |Dm
λ (α1, β1)fi(z)|

|z|
+ 1

)
.

Since | Dm
λ (α1, β1)fi(z) |≤ M (z ∈ U ; i ∈ {1, 2, . . . , n}), on applying the

Theorem 1 we have,

| Dm
λ (α1, β1)fi(z) |≤M | z | (z ∈ U ; i ∈ {1, 2, . . . , n}).

By using the inequality (11), we obtain∣∣∣∣c|z|2δ + (1− |z|2δ)zh
′′
(z)

δh′(z)

∣∣∣∣ ≤ |c|+ 1

Re δ

n∑
i=1

2M + 1

| γi |
(z ∈ U),

which, in the light of the hypothesis (12), yields∣∣∣∣c|z|2δ + (1− |z|2δ)zh
′′
(z)

δh′(z)

∣∣∣∣ ≤ 1 (z ∈ U).

Finally applying Theorem 1.3, we conclude that the function Fγi,δ(λ, m;α1, β1; z)
defined by (6) is univalent. This completes the proof of Theorem 2.1.

Upon setting m = 0, q = 2, s = 1, α1 = β1, α2 = 1, γi = 1/(α − 1) and
δ = n(α− 1) + 1 (α a real number), we obtain

Corollary 2.2 [5]Let M ≥ 1 and suppose that each of the functions fi ∈ A
(i=1, . . . , n) satisfies the inequality (11). Also let

α ∈ R,
(
α ∈

[
1,

(2M + 1)n

(2M + 1)n− 1

])
and c ∈ C.

If

| c |≤ 1 +

(
1− α
α

)
(2M + 1)n and | fi(z) |≤M (z ∈ U ; i ∈ {1, . . . , n}),
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then the function Fn,α(z) defined by (8) is in the univalent function class S.

Remark 2.3 Corollary 2 provides an extension of Theorem 1 due to Pescar
[15], if we let n = 1.

Next we set m = 0, q = 2, s = 1, α1 = β1, α2 = 1, δ = 1 and γi = 1
αi

(αi,
a real number) , we obtain the following.

Corollary 2.4 Let M ≥ 1 and suppose that each of the functions fi ∈ A
(i=1, . . . , n) satisfies the inequality (11). Also let

α ∈ R,
(
α ∈

[
1,

(2M + 1)n

(2M + 1)n− 1

])
and c ∈ C.

If

| c |≤ 1 + α(2M + 1)n and | fi(z) |≤M (z ∈ U ; i ∈ {1, . . . , n}),

then the function Fα(z) defined by (9) is univalent.

Remark 2.5 Many other interesting corollaries and results can be obtained
by specializing the parameters in Theorem 2.1, for example see [5, 6, 10].

We now prove another univalence criterion for univalence of the integral
operator Fγi,δ(λ, m;α1, β1; z) in the unit disc U .

Theorem 2.6 Let each of the functions Dm
λ (α1, β1)fi ∈ S (i ∈ {1, 2, . . . , n})

and δ be a complex number with Reδ > 0. If

1

|γ1|
+

1

|γ2|
+ . . . +

1

|γn|
≤ 1/4,

then the function Fγi,δ(λ, m;α1, β1; z) is in the class S.

Proof. Let h(z) be defined as in Theorem (2.1). From (13) we have

zh
′′
(z)

h′(z)
=

n∑
i=1

1

γi

(
z(Dm

λ (α1, β1)fi(z))
′

Dm
λ (α1, β1)fi(z)

− 1

)
.
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and

1− | z |2Reδ

Re (δ)

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ =
1− | z |2Re δ

Re (δ)

n∑
i=1

1

|γi|

∣∣∣∣z(Dm
λ (α1, β1)fi(z))

′

Dm
λ (α1, β1)fi(z)

− 1

∣∣∣∣
≤ 1− | z |2Re δ

Re (δ)

n∑
i=1

1

|γi|

(∣∣∣∣z(Dm
λ (α1, β1)fi(z))

′

Dm
λ (α1, β1)fi(z)

∣∣∣∣+ 1

)
≤ 1− | z |2Re δ

Re (δ)

n∑
i=1

1

|γi|

(
1+ | z |
1− | z |

+ 1

)
=

1− | z |2Re δ

1− | z |
2

Re (δ)

n∑
i=1

1

|γi|
.

Here, we note that

1− | z |2Re δ

1− | z |
≤

{
1 if 0 < Re (δ) < 1

2

2 Re (δ) if 1
2
≤ Re (δ) <∞.

(14)

Using the inequality (14) and the hypothesis of the theorem, we obtain

1− | z |2Reδ

Re (δ)

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ 1. (15)

Hence, by applying Theorem 1, we conclude that the function Fγi,δ(λ, m;α1, β1; z)
defined by (6) is univalent. This completes the proof of Theorem 2.

Let n = 1, m = 0, q = 2, s = 1, α1 = β1, α2 = 1, γ1 = 1/δ in Theorem 2.
Then, we have the following

Corollary 2.7 [14] Let f ∈ S and δ = a + bi be a complex number and
δ ∈ (0, 4]. If

a4 + a2b2 − 4 ≥ 0, a ∈
(
0,

1

2

)
and a2 + b2 − 16 ≥ 0, a ∈

[1
2
, 4
]

then the function

Fδ(z) =

[
δ

∫ z

0

tδ−1
(
f(t)

t

) 1
δ

dt

] 1
δ

(16)

is in the class S.
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