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Abstract

The aim of the present paper is to establish some new integral and
finite difference inequalities in three variables which can be used as tools
in the analysis of certain new classes of differential, integral and finite
difference equations. Some applications to convey the importance of
one of our result are also given.
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1. Introduction

During the past few decades, explicit bounds on a number of new integral and
finite difference inequalities are considered and used in a variety of applications.
For a detailed account on such inequalities and large number of applications,
see [1,2,4-6] and the references cited therein. Although, an enormous amount
of attention has been given to such inequalities, it is easy to check that the
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bounds available in the literature are not directly applicable to study the
qualitative behavior of solutions of equations of the forms

u (x, y, z) = h (x, y, z) +

x∫
0

∞∫
y

b∫
a

F (x, y, z, s, t, r, u (s, t, r)) drdtds, (1.1)

u (x, y, z) = h (x, y, z) +

∞∫
x

∞∫
y

b∫
a

F (x, y, z, s, t, r, u (s, t, r)) drdtds, (1.2)

and their discrete versions. The origin of equations of the forms (1.1), (1.2)
can be traced back in the work of D.L. Lovelady [3] in 1973, who studied the
existence and uniqueness of solutions of general form of the partial Fredholm
integrodifferential equation

∂2

∂x∂y
u (x, y, z) =

1∫
0

K (z, r, u (x, y, r)) dr, (1.3)

with the given data

u (x, 0, z) = σ (x, z) , u (0, y, z) = τ (y, z) , (1.4)

in Banach space setting. From such considerations and the desire to widen
the scope of applications of inequalities with explicit bounds, motivated us to
discover new integral and finite difference inequalities, which can be applied
fairly well to achieve a diversity of desired goals. The main objective of the
present paper is to establish explicit bounds on some fundamental integral and
finite difference inequalities in three variables, which will be equally important
in handling the equations of the forms (1.1),(1.2), (1.3)-(1.4) and their discrete
versions. Some applications to illustrate the usefulness of one of our result are
also given.

2. Statement of Results

In what follows R denotes the set of real numbers and I = [a, b] (a < b), R+ =
[0,∞) , N0 = {0, 1, 2, ...} , N = {1, 2, ...} , Nα,β = {α, α + 1, ..., α + n = β}
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(α ∈ N0, n ∈ N) are the given subsets of R. The partial derivatives of a
function h (x, y) (x, y ∈ R) with respect to x and y are denoted by hx (x, y)
and hy (x, y) and for a function g (m,n) (m,n ∈ N0) , we define the operators
∆1, ∆2 by ∆1g (m,n) = g (m+ 1, n) − g (m,n), ∆2g (m,n) = g (m,n+ 1) −
g (m,n). Let G = R2

+×I,H = N2
0×Nα,β and denote by C(A,B) and D(A,B),

the class of continuous functions and the class of discrete functions from the
set A to the set B. We use the usual conventions that empty sums and prod-
ucts are taken to be 0 and 1 respectively and assume that all the integrals,
sums and products involved exist and are finite.

We require the following known inequalities in the proof of our main results.

Lemma 1. (see [4, p. 440]). Let u, f, g ∈ C
(
R2

+, R+

)
.

(i) Let f(x, y) be nondecreasing in x and nonincreasing in y for x, y ∈ R+. If

u (x, y) ≤ f (x, y) +

x∫
0

∞∫
y

g (s, t)u (s, t) dtds,

for x, y ∈ R+, then

u (x, y) ≤ f (x, y) exp

 x∫
0

∞∫
y

g (s, t) dtds

 ,

for x, y ∈ R+.
(ii) Let f(x, y) be nonincreasing in each variable x, y ∈ R+. If

u (x, y) ≤ f (x, y) +

∞∫
x

∞∫
y

g (s, t)u (s, t) dtds,

for x, y ∈ R+, then

u (x, y) ≤ f (x, y) exp

 ∞∫
x

∞∫
y

g (s, t) dtds

 ,

for x, y ∈ R+.
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Lemma 2. (see [6, p. 266]). Let u, f, g ∈ D (N2
0 , R+) .

(i) Let f(m,n) be nondecreasing in m and nonincreasing in n for m,n ∈ N0.
If

u (m,n) ≤ f (m,n) +
m−1∑
s=0

∞∑
t=n+1

g (s, t)u (s, t),

for m,n ∈ N0, then

u (m,n) ≤ f (m,n)
m−1∏
s=0

[
1 +

∞∑
t=n+1

g (s, t)

]
,

for m,n ∈ N0.
(ii) Let f(m,n) be nonincreasing in each variable m,n ∈ N0. If

u (m,n) ≤ f (m,n) +
∞∑

s=m+1

∞∑
t=n+1

g (s, t)u (s, t),

for m,n ∈ N0, then

u (m,n) ≤ f (m,n)
∞∏

s=m+1

[
1 +

∞∑
t=n+1

g (s, t)

]
,

for m,n ∈ N0.
Our main results are given in the following theorems.

Theorem 1. Let u, p, q, f ∈ C (G,R+) .
(a1) If

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

x∫
0

∞∫
y

b∫
a

f (s, t, r)u (s, t, r) drdtds, (2.1)

for (x, y, z) ∈ G, then

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

 x∫
0

∞∫
y

b∫
a

f (s, t, r) p (s, t, r) drdtds


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× exp

 x∫
0

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (2.2)

for (x, y, z) ∈ G.
(a2) If

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

∞∫
x

∞∫
y

b∫
a

f (s, t, r)u (s, t, r) drdtds, (2.3)

for (x, y, z) ∈ G, then

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) p (s, t, r) drdtds



× exp

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (2.4)

for (x, y, z) ∈ G.

Theorem 2. Let u, p, q, c, f, g ∈ C (G,R+) .
(b1) Suppose that

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

x∫
0

∞∫
y

b∫
a

f (s, t, r)u (s, t, r) drdtds

+c (x, y, z)

∞∫
0

∞∫
0

b∫
a

g (s, t, r)u (s, t, r) drdtds, (2.5)

for (x, y, z) ∈ G. If

α1 =

∞∫
0

∞∫
0

b∫
a

g (s, t, r)B1 (s, t, r) drdtds < 1, (2.6)
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then
u (x, y, z) ≤ A1 (x, y, z) +D1B1 (x, y, z) , (2.7)

for (x, y, z) ∈ G, where

A1 (x, y, z) = p (x, y, z) + q (x, y, z)

 x∫
0

∞∫
y

b∫
a

f (s, t, r) p (s, t, r) drdtds



× exp

 x∫
0

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (2.8)

B1 (x, y, z) = c (x, y, z) + q (x, y, z)

 x∫
0

∞∫
y

b∫
a

f (s, t, r) c (s, t, r) drdtds


× exp

 x∫
0

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (2.9)

and

D1 =
1

1− α1

∞∫
0

∞∫
0

b∫
a

g (s, t, r)A1 (s, t, r) drdtds. (2.10)

(b2) Suppose that

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

∞∫
x

∞∫
y

b∫
a

f (s, t, r)u (s, t, r) drdtds

+c (x, y, z)

∞∫
0

∞∫
0

b∫
a

g (s, t, r)u (s, t, r) drdtds, (2.11)

for (x, y, z) ∈ G. If

α2 =

∞∫
0

∞∫
0

b∫
a

g (s, t, r)B2 (s, t, r) drdtds < 1, (2.12)
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then
u (x, y, z) ≤ A2 (x, y, z) +D2B2 (x, y, z) , (2.13)

for (x, y, z) ∈ G, where

A2 (x, y, z) = p (x, y, z) + q (x, y, z)

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) p (s, t, r) drdtds



× exp

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (2.14)

B2 (x, y, z) = c (x, y, z) + q (x, y, z)

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) c (s, t, r) drdtds



× exp

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (2.15)

and

D2 =
1

1− α2

∞∫
0

∞∫
0

b∫
a

g (s, t, r)A2 (s, t, r) drdtds. (2.16)

The discrete analogues of the inequalities in Theorems 1 and 2 are given as
follows.

Theorem 3. Let u, p, q, f ∈ D (H,R+) .
(c1) If

u (m,n, k) ≤ p (m,n, k) + q (m,n, k)
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

f (s, t, r)u (s, t, r) , (2.17)

for (m,n, k) ∈ H, then

u (m,n, k) ≤ p (m,n, k) + q (m,n, k)

(
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

f (s, t, r) p (s, t, r)

)
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×
m−1∏
s=0

[
1 +

∞∑
t=n+1

β∑
r=α

f (s, t, r) q (s, t, r)

]
, (2.18)

for (m,n, k) ∈ H.
(c2) If

u (m,n, k) ≤ p (m,n, k)+q (m,n, k)
∞∑

s=m+1

∞∑
t=n+1

β∑
r=α

f (s, t, r)u (s, t, r) , (2.19)

for (m,n, k) ∈ H, then

u (m,n, k) ≤ p (m,n, k) + q (m,n, k)

(
∞∑

s=m+1

∞∑
t=n+1

β∑
r=α

f (s, t, r) p (s, t, r)

)

×
∞∏

s=m+1

[
1 +

∞∑
t=n+1

β∑
r=α

f (s, t, r) q (s, t, r)

]
, (2.20)

for (m,n, k) ∈ H.

Theorem 4. Let u, p, q, c, f, g ∈ D (H,R+) .
(d1) Suppose that

u (m,n, k) ≤ p (m,n, k) + q (m,n, k)
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

f (s, t, r)u (s, t, r)

+c (m,n, k)
∞∑
s=0

∞∑
t=0

β∑
r=α

g (s, t, r)u (s, t, r) , (2.21)

for (m,n, k) ∈ H. If

β1 =
∞∑
s=0

∞∑
t=0

β∑
r=α

g (s, t, r) B̄1 (s, t, r) < 1, (2.22)

then

u (m,n, k) ≤ Ā1 (m,n, k) + D̄1B̄1 (m,n, k) , (2.23)
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for (m,n, k) ∈ H, where

Ā1 (m,n, k) = p (m,n, k) + q (m,n, k)

(
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

f (s, t, r) p (s, t, r)

)

×
m−1∏
s=0

[
1 +

∞∑
t=n+1

β∑
r=α

f (s, t, r) q (s, t, r)

]
, (2.24)

B̄1 (m,n, k) = c (m,n, k) + q (m,n, k)

(
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

f (s, t, r) c (s, t, r)

)

×
m−1∏
s=0

[
1 +

∞∑
t=n+1

β∑
r=α

f (s, t, r) q (s, t, r)

]
, (2.25)

and

D̄1 =
1

1− β1

∞∑
s=0

∞∑
t=0

β∑
r=α

g (s, t, r) Ā1 (s, t, r) . (2.26)

(d2) Suppose that

u (m,n, k) ≤ p (m,n, k) + q (m,n, k)
∞∑

s=m+1

∞∑
t=n+1

β∑
r=α

f (s, t, r)u (s, t, r)

+c (m,n, k)
∞∑
s=0

∞∑
t=0

β∑
r=α

g (s, t, r)u (s, t, r) , (2.27)

for (m,n, k) ∈ H. If

β2 =
∞∑
s=0

∞∑
t=0

β∑
r=α

g (s, t, r) B̄2 (s, t, r) < 1, (2.28)

then
u (m,n, k) ≤ Ā2 (m,n, k) + D̄2B̄2 (m,n, k) , (2.29)

for (m,n, k) ∈ H, where

Ā2 (m,n, k) = p (m,n, k) + q (m,n, k)

(
∞∑

s=m+1

∞∑
t=n+1

β∑
r=α

f (s, t, r) p (s, t, r)

)
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×
∞∏

s=m+1

[
1 +

∞∑
t=n+1

β∑
r=α

f (s, t, r) q (s, t, r)

]
, (2.30)

B̄2 (m,n, k) = c (m,n, k) + q (m,n, k)

(
∞∑

s=m+1

∞∑
t=n+1

β∑
r=α

f (s, t, r) c (s, t, r)

)

×
∞∏

s=m+1

[
1 +

∞∑
t=n+1

β∑
r=α

f (s, t, r) q (s, t, r)

]
, (2.31)

and

D̄2 =
1

1− β2

∞∑
s=0

∞∑
t=0

β∑
r=α

g (s, t, r) Ā2 (s, t, r) . (2.32)

Remark 1. We note that the inequalities developed in this paper can be
considered as new variants of the similar inequalities in two variables given
in [6, Chapters 2 and 4]. The stricking feature of the inequalities established
here is that, they are applicable in situations for which the earlier inequalities
do not apply directly.

3. Proofs of Theorems 1-4

We give the details of the proofs of (a1), (b2) and (c1) only. The proofs of other
inequalities can be completed by following the proofs of these inequalities.
(a1) Introducing the notation

E (s, t) =

b∫
a

f (s, t, r)u (s, t, r) dr, (3.1)

the inequality (2.1) can be restated as

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

x∫
0

∞∫
y

E (s, t) dtds. (3.2)

Define

w (x, y) =

x∫
0

∞∫
y

E (s, t) dtds, (3.3)
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then w(0, y) = 0 and

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)w (x, y) . (3.4)

From (3.3), (3.1) and (3.4), we observe that

wx (x, y)

=

∞∫
y

E (x, t) dt

=

∞∫
y


b∫

a

f (x, t, r)u (x, t, r) dr

 dt

≤
∞∫
y


b∫

a

f (x, t, r) [p (x, t, r) + q (x, t, r)w (x, t)] dr

 dt

=

∞∫
y


b∫

a

f (x, t, r) p (x, t, r) dr

 dt

+

∞∫
y

w (x, t)


b∫

a

f (x, t, r) q (x, t, r) dr

 dt. (3.5)

By taking x = s in (3.5) and integrating both sides with respect to s from
0 to x, we get

w (x, y) ≤ e1 (x, y) +

x∫
0

∞∫
y


b∫

a

f (s, t, r) q (s, t, r) dr

w (s, t) dtds, (3.6)

where

e1 (x, y) =

x∫
0

∞∫
y

b∫
a

f (s, t, r) p (s, t, r) drdtds. (3.7)

Clearly e1 (x, y) is nonnegative, continuous, nondecreasing in x and nonin-
creasing in y for x, y ∈ R+. Now, a suitable application of the inequality in
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part (i) given in Lemma 1 to (3.6) yields

w (x, y) ≤ e1 (x, y) exp

 x∫
0

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 . (3.8)

Using (3.8), (3.7) in (3.4), we get (2.2).
(b2) Let E(s, t) be as in (3.1) and

λ =

∞∫
0

∞∫
0

b∫
a

g (s, t, r)u (s, t, r) drdtds. (3.9)

Then (2.5) can be restated as

u (x, y, z) ≤ p (x, y, z) + q (x, y, z)

∞∫
x

∞∫
y

E (s, t) dtds+ c (x, y, z)λ. (3.10)

Let

v (x, y) =

∞∫
x

∞∫
y

E (s, t) dtds, (3.11)

then v (∞, y) = 0 and from (3.10), we have

u (x, y, z) ≤ p (x, y, z) + q (x, y, z) v (x, y) + c (x, y, z)λ. (3.12)
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From (3.11), (3.1) and (3.12), we have

vx (x, y) = −
∞∫
y

E (x, t) dt

= −
∞∫
y


b∫

a

f (x, t, r)u (x, t, r) dr

 dt

≥ −
∞∫
y


b∫

a

f (x, t, r) [p (x, t, r) + q (x, t, r) v (x, t) + c (x, t, r)λ] dr

 dt

= −
∞∫
y


b∫

a

f (x, t, r) p (x, t, r) dr

 dt

−
∞∫
y


b∫

a

f (x, t, r) [q (x, t, r) v (x, t) + c (x, t, r)λ] dr

 dt. (3.13)

By taking x = s in (3.13) and integrating both sides with respect to s from
x to ∞ for x ∈ R+, we have

v (x, y) ≤ e2 (x, y) +

∞∫
x

∞∫
y


b∫

a

f (s, t, r) q (s, t, r) dr

 v (s, t) dtds, (3.14)

where

e2 (x, y) =

∞∫
x

∞∫
y

b∫
a

f (s, t, r) [p (s, t, r) + c (s, t, r)λ] drdtds. (3.15)

Clearly e2 (x, y) is nonnegative, continuous, nonincreasing in each variable
x, y ∈ R+. Now, a suitable application of the inequality in part (ii) given
in Lemma 1 to (3.14) yields

v (x, y) ≤ e2 (x, y) exp

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 . (3.16)



34 B. G. Pachpatte

Using (3.16), (3.15) in (3.12), we get

u (x, y, z)

≤ p (x, y, z) + q (x, y, z)

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) [p (s, t, r) + c (s, t, r)λ] drdtds


× exp

 ∞∫
x

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

+ c (x, y, z)λ

= A2 (x, y, z) + λB2 (x, y, z) . (3.17)

From (3.9) and (3.17), we have

λ =

∞∫
0

∞∫
0

b∫
a

g (s, t, r)u (s, t, r) drdtds

≤
∞∫

0

∞∫
0

b∫
a

g (s, t, r) [A2 (s, t, r) + λB2 (s, t, r)] drdtds,

which implies
λ ≤ D2. (3.18)

Using (3.18) in (3.17), we get (2.13).
(c1) Introducing the notation

e0 (s, t) =

β∑
r=α

f (s, t, r)u (s, t, r) , (3.19)

the inequality (2.17) can be restated as

u (m,n, k) ≤ p (m,n, k) + q (m,n, k)
m−1∑
s=0

∞∑
t=n+1

e0 (s, t) . (3.20)

Define

ψ (m,n) =
m−1∑
s=0

∞∑
t=n+1

e0 (s, t) , (3.21)
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then ψ (0, n) = 0 and

u (m,n, k) ≤ p (m,n, k) + q (m,n, k)ψ (m,n) . (3.22)

From (3.21), (3.19) and (3.22), we observe that

∆1ψ (m,n) =
∞∑

t=n+1

e0 (m, t)

=
∞∑

t=n+1

{
β∑
r=α

f (m, t, r)u (m, t, r)

}

≤
∞∑

t=n+1

{
β∑
r=α

f (m, t, r) [p (m, t, r) + q (m, t, r)ψ (m, t)]

}

=
∞∑

t=n+1

β∑
r=α

f (m, t, r) p (m, t, r)

+
∞∑

t=n+1

{
β∑
r=α

f (m, t, r) q (m, t, r)ψ (m, t)

}
. (3.23)

By taking m = s in (3.23) and then taking sum over s from s = 0 to m − 1,
m ∈ N0, we get

ψ (m,n) ≤
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

f (s, t, r) p (s, t, r)

+
m−1∑
s=0

∞∑
t=n+1

{
β∑
r=α

f (s, t, r) q (s, t, r)ψ (s, t)

}

= ē (m,n) +
m−1∑
s=0

∞∑
t=n+1

ψ (s, t)

{
β∑
r=α

f (s, t, r) q (s, t, r)

}
, (3.24)

where

ē (m,n) =
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

f (s, t, r) p (s, t, r) . (3.25)
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Clearly, ē (m,n) is nonnegative, nondecreasing in m and nonincreasing in n for
m,n ∈ N0. Now, a suitable application of the inequality (i) given in Lemma 2
to (3.24) yields

ψ (m,n) ≤ ē (m,n)
m−1∏
s=0

[
1 +

∞∑
t=n+1

β∑
r=α

f (s, t, r) q (s, t, r)

]
. (3.26)

Using (3.26), (3.25) in (3.22), we get (2.18).

Remark 2. We note that, many new generalizations, extensions and vari-
ants of the inequalities given in Theorems 1-4 are possible, which would also
be equally important in certain new applications to the equations of the forms
(1.1), (1.2) and (1.3)-(1.4), about which almost nothing seems to be known.

4. Some Applications

In this section, we apply the inequality in Theorem 1, part (a1) to obtain the
uniqueness and explicit estimates on the solutions of equation (1.1). One can
formulate existence result for the solution of equation (1.1) by using the idea
employed in [7], see also [1,3,8].
First, we shall give the following theorem concerning the uniqueness of solu-
tions of equation (1.1).

Theorem 5. Suppose that h ∈ C (G,R) , F ∈ C (G2 ×R,R) and

|F (x, y, z, s, t, r, u)− F (x, y, z, s, t, r, v)| ≤ q (x, y, z) f (s, t, r) |u− v| , (4.1)

where q, f ∈ C (G,R+). Then the equation (1.1) has at most one solution on
G.

Proof. Let u1 (x, y, z) and u2 (x, y, z) be two solutions of equation (1.1). Then
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by using the hypotheses, we have

|u1 (x, y, z)− u2 (x, y, z)|

≤
x∫

0

∞∫
y

b∫
a

|F (x, y, z, s, t, r, u1 (s, t, r))− F (x, y, z, s, t, r, u2 (s, t, r))|drdtds

≤ q (x, y, z)

x∫
0

∞∫
y

b∫
a

f (s, t, r) |u1 (s, t, r)− u2 (s, t, r)|drdtds. (4.2)

Now, a suitable application of the inequality in Theorem 1, part (a1) to (4.2)
yields |u1 (x, y, z)− u2 (x, y, z)| ≤ 0, and hence u1 (x, y, z) = u2 (x, y, z). Thus
there is at most one solution to equation (1.1) on G.
The following theorem deals with the estimate on the solution of equation (1.1).

Theorem 6. Suppose that h ∈ C (G,R) , F ∈ C (G2 ×R,R) and

|F (x, y, z, s, t, r, u)| ≤ q (x, y, z) f (s, t, r) |u| , (4.3)

where q, f ∈ C (G,R+) . If u(x, y, z) is any solution of equation (1.1) on G,
then

|u (x, y, z)| ≤ |h (x, y, z)|+ q (x, y, z)

 x∫
0

∞∫
y

b∫
a

f (s, t, r) |h (s, t, r)| drdtds


× exp

 x∫
0

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (4.4)

for (x, y, z) ∈ G.

Proof. Using the fact that u(x, y, z) is a solution of equation (1.1) and hy-
potheses, we have

|u (x, y, z)| ≤ |h (x, y, z)|+
x∫

0

∞∫
y

b∫
a

|F (x, y, z, s, t, r, u (s, t, r))| drdtds

≤ |h (x, y, z)|+ q (x, y, z)

x∫
0

∞∫
y

b∫
a

f (s, t, r) |u (s, t, r)| drdtds. (4.5)
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Now, an application of the inequality in Theorem 1, part (a1) to (4.5) yields
(4.4).
The next theorem gives the estimation on the solution of equation (1.1) assum-
ing that the function F in equation (1.1) satisfies the Lipschitz type condition.

Theorem 7. Suppose that h ∈ C (G,R) , F ∈ C (G2 ×R,R) and the condi-
tion (4.1) holds. If u(x, y, z) is any solution of equation (1.1) on G, then

|u (x, y, z)− h (x, y, z)| ≤ d (x, y, z)+q (x, y, z)

 x∫
0

∞∫
y

b∫
a

f (s, t, r) d (s, t, r) drdtds



× exp

 x∫
0

∞∫
y

b∫
a

f (s, t, r) q (s, t, r) drdtds

 , (4.6)

for (x, y, z) ∈ G, where

d (x, y, z) =

x∫
0

∞∫
y

b∫
a

|F (x, y, z, s, t, r, h (s, t, r))| drdtds. (4.7)

Proof. Let u(x, y, z) be a solution of equation (1.1) on G. Then from the
hypotheses, we have

|u (x, y, z)− h (x, y, z)| ≤
x∫

0

∞∫
y

b∫
a

|F (x, y, z, s, t, r, u (s, t, r))| drdtds

≤
x∫

0

∞∫
y

b∫
a

|F (x, y, z, s, t, r, u (s, t, r))− F (x, y, z, s, t, r, h (s, t, r))| drdtds

+

x∫
0

∞∫
y

b∫
a

|F (x, y, z, s, t, r, h (s, t, r))| drdtds

≤ d (x, y, z)

+q (x, y, z)

x∫
0

∞∫
y

b∫
a

f (s, t, r) |u (s, t, r)− h (s, t, r)| drdtds, (4.8)
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for (x, y, z) ∈ G. Now, an application of the inequality in Theorem 1, part (a1)
to (4.8) gives the required estimate in (4.6).
(a2) can be used to obtain results similar to those of given in Theorems 5-7 for
the solutions of equation (1.2). Furthermore, the inequalities given in Theorem
1 can be used to formulate results on the continuous dependence of solutions of
equations (1.1), (1.2) by closely looking at the corresponding results recently
given in [7].
In concluding we note that, one can use the inequalities obtained in Theorem
3, to establish results as in Theorems 5-7, to the solutions of sum-difference
equations of the forms

u (m,n, k) = h (m,n, k) +
m−1∑
s=0

∞∑
t=n+1

β∑
r=α

L (m,n, k, s, t, r, u (s, t, r)) , (4.9)

u (m,n, k) = h (m,n, k) +
∞∑

s=m+1

∞∑
t=n+1

β∑
r=α

L (m,n, k, s, t, r, u (s, t, r)) , (4.10)

for (m,n, k) ∈ H, under some suitable conditions on the functions involved
in equations (4.9), (4.10). Moreover, we note that the inequalities given in
Theorems 2 and 4 can be used to study similar properties as noted above for
more general versions of equations (1.1), (1.2), (4.9), (4.10). The details of
formulation of such results are very close to those of given in Theorems 5-7
(see also [7]) with suitable modifications. Here we omit the details.
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