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Abstract

In this paper we characterize the eigenfunctions for the linear differential-
difference operators with constant coefficients.
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1. Introduction

If a function and all its derivatives and integrals are absolutely uniformly
bounded, then the function is a sine function with period 2π. This is Roe’s
theorem [14].
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The purpose of this work is to generalize Roe’s theorem. In place of
derivatives and antiderivatives, we shall extended this to all formally self-
adjoint constant-coefficient differential-difference operators. Indeed, we con-
sider the first-order singular differential-difference operator ΛA on R introduced
by Mourou and Trimèche in [12] defined for a function f of class C1 on R by

ΛAf =
df

dx
+
A′(x)

A(x)

(
f(x)− f(−x)

2

)
,

where

A(x) = |x|2α+1B(x), α > −1

2
,

B being a positive C∞ even function on R. We suppose in addition that

(i) A is increasing on [0,∞[;

(ii) There exists a constant δ > 0 such that the function eδxB′(x)/B(x) is
bounded for large x ∈ [0,∞[ together with its derivatives.

This operator extend the usual partial derivatives by additional reflection
terms and give generalizations of many analytic structures like the exponential
function, the Fourier transform and the convolution product (cf. [12]).

For A(x) = |x|2α+1, α ≥ −1
2
, we regain the differential-difference operator

Dαf =
df

dx
+

(
α +

1

2

)
f(x)− f(−x)

x
,

which is referred to as the Dunkl operator of index α + 1/2 associated with
the reflection group Z2 on R (cf. [5]).

For A(x) =
(sinh |x|

coshx

)2α+1

, α ≥ −1
2
, we regain the differential-difference

operator

lαf =
df

dx
+
[
(2α + 1)(cothx− tanhx)

]f(x)− f(−x)

x
,

which is referred to as the special case of Jacobi-Dunkl operator on R (cf. [4]).
For an even function f of class C2 on R, we have

Λ2
Af = LAf,
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with

LA =
d2

dx2
+
A′(x)

A(x)

d

dx
. (1.1)

(See [18]).

We note ΛA = L
1
2
A if and only if, for an even function f of class C2 on R, we

have

Λ2
Af = LAf.

We now state our main result.

Theorem 1. Suppose P (ξ) =
∑
n

anξ
n is a polynomial in ξ with real co-

efficients and LA = P (−iΛA). Let a ≥ 0 and let {fj}∞−∞ be a sequence of
complex-valued functions on R so that

LAfj = fj+1

and

|fj(x)| ≤Mj(1 + |x|)a, (1.2)

where (Mj)j∈Z satisfies the sublinear growth condition

lim
j→∞

M|j|
j

= 0. (1.3)

Then f0 = f+ + f− where LAf+ = f+ and LAf− = −f−. If 1 (or -1) is not in
the range of P then f+ = 0 (or f− = 0).

2. Preliminaries

In this section we recall some facts about harmonic analysis related to the
differential-difference operator ΛA. We cite here, as briefly as possible, only
those properties actually required for the discussion. For more details we refer
to [12].

For each λ ∈ C the differential-difference equation

ΛAu = λu, u(0) = 1,
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admits a unique C∞ solution on R, denoted Φλ given by

Φλ(x) =

 ϕiλ(x) + 1
λ
d
dx
ϕiλ(x) if λ 6= 0,

1 if λ = 0,

where for each z ∈ C, ϕz designates the solution of the differential equation

LAu = −z2u, u(0) = 1

LA being the second-order singular differential operator on R defined by (1.1).
Moreover, Φλ(x) is entire in λ. Recently Mourou in [13] have proved for all
λ, x ∈ R,

|Φiλ(x)| ≤ 1. (2.4)

Notations. We denote by

- Cp
b (R) the space of bounded functions of class Cp on R.

- E(R) The space of infinitely differentiable functions on R.

- D(R) the space of C∞-functions on R which are of compact support.

- S(R) the space of C∞-functions g on R which are rapidly decreasing
together with their derivatives.

- D′(R) the space of distributions on R. It is the topological dual of D(R).

- S ′(R) the space of temperate distributions on R. It is the topological
dual of S(R).

We provide these spaces with the classical topology.

- For a Borel positive measure µ on R, and 1 ≤ p ≤ ∞, we write Lpµ(R)
for the Lebesgue space equipped with the norm ‖ · ‖p,µ defined by

‖f‖p,µ =

(∫
R
|f(x)|p dµ(x)

)1/p

, if p <∞,

and
‖f‖∞,µ = ess sup

x∈R
|f(x)|.

When µ = w(x)dx, with w a nonnegative function on R, we replace the
µ in the norms by w.
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Definition 1. The generalized Fourier transform of a function f ∈ L1
A(R) is

defined by

Ff(λ) =

∫
R
f(x)Φ−iλ(x)A(x)dx, λ ∈ R.

Many of the important properties of Fourier transforms on locally compact
abelian groups are proved to hold true for F .

Theorem 2. The generalized Fourier transform F is a bijection from S(R)
onto itself.

Theorem 3. i) Plancherel formula: There is an even positive measure σ
on R such that for all f ∈ S(R),∫

R
|f(x)|2A(x)dx =

∫
R
|Ff(λ)|2dσ(λ).

ii) Plancherel theorem: The generalized Fourier transform F extends uniquely
to a unitary isomorphism from L2

A(R) onto L2
σ(R).

iii) Inversion formula: Let f be a function in L1
A(R), such that F(f) ∈

L1
σ(R). Then the inverse transform of f is given by

F−1(f)(x) =

∫
R
f(λ)Φiλ(x)dσ(λ), a.e. x ∈ R.

The measure σ is called the spectral measure associated with the differential-
difference operator ΛA. Under our assumptions on the function A, it is known
that the spectral measure σ takes the form

dσ(λ) =
dλ

|c(|λ|)|2
, λ ∈ R,

where c(s) is a continuous function on ]0,∞[ such that

c(s)−1 ∼ k1 s
α+ 1

2 , as s→∞,

c(s)−1 ∼ k2 s
α+ 1

2 , as s→ 0,
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for some k1, k2 ∈ C.
In the Dunkl operator case corresponding to A(x) = |x|2α+1, α ≥ −1

2
, the

spectral measure σ is given by

dσ(λ) =
|λ|2α+1dλ

22α+2 (Γ(α + 1))2
.

In the special case of Jacobi-Dunkl operator corresponding to

A(x) =
(sinh |x|

coshx

)2α+1

, α ≥ −1
2
, the spectral measure σ is given by

dσ(λ) =
dλ

8π |c(|λ|)|2
,

where

c(µ) =
Γ(α + 1)Γ(iµ)

2iµΓ( iµ
2

)Γ(α + 1 + iµ
2

)
, µ ∈ C\{iN}.

We shall need the following properties.

Proposition 1. i) Let f ∈ C1
b (R) and g ∈ S(R). Then∫

R
ΛAf(x)g(x)A(x)dx = −

∫
R
f(x)ΛAg(x)A(x)dx. (2.5)

ii) For f ∈ S(R) we have

F (ΛAf) (λ) = iλFf(λ), λ ∈ R. (2.6)

Proof. An integration by parts yields assertion (i). Assertion (ii) follows by
substituting in (2.5) g by Φ−iλ.

2.1 The Generalized Convolution

Definition 2. Let y be in R. The generalized translation operator f 7→ τyf is
defined on S(R) by

F(τyf)(x) = Φix(y)F(f)(x), for all x ∈ R. (2.7)

At the moment an explicit formula for the generalized translation operator
is known only in the following three cases.
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1st case: In the Dunkl operator case corresponding to A(x) = |x|2α+1, α ≥ −1
2
.

2nd case: In the special case of Jacobi-Dunkl operator corresponding to

A(x) =
(sinh |x|

coshx

)2α+1

, α ≥ −1

2
.

3rd case: In the Chébli-Trimèche hypergroups.

In all these cases the generalized translation operator can be written as follow:

Definition 3. For x, y ∈ R, the generalized translation operator is defined
on Cb(R) by

τxf(y) =

∫
R
f(u) dνAx,y(u), (2.8)

where the measure dνAx,y is of the form

dνAx,y(u) =


WA(x, y, u)A(u)du if xy 6= 0,

δx if y = 0,
δy if x = 0,

(2.9)

WA is a kernel which is not necessarily positive.

In the following we shall give some properties of the measure νAx,y (cf.
[1, 15, 16, 18]).

Proposition 2. For all x, y ∈ R, we have

i) νAx,y(R) = 1.

ii) ||νAx,y|| ≤ 4.

iii) supp (νAx,y) ⊂ Ix,y where

Ix,y = [−|x| − |y|,−||x| − |y||] ∪ [||x| − |y||, |x|+ |y|]. (2.10)

Using the generalized translation operator, we define the generalized con-
volution product of functions as follows.
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Definition 4. The generalized convolution product of f and g in S(R) is
the function f ∗ g defined by

f ∗ g(x) =

∫
R
τxf(−y)g(y)A(y)dy, for all x ∈ R. (2.11)

This convolution is commutative and associative and satisfies the following
properties. (See [12]).

Proposition 3. i) For f ,g in D(R)(resp. S(R)) the function f ∗ g belongs to
D(R)(resp. S(R)) and we have

F(f ∗ g)(y) = F(f)(y)F(g)(y), for all y ∈ R. (2.12)

ii) We assume that ΛA ∈
{
Dα, lα,L

1
2
A

}
. Let 1 ≤ p, q, r ≤ ∞, such that

1
p

+ 1
q

= 1
r

+ 1. If f is in LpA(R) and g is an element of LqA(R), then f ∗ g
belongs to in LrA(R) and we have

‖f ∗ g‖Lr
A(R) ≤ 4 ‖f‖Lp

A(R) ‖g‖Lq
A(R) . (2.13)

For f in LpA(R), we define the tempered distribution Tf associated with
f by

〈Tf , φ〉 =

∫
R
f(x)φ(x)A(x)dx, φ ∈ S(R). (2.14)

We denote by 〈f, φ〉A the second member.

Definition 5. i) The generalized Fourier transform of a distribution τ in
S ′(R) is defined by

〈F(τ), φ〉 = 〈τ,F−1(φ)〉, φ ∈ S(R). (2.15)

ii) The generalized Fourier transform of f in LpA(R) denoted also by F(f),
is defined by

〈F(f), φ〉 = 〈F(Tf ), φ〉 = 〈Tf ,F−1(φ)〉, φ ∈ S(R).
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Thus from (2.14) we have

〈F(f), φ〉 =

∫
R
f(x)F−1(φ)(x)A(x)dx.

Theorem 4. The generalized Fourier transform F is a topological isomor-
phism from S ′(R) onto itself.

Definition 6. The generalized convolution product of a distribution S in
S ′(R) and a function φ in S(R) (or S in D′(R) and a function φ in D(R)) is
the function S ∗ φ defined by

S ∗ φ(x) = 〈Sy, τxφ(−y)〉, for all x ∈ R. (2.16)

Let u be in D′(R). We define the distribution ΛAu by

〈ΛAu, ψ〉 = −〈u,ΛAψ〉, for all ψ ∈ D(R).

Remark 1. As in the clasical case we have for S in S ′(R) and φ in S(R) (or
S in D′(R) and φ in D(R))

ΛA(S ∗ φ) = (ΛAS) ∗ φ. (2.17)

Proposition 4. We assume that ΛA ∈
{
Dα, lα,L

1
2
A

}
.

i) Let f be in LpA(R), p ∈ [1,∞] and φ in S(R). Then the distribution Tf ∗φ
is given by the function f ∗ φ which belongs to LpA(R).

ii) Let f be in LpA(R), p ∈ [1,∞] and φ1, φ2 in S(R). Then we have

〈Tf ∗ φ1, φ2〉 = 〈f̌ , φ1 ∗ φ̌2〉A, (2.18)

where ȟ(x) = h(−x).
iii) Let f be in LpA(R), p ∈ [1,∞] and φ in S(R). Then we have

F(Tf ∗ φ) = F(Tf )F(φ). (2.19)

Proof. i) Let f be in LpA(R), p ∈ [1,∞] and φ in S(R). From the relations
(2.16), (2.14) and (2.11) we have

∀x ∈ R, Tf ∗ φ(x) = 〈(Tf )y, τxφ(−y)〉,
= 〈f, τxφ(−y)〉A,
= f ∗ φ(x).
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By applying the Proposition 3 ii) we see that Tf ∗ φ belongs to LpA(R).
ii) Let f be in LpA(R), p ∈ [1,∞] and φ1, φ2 in S(R). Then from Fubini-

Tonelli’s theorem the function (x, y) 7→ f(−y)τxφ1(y)φ2(x) is integrable on
R×R with respect to the measure A(y)dy A(x)dx. Thus from Fubini’s theorem
we obtain

〈Tf ∗ φ1, φ2〉 =

∫
R

∫
R
f(−y)τxφ1(y)φ2(x)A(y)dyA(x)dx,

=

∫
R
f(−y)

(∫
R
τyφ1(x)φ2(x)A(x)dx

)
A(y)dy

=

∫
R
f(−y)φ1 ∗ φ̌2(y)A(y)dy,

= 〈f̌ , φ1 ∗ φ̌2〉A.

iii) Let f be in LpA(R), p ∈ [1,∞] and φ in S(R). Then from i) and the
relations (2.12) and (2.18) we have for any ϕ in S(R)

〈F(Tf ∗ φ), ϕ〉 = 〈Tf ∗ φ,F−1(ϕ)〉,
= 〈f̌ , φ ∗ ˇF−1(ϕ)〉A
= 〈f,F−1(F(φ)ϕ)〉A
= 〈F(Tf )F(φ), ϕ〉.

Thus we have the result.

In the following Tf will be denoted by f .

3. Proof of Theorem 1

We break the proof up into three steps. In the first step we consider the
generalized Fourier transform F(f0) of f0, which exists as a distribution.

Lemma 1. Let (fj)j∈Z is a sequence of functions on R satisfying

LAfj = fj+1, (3.20)

|fj(x)| ≤Mj(1 + |x|)a, (3.21)

and

lim
j→∞

Mj

(1 + ε)j
= 0, (3.22)
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for all ε > 0, then

support(F(f0)) ⊂ S =
{
ξ, |P (ξ)| = 1

}
.

Proof. First we show that F(f0) is supported in
{
ξ, |P (ξ)| ≤ 1

}
. To do this

we need to show that 〈F(f0), φ〉 = 0 if φ ∈ D(R) and support(φ)∩
{
ξ, |P (ξ)| ≤

1
}

= ∅. Since support(φ) is compact, there is some r < 1 so that 1
|P (ξ)| ≤ r,

for all ξ ∈ support(φ). Then

〈F(f0), φ〉 = 〈P jF(f0),
φ
P j 〉

= 〈F(LjAf0),
φ
P j 〉

= 〈LjAf0,F−1( φ
P j )〉.

Choose an integerm with 2m ≥ 2a+2α+2. A calculation, using the hypothesis
of the lemma and Cauchy-Schwartz inequality, implies

|〈F(f0), φ〉| ≤
∫

R
|Ljf0(x)||F−1(

φ

P j
)(x)|A(x)dx

≤ Mj

(∫
R

(1 + |x|)2a

(1 + |x|2)m
A(x)dx

) 1
2
(∫

R
(1 + |x|2)m|F−1(

φ

P j
)(x)|2A(x)dx

) 1
2

≤ CMj

(∫
R
(1 + |x|2)m|F−1(

φ

P j
)(x)|2A(x)dx

) 1
2
.

Since φ is supported in
{
ξ, |P (ξ)| ≥ 1 + ε

}
for some fixed ε > 0, it is not

hard to prove that the right-hand side of this goes to zero as j → ∞ and so
〈F(f0), φ〉 = 0. To complete the proof we need to show that F(f0) is also

supported in
{
ξ, |P (ξ)| ≥ 1

}
, which means 〈F(f0), φ〉 = 0 if φ is supported

in
{
ξ, |P (ξ)| ≤ 1

}
. Here we use (3.20) to obtain

〈F(f0), φ〉 = 〈F(f−j), P
jφ〉

and the argument proceeds as before.

The next step in the proof we assume firstly that −1 is not a value of
P (ξ), and show that LAf0 = f0.
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Lemma 2. There exists an integer N such that

(P − 1)N+1F(f0) = 0. (3.23)

Proof. From the growth conditions on the sequence (fj)j∈Z, Lemma 1, and
the assumption that P (ξ) 6= −1, we obtain

support(F(f0)) ⊂
{
ξ, P (ξ) = 1

}
.

As F(f0) is a continuous linear functional on S(R), there is a constant C and
integers m and N so that

|〈F(f0), φ〉| ≤ C||φ||N,m (3.24)

for all φ ∈ S(R) when the topology on the space S(R) is defined by the
seminorms

||φ||N,m = sup
x∈R

∑
n≤N

(1 + |x|)m|Λn
Aφ(x)|.

Thus a distribution F(f0) is of order ≤ N . For this N we want to prove that

(P − 1)N+1F(f0) = 0.

To simplify notation set Q := (P−1). Then we need to show, for any compactly
supported C∞ function φ, that

〈QN+1F(f0), φ〉 = 〈F(f0), Q
N+1φ〉 = 0.

Let g : R → [0, 1] be a C∞ function with g = 1 on [−1
2
, 1

2
] and g = 0 outside

(−1, 1).
Set gr(t) := g( t

r
), Qr = gr(Q)QN+1φ. Then Qr = QN+1φ in a neighborhood of

supportF(f0) ⊂
{
ξ : Q(ξ) = 0

}
=
{
ξ : P (ξ) = 1

}
.

Thus by (3.24) we have

|〈F(f0), Q
N+1φ〉| = |〈F(f0), Qr〉| ≤ C||Qr||N,m.

We proceed as in [8] to prove that ||Qr||N,m → 0 as r → 0. Thus (3.23) is
proved.
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Conclusion of the proof of Theorem 1
Inverting the generalized Fourier transform in (3.23) yields that

(LA − 1)N+1f0 = 0. (3.25)

This equation implies

span
{
f0, f1, f2, ...

}
= span

{
f0, LAf0, L

2
Af0, ...

}
= span

{
f0, LAf0, L

2
Af0, ...L

N
Af0

}
We shall now show that we can takeN = 0 in (3.25). If not then (LA−1)f0 6= 0.
Let p be the largest positive integer so that (LA − 1)pf0 6= 0. Clearly p ≤ N.
Thus

f := (LA − 1)p−1f0 ∈ span
{
f0, f1, ..., fN

}
will satisfy

(LA − 1)2f = 0 and (LA − 1)f 6= 0. (3.26)

Write
f = a0f0 + ...+ aNfN ,

for constants a0, ..., aN . Then

LjAf = a0fj + ...+ aNfN+j.

If
Cj = |a0|Mj + ...+ |aN |Mj+N ,

then this and (1.2) imply

|LjAf(x)| ≤ Cj(1 + |x|)a. (3.27)

By (1.3) these satisfy the sublinear growth condition

lim
j→∞

Cj
j

= 0. (3.28)

An induction using (3.26) implies for j ≥ 2 that

LjAf = jLAf − (j − 1)f = j(LA − 1)f + f.

Thus

|(LA − 1)f(x)| ≤ 1

j
|LjAf(x)|+ |f(x)|

j
≤ Cj

j
(1 + |x|)a +

|f(x)|
j

.
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Letting j → ∞ and using (3.28) implies (LA − 1)f = 0. But this contradicts
(3.26). Consequently, N = 0 in (3.25). This completes the proof in the case
that −1 is not in the range of P .

In the case that 1 is not in the range of P we apply the same argument
to −LA to conclude LAf0 = −f0. In the general case, let LA = L2

A. Then
F(LAf)(ξ) = P (ξ)2F(f)(ξ). LAf2p = f2(p+1) and P (ξ)2 6= −1. Thus we can
(as before) conclude, for the sequence (f2p)p∈Z that

LAf0 = L2
Af0 = f0.

Set f+ = 1
2
(f0 +LAf0) and f− = 1

2
(f0−LAf0). Then f0 = f+ + f−, LAf+ = f+

and LAf− = −f−. This completes the proof of Theorem 1.

Remark 2. If we take P (y) = −|y|2, then LA = 4A and Theorem 1 give
4Af0 = −f0. This characterizes eigenfunctions f of generalized Laplace op-
erator 4A with polynomial growth in terms of the size of the powers 4j

Af ,
−∞ < j < ∞. It also generalizes results of Roe [14] (where A′

A
= 0, a = 0,

Mj = M , and d = 1) and Strichartz [17](where A′

A
= 0, a = 0, Mj = M , for

d = 1).

As an application of the above theorem we have the following corollary.

Corollary 1. We assume that ΛA ∈
{
Dα, lα,L

1
2
A

}
. If in Theorem 1 , we

replace (1.2) by
||fj||Lp

A(R) ≤Mj, (3.29)

where (Mj)j∈Z satisfies the sublinear growth condition

lim
j→∞

M|j|
j

= 0.

Then f0 = f+ + f− where LAf+ = f+ and Lf− = −f−. If 1 (or -1) is not in
the range of P then f+ = 0 (or f− = 0).

Proof. Let t > 0. Consider the functions Fj,t(x) = (fj ∗ Et)(x) where Et
the heat kernel given by :

Et(y) = F−1
(

exp(−|.|
2

4t
)
)

(y), for all y ∈ R. (3.30)
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¿From the relation (2.13) we deduce that

|Fj,t(x)| ≤ 4||fj||Lp
A(R)||Et||Lp′

A (R)
, for all x ∈ R

where p′ is the conjugate exponent of p. On the other hand

LAFj,t = Fj+1,t, j ∈ Z.

Thus {Fj,t}j∈Z verifies the relations (1.2) and (1.3) of Theorem 1 and then the
result is immediately.

In the space of distributions D′(R), we use the regularization of distribu-
tions to obtain the analogue of Theorem 1.

Theorem 5. Let P (ξ) =
∑
ν

aνξ
ν be a polynomial in ξ with real coefficients

and let

LA = P (−iΛA) =
∑
ν

(−i)νaνΛν
A.

Let uj ∈ D′(R), j ∈ Z. Suppose that for every compact subset K of R, there
exist a nonnegative integer N and a positive constants Mj := Mj(K,N) such
that

i) LAuj = uj+1.

ii) ||uj ∗ ϕ||L∞A (R) ≤ Mj

∑
n≤N

sup
x∈K
|Λn

Aϕ(x)| for all j ∈ Z and all ϕ ∈ D(R),

where (Mj)j∈Z satisfies the sublinear growth condition

lim
j→∞

M|j|
j

= 0.

Then u0 = u+ + u− where LAu+ = u+ and LAu− = −u−. If 1 (or -1) is not
in the range of P then u+ = 0 (or u− = 0).

Proof. Let χ ∈ D(R) such that

∫
R
χ(x)A(x)dx = 1, and set χn(x) =

A(nx)
nA(x)

χ(nx), n ∈ N∗. ¿From the relation (2.14) we have

〈χn, ϕ〉A =

∫
R
χ(x)ϕ(

x

n
)A(x)dx−→

n→∞

(∫
R
χ(x)A(x)dx

)
ϕ(0) = 〈δ, ϕ〉A.
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Then χn → δ in D′(R), and supportχn ⊂ support χ for all n. For each
j ∈ Z, uj ∗χn ∈ E(R) which is a regularization of uj and uj ∗χn → uj in D′(R)
as n→∞. Let hj,n := uj ∗ χn. Using the relation (2.17) we obtain

LAhj,n = (LAuj) ∗ χn = uj+1 ∗ χn.

Then for K := supportχ and all j ∈ Z, it follows from the hypothesis (i) and
(ii) that

LAhj,n = uj+1 ∗ χn = hj+1,n

||hj,n||L∞A (R) ≤ M̃j,
(3.31)

where
M̃j := Mj

∑
m≤N

sup
x∈K
|Λm

Aχn(x)|

is a positive constant. It then follows from (3.31) and Theorem 1 that un =
un,+ + un,− where LAun,+ = un,+ and LAun,− = −un,−. If 1 (or -1) is not in
the range of P then un,+ = 0 (or un,− = 0). Letting n → ∞, we obtain the
result.

Theorem 6. If, in Theorem 1, we replace (1.3) with

lim
j→∞

M|j|
(1 + ε)j

= 0, (3.32)

for all j > 0, then the span of (fj)j is finite dimensional. Moreover, f0 =
f+ + f−, where, for some integer N , (LA − 1)Nf+ = 0 and (LA + 1)Nf− = 0.
Thus f+ (or f− ) is a generalized eigenfunction of LA with eigenvalue 1 (or
−1).

The proof will be based on the following result from linear algebra (cf.
[2], Chapter 10).

Lemma 3. Let X be a finite dimensional complex vector space, and let
T : X → X be a linear map with eigenvalues λ1, ..., λp. Then X = X1⊕...⊕Xp,
where Xj = ker((T − λj)N) and dimX = N .

We first prove Theorem 3 under the assumption that P (ξ) 6= −1. Using
the growth condition (3.32) and the Lemma 3, we may still conclude that

support(F(f0)) ⊂ S =
{
ξ : P (ξ) = 1

}
.
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But then, as before, we can conclude that (3.25) holds. But this is enough to
complete the proof in this case. A similar argument shows that if P (ξ) 6= 1,
then (LA + 1)Nf0 = 0.

In the general case we again let LA = L2
A and P0 = P 2. Then P0(ξ) 6= −1

and the span of (f2j)j is finite dimensional. The map LA takes the span of
(f2j)j onto the span of (f2j+1)j. Thus X is finite dimensional. Any f ∈ X will
have support(F(f)) inside the set defined by P (ξ) = ±1. From this it is not
hard to show the only possible eigenvalues of LA restricted to X are 1 and −1.
The result now follows from the last lemma.
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