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1. Introduction

As an extended class of pseudo Ricci symmetric manifolds, very recently M.
C. Chaki and T. Kawaguchi [4] introduced the notion of almost pseudo Ricci
symmetric manifolds. A Riemannian manifold (Mn, g) is called an almost
pseudo Ricci symmetric manifold if its Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

(∇XS)(Y, Z) = [A(X)+B(X)]S(Y, Z)+A(Y )S(X,Z)+A(Z)S(Y,X), (1.1)

where ∇ denotes the operator of covariant differentiation with respect to the
metric tensor g and A, B are nowhere vanishing 1-forms such that g(X, ρ) =
A(X) and g(X,µ) = B(X) for all X and ρ, µ are called the basic vector fields
of the manifold. The 1-forms A and B are called associated 1-forms and an
n-dimensional manifold of this kind is denoted by A(PRS)n.

If, in particular, B = A then (1.1) reduces to

(∇XS)(Y, Z) = 2A(X)S(Y, Z) + A(Y )S(X,Z) + A(Z)S(Y,X),

which represents a pseudo Ricci symmetric manifold [3]. In [4] Chaki and
Kawaguchi also studied conformally flat A(PRS)n. In 1968 Yano and Sawaki
[10] defined and studied a tensor field W of type (1, 3) which includes both
the conformal curvature tensor C and the concircular curvature tensor C̃ as
special cases and is called the quasi-conformal curvature tensor. The present
paper deals with a study of quasi-conformally flat A(PRS)n.

The paper is organized as follows. Section 2 is concerned with prelimi-
naries. Section 3 is devoted to the study of quasi-conformally flat A(PRS)n
(since the conformal curvature tensor vanishes identically for n = 3, we assume
the condition n > 3 throughout the paper) and proved that such a manifold
is of quasi-constant curvature. It is shown that in a quasi-conformally flat
A(PRS)n, the vector field λ defined by g(X,λ) = T (X) is a unit proper con-
circular vector field and also it is proved that such a non-Einstein manifold is
a subprojective manifold in the sense of Kagan [1]. Again it is proved that a
non-Einstein quasi-conformally flat A(PRS)n can be expressed as the warped

product I×ep

∗
M , where (

∗
M,

∗
g) is an (n−1) dimensional Riemannian manifold.
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The notion of special conformally flat manifold which generalizes the no-
tion of subprojective manifold was introduced by Chen and Yano [6]. In [6]
the authors also introduced the notion of K-special conformally flat manifold
which generalizes the notion of special conformally flat manifold as well as
subprojective manifold. In this section it is shown that a non-Einstein quasi-
conformally flat A(PRS)n with non-constant and negative scalar curvature is
a K-special conformally flat manifold and also it is proved that such a simply
connected manifold with non-constant and negative scalar curvature can be
isometrically immersed in an Euclidean manifold En+1 as a hypersurface.

2. Preliminaries

In this section we will obtain some formulas for an A(PRS)n which will be
required in the sequel.
Let Q be the symmetric endomorphism of the tangent bundle of the manifold
corresponding to the Ricci tensor S, i.e., S(X, Y ) = g(QX, Y ) for all vector
fields X, Y .

Let {ei : i = 1, 2, · · · , n} be an orthonormal basis of the tangent space at
any point of the manifold. Then setting Y = Z = ei in (1.1) and then taking
summation over i, 1 ≤ i ≤ n, we obtain

dr(X) = r[A(X) +B(X)] + 2A(QX), (2.1)

where r is the scalar curvature of the manifold.
Again from (1.1) we get

(∇XS)(Y, Z)− (∇Y S)(X,Z) = B(X)S(Y, Z)−B(Y )S(X,Z). (2.2)

Setting Y = Z = ei in (2.2) and then taking summation over i, 1 ≤ i ≤ n, we
obtain

dr(X) = 2rB(X)− 2B(QX). (2.3)

If the scalar curvature r is constant then

dr(X) = 0 for all X. (2.4)

By virtue of (2.4), (2.3) yields

B(QX) = rB(X), (2.5)
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i.e.,
S(X,µ) = rg(X,µ). (2.6)

This leads to the following:

Proposition 2.1. In an A(PRS)n of constant scalar curvature, r is an eigen-
value of the Ricci tensor S corresponding to the eigenvector µ.

The quasi-conformal curvature tensor W of type (1, 3) is defined by [10]

W (X, Y )Z = −(n− 2)bC(X, Y )Z + [a+ (n− 2)b]C̃(X, Y )Z, (2.7)

where a, b are arbitrary constants not simultaneously zero and C, C̃ are respec-
tively the conformal and concircular curvature tensor. Using the expressions
of C and C̃ in (2.7) we get

W (X, Y )Z

= aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX (2.8)

−g(X,Z)QY ]− r

n

(
a

n− 1
+ 2b

)
[g(Y, Z)X − g(X,Z)Y ].

Differentiating (2.8) covariantly and contracting we obtain

(divW )(X, Y )Z

= a(divR)(X, Y )Z + b[(∇XS)(Y, Z)− (∇Y S)(X,Z)] (2.9)

−2a− (n− 1)(n− 4)b

2n(n− 1)
[dr(X)g(Y, Z)− dr(Y )g(X,Z)],

where ‘div’ denotes the divergence.
Again it is known that in a Riemannian manifold, we have

(divR)(X, Y )Z = (∇XS)(Y, Z)− (∇Y S)(X,Z).

Consequently by virtue of the above relation, (2.9) takes the form

(divW )(X, Y )Z

= (a+ b)[(∇XS)(Y, Z)− (∇Y S)(X,Z)] (2.10)

−2a− (n− 1)(n− 4)b

2n(n− 1)
[dr(X)g(Y, Z)− dr(Y )g(X,Z)].
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3. quasi-conformally flat A(PRS)n

Let us consider a quasi-conformally flat A(PRS)n. Then we have

(divW )(X, Y )Z = 0

and hence (2.10) yields

(a+ b)[(∇XS)(Y, Z)− (∇Y S)(X,Z)] (3.1)

=
2a− (n− 1)(n− 4)b

2n(n− 1)
[dr(X)g(Y, Z)− dr(Y )g(X,Z)].

By virtue of (2.2) and (2.3), it follows from (3.1) that

B(X)S(Y, Z)−B(Y )S(X,Z) =
2a− (n− 1)(n− 4)b

n(n− 1)(a+ b)
[r{B(X)g(Y, Z) (3.2)

−B(Y )g(X,Z)} − {B(QX)g(Y, Z)−B(QY )g(X,Z)}],

provided that a+ b 6= 0.
Putting Z = µ in (3.2) we obtain

B(X)B(QY )−B(Y )B(QX) = 0, (3.3)

provided a+ b 6= 0 and (n+ 1)a+ 2(n− 1)b 6= 0.
Let B(QX) = g(QX,µ) = P (X) = g(X, ξ) for all X. Then from (3.3) we get

B(X)P (Y ) = B(Y )P (X), (3.4)

which implies that the vector field µ and ξ are co-directional. This leads to
the following:

Theorem 3.1. In a quasi-conformally flat A(PRS)n with a + b 6= 0 and
(n+1)a+2(n−1)b 6= 0, the vector field µ and ξ are co-directional. If a+b = 0
and (n+ 1)a+ 2(n− 1)b 6= 0, then using (2.3) in (3.1), it can be easily shown
that the relation (3.4) holds. Hence we can state the following:

Corollary 3.1. In a quasi-conformally flat A(PRS)n with a + b = 0 and
(n+ 1)a+ 2(n− 1)b 6= 0, the vector field µ and ξ are co-directional.
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Again, if (n+ 1)a+ 2(n− 1)b = 0 and a+ b 6= 0, then using (2.2) in (3.1),
it follows that (3.4) holds. Hence we can state the following:

Corollary 3.2. In a quasi-conformally flat A(PRS)n with a + b 6= 0 and
(n+ 1)a+ 2(n− 1)b = 0, the vector field µ and ξ are co-directional.

It may be noted that in a quasi-conformally flat A(PRS)n, the relations
a+ b = 0 and (n+ 1)a+ 2(n− 1)b = 0 can not hold simultaneously as a and
b are not simultaneously zero.

Again setting Y = Z = ei in (3.2) and then taking summation over i,
1 ≤ i ≤ n, we obtain

B(QX) = rB(X), provided that a+ (n− 2)b 6= 0, (3.5)

i.e.,

S(X,µ) = rg(X,µ). (3.6)

Hence we can state the following:

Theorem 3.2. In a quasi-conformally flat A(PRS)n with a + b 6= 0 and
a+ (n− 2)b 6= 0, r is an eigenvalue of the Ricci tensor S corresponding to the
eigenvector µ. If a+ b = 0, then it follows from (3.2) that (3.6) holds provided
that 2a− (n− 1)(n− 4)b 6= 0. Hence we can state the following:

Corollary 3.3. In a quasi-conformally flat A(PRS)n with a + b = 0 and
2a− (n− 1)(n− 4)b 6= 0, r is an eigenvalue of the Ricci tensor S correspond-
ing to the eigenvector µ.

Also for 2a− (n− 1)(n− 4)b = 0 and a+ b 6= 0, we can state the following:

Corollary 3.4. In a quasi-conformally flat A(PRS)n with a + b 6= 0 and
2a− (n− 1)(n− 4)b = 0, r is an eigenvalue of the Ricci tensor S correspond-
ing to the eigenvector µ.

In view of (3.5), (3.2) yields

B(X)S(Y, Z)−B(Y )S(X,Z) = 0. (3.7)
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Setting X = µ in (3.7) we get

S(Y, Z) =
1

B(µ)
B(Y )B(QZ). (3.8)

In view of (3.5), (3.8) yields

S(Y, Z) = rT (Y )T (Z), (3.9)

where T (X) = g(X,λ) = 1√
B(µ)

B(X), λ being a unit vector field associated

with the nowhere vanishing 1-form T .

From (3.9), it follows that if r = 0, then S(Y, Z) = 0, which is inadmissible
by the definition of A(PRS)n. Hence we can state the following:

Theorem 3.3. In a quasi-conformally flat A(PRS)n with a + b 6= 0 and
a+ (n−2)b 6= 0, the scalar curvature can not vanish and the Ricci tensor is of
the form (3.9). As a generalization of the manifold of constant curvature, the
notion of the manifold of quasi-constant curvature arose during the study of
conformally flat hypersurfaces by Chen and Yano [5]. A Riemannian manifold
(Mn, g)(n > 3) is said to be the manifold of quasi-constant curvature [5] if it
is conformally flat and its curvature tensor R of type (0, 4) is of the form:

R(X, Y, Z, U) = a1[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)] (3.10)

+a2[g(Y, Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+g(X,U)A(Y )A(Z)− g(Y, U)A(X)A(Z)],

where A is a nowhere vanishing 1-form and a1, a2 are scalars of which a2 6= 0.
Now from (2.8) it follows that in a quasi-conformally flat A(PRS)n, the cur-
vature tensor R of type (0, 4) is of the following form:

R(X, Y, Z, U) = − b
a

[S(Y, Z)g(X,U)− S(X,Z)g(Y, U) (3.11)

+S(X,U)g(Y, Z)− S(Y, U)g(X,Z)]

+
r

na

(
a

n− 1
+ 2b

)
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

for a 6= 0.
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Using (3.9) in (3.11) we obtain

R(X, Y, Z, U) = ã[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)] (3.12)

+b̃[g(X,U)T (Y )T (Z)− g(Y, U)T (X)T (Z)

+g(Y, Z)T (X)T (U)− g(X,Z)T (Y )T (U)]

for a 6= 0, where ã = r
na

( a
n−1

+ 2b) and b̃ = − br
a

are non-zero scalars.
By virtue of (3.10), it follows from (3.12) that a quasi-conformally flatA(PRS)n
is a manifold of quasi-constant curvature. This leads to the following:

Theorem 3.4. Every quasi-conformally flat A(PRS)n with a 6= 0, a + b 6= 0
and a+(n−2)b 6= 0 is a manifold of quasi-constant curvature. Again from (3.9)
we have

(∇XS)(Y, Z) = dr(X)T (Y )T (Z) + r[(∇XT )(Y )T (Z) + T (Y )(∇XT )(Z)].
(3.13)

Using (3.13) in (3.1) we obtain

(a+ b)[dr(X)T (Y )T (Z)− dr(Y )T (X)T (Z)] (3.14)

+r[(∇XT )(Y )T (Z)

+T (Y )(∇XT )(Z)− (∇Y T )(X)T (Z)− T (X)(∇Y T )(Z)]

=
2a− (n− 1)(n− 4)b

2n(n− 1)
[dr(X)g(Y, Z)− dr(Y )g(X,Z)].

Setting Y = Z = ei in (3.14) and taking summation over i, 1 ≤ i ≤ n, we get

(a+ b)dr(λ)T (X) + r{(∇λT )(X) + T (X)
n∑
i=1

(∇ei
T )(ei)} (3.15)

=
2(n− 1)a+ (n2 − 3n+ 4)b

2n
dr(X).

Again putting Y = Z = λ in (3.14) we obtain

r(a+ b)(∇λT )(X) =
2(n2 − n− 1)a+ (n− 1)(3n− 4)b

2n(n− 1)
[dr(X)− dr(λ)T (X)].

(3.16)
Using (3.16) in (3.15) we get

r(a+ b)T (X)
n∑
i=1

(∇ei
T )(ei) + (n− 2)Edr(X) + Edr(λ)T (X) = 0, (3.17)
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where E = 2a−(n−1)(n−4)b
2n(n−1)

.

Substituting X = λ in (3.17) we get

r(a+ b)
n∑
i=1

(∇ei
T )(ei) = −(n− 1)Edr(λ). (3.18)

From (3.17) and (3.18) it follows that

dr(X) = dr(λ)T (X), provided 2a− (n− 1)(n− 4)b 6= 0. (3.19)

Again plugging Z = λ in (3.14) and then using (3.19) we obtain

r(a+ b){(∇XT )(Y )− (∇Y T )(X)} = 0,

which implies that

(∇XT )(Y )− (∇Y T )(X) = 0, since r 6= 0 and a+ b 6= 0. (3.20)

The relation (3.20) implies that the 1-form T is closed.
In view of (3.19) it follows from (3.16) that

(∇λT )(X) = 0, provided a+ b 6= 0. (3.21)

which implies that ∇λλ = 0 and hence we can state the following:

Theorem 3.5. In a quasi-conformally flat A(PRS)n with a + b 6= 0, a +
(n− 2)b 6= 0 and 2a− (n− 1)(n− 4)b 6= 0, the integral curves of the generator
λ are geodesics. Also setting Y = λ in (3.14) we obtain by virtue of (3.19)
and (3.21) that

(∇XT )(Z) =
E

r(a+ b)
dr(λ)[T (X)T (Z)− g(X,Z)] for a+ b 6= 0. (3.22)

Let us now consider a non-zero scalar function f = E
r(a+b)

dr(λ), where the
scalar curvature r is non-constant. Then we have

∇Xf = − E

r2(a+ b)
dr(λ)dr(X) +

E

r(a+ b)
d2r(λ,X). (3.23)

From (3.19) it follows that

d2r(X, Y ) = d2r(λ, Y )T (X) + dr(λ)(∇Y T )(X). (3.24)
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Again in a Riemannian manifold the second covariant differential of any func-
tion h ∈ C∞(M) is defined by

d2h(X, Y ) = X(Y h)− (∇XY )h for X, Y ∈ χ(M),

which implies that

d2h(X, Y ) = d2h(Y,X) for all X, Y ∈ χ(M)

and hence (3.24) implies that

d2r(λ, Y )T (X) = d2r(λ,X)T (Y ). (3.25)

Replacing Y by λ in (3.25) we have

d2r(λ,X) = d2r(λ, λ)T (X) = −ψT (X), (3.26)

where ψ = −d2r(λ, λ) is a scalar function.
Using (3.19) and (3.26) in (3.23) we obtain

∇Xf = σT (X), (3.27)

where

σ = − E

r2(a+ b)
[rψ + {dr(λ)}2] is a non-zero scalar.

We now consider an 1-form ω given by

ω(X) =
E

r(a+ b)
dr(λ)T (X) = fT (X).

Then by virtue of (3.20) and (3.27) we have

dω(X, Y ) = 0.

Hence the 1-form ω is closed. Therefore (3.22) can be rewritten as

(∇XT )(Z) = −fg(X,Z) + ω(X)T (Z), (3.28)

which implies that the vector field λ corresponding to the 1-form T defined
by g(X,λ) = T (X) is a proper concircular vector field ([8],[9]). Hence we can
state the following:
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Theorem 3.6. In a quasi-conformally flat A(PRS)n of non-constant scalar
curvature with a + b 6= 0, a + (n− 2)b 6= 0 and 2a− (n− 1)(n− 4)b 6= 0, the
vector field λ defined by g(X,λ) = T (X) is a unit proper concircular vector
field. If, in particular, a+ b = 0 then from (3.1) we get

dr(X)g(Y, Z)− dr(Y )g(X,Z) = 0,

which yields
dr(X) = 0 for all X, (3.29)

provided 2a − (n − 1)(n − 4)b 6= 0. This means that the scalar curvature of
the quasi-conformally flat A(PRS)n is constant.
Putting Y = Z = ei in (3.13) and taking summation over i, 1 ≤ i ≤ n, we
obtain by virtue of (3.29) that

(∇λT )(X) + T (X)
n∑
i=1

(∇ei
T )(ei) = 0, (3.30)

which implies for X = ρ that

n∑
i=1

(∇ei
T )(ei) = 0.

Using this relation in (3.30) we get

(∇λT )(X) = 0. (3.31)

Setting Y = λ in (3.13) and then using (3.30) and (3.31) we obtain

(∇λS)(X,Z) = 0 for all X,Z,

which implies that the manifold under consideration is Ricci symmetric along
the direction of the generator λ. This leads to the following:

Corollary 3.5. A quasi-conformally flat A(PRS)n with 2a−(n−1)(n−4)b 6= 0
and a + b = 0 is of constant scalar curvature and Ricci symmetric along the
direction of the generator λ.
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Again if 2a− (n− 1)(n− 4)b = 0 and a+ b 6= 0, then (3.13) implies that

(∇XS)(Y, Z) = (∇Y S)(X,Z) for all X, Y, Z, (3.32)

which means that the Ricci tensor S is of Codazzi type [7] and hence

dr(X) = 0 for all X. (3.33)

Hence (3.14) takes the form

(∇XT )(Y )T (Z) + T (Y )(∇XT )(Z)− (∇Y T )(X)T (Z)− T (X)(∇Y T )(Z) = 0.
(3.34)

Putting Z = λ in (3.34) we get the relation (3.20).
Also for Y = λ, (3.20) implies that

(∇λT )(X) = 0 for all X. (3.35)

Using this relation we obtain from (3.34) (for Y = λ) that

(∇XT )(Z) = 0 for all X,Z.

This implies that

g(Z,∇Xλ) = 0 for all X,Z.

Since g is non-degenerate, the last relation yields

(∇Xλ) = 0 for all X,

which means that λ is a parallel vector field. Thus we can state the following:

Corollary 3.6. In a quasi-conformally flat A(PRS)n with 2a − (n − 1)(n −
4)b = 0 and a+ b 6= 0, the Ricci tensor is of Codazzi type and the vector field
λ defined by g(X,λ) = T (X) is a unit parallel vector field.

Remark: It may be noted that in a quasi-conformally flat A(PRS)n, the
cases 2a − (n − 1)(n − 4)b = 0 and a + b = 0 can not occur simultaneously.
For, if they occur simultaneously then we have

a = −b and a =
(n− 1)(n− 4)

2
b.
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This together implies that (since n > 3) a = 0 = b, which is inadmissible, by
the definition of quasi-conformal curvature tensor.

In [2] Amur and Maralabhavi proved that a quasi-conformally flat Rie-
mannian manifold is either conformally flat or Einstein. We now consider a
quasi-conformally flat A(PRS)n, which is non-Einstein. Then by [2] such an
A(PRS)n is conformally flat. Again it is known that [1] if a conformally flat
Riemannian manifold (Mn, g)(n > 3) admits a proper concircular vector field
then the manifold is a subprojective manifold in the sense of Kagan. Hence
by virtue of Theorem 3.6, we can state the following:

Theorem 3.7. A non-Einstein quasi-conformally flat A(PRS)n of non-constant
scalar curvature with 2a− (n− 1)(n− 4)b 6= 0, a+ (n− 2)b 6= 0 and a+ b 6= 0
is a subprojective manifold in the sense of Kagan.

In[9] K. Yano proved that in order that a Riemannian manifold admits a
concircular vector field, it is necessary and sufficient that there exists a co-
ordinate system with respect to which the fundamental quadratic differential
form can be written as

ds2 = dx′
2

+ ep
∗
gij dx

idxj,

where
∗
gij= gij[x

k] are the functions of xk only (i, j, k = 2, 3, · · · , n) and
p = p(x′) is a non-constant function of x′ only. Hence if a A(PRS)n is con-

formally flat, then it is a warped product I×ep

∗
M , where (

∗
M,

∗
g) is an (n− 1)

dimensional Riemannian manifold. Hence we can state the following:

Theorem 3.8. A non-Einstein quasi-conformally flat A(PRS)n of non-constant
scalar curvature with a+ b 6= 0, a+ (n− 2)b 6= 0 and 2a− (n− 1)(n− 4)b 6= 0

can be expressed as a warped product I×ep

∗
M , where (

∗
M,

∗
g) is an (n − 1)

dimensional Riemannian manifold.

Let us consider a quasi-conformally flat A(PRS)n. In [6] Chen and Yano
introduced the notion of special conformally flat manifold which generalizes
the notion of subprojective manifold. According to them a conformally flat
Riemannian manifold is said to be a special conformally flat manifold if the
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tensor field H of type (0, 2) defined by

H(X, Y ) = − 1

n− 2
S(X, Y ) +

r

2(n− 1)(n− 2)
g(X, Y ) (3.36)

is expressible in the form

H(X, Y ) = −α
2

2
g(X, Y ) + β(Xα)(Y α), (3.37)

where α, β are two scalars such that α is positive.
In view of (3.9), (3.36) can be written as

H(X, Y ) = − r

n− 2
T (X)T (Y ) +

r

2(n− 1)(n− 2)
g(X, Y ). (3.38)

We now put

α2 = − r

(n− 1)(n− 2)
> 0, provided r < 0. (3.39)

Then

2α(Xα) = − dr(X)

(n− 1)(n− 2)
,

which implies by virtue of (3.19) that

2α(Xα) = − dr(λ)T (X)

(n− 1)(n− 2)
.

Hence

T (X)T (Y ) = −4(n− 1)(n− 2)r

δ2
(Xα)(Y α),

where δ = dr(λ). Therefore, by virtue of (3.39), (3.38) can be expressed as

H(X, Y ) = −α
2

2
g(X, Y ) + β(Xα)(Y α),

where β = 4(n−1)r2

δ2
. Hence the manifold under consideration is a special con-

formally flat manifold. Since a non-Einstein quasi-conformally flat manifold is
conformally flat [2], we can state the following:
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Theorem 3.9. A non-Einstein quasi-conformally flat A(PRS)n with non-
constant negative scalar curvature, a+ b 6= 0, a+ (n− 2)b 6= 0 and 2a− (n−
1)(n− 4)b 6= 0 is a special conformally flat manifold.

Also in [6] Chen and Yano proved that every simply-connected special confor-
mally flat manifold can be isometrically immersed in an Euclidean manifold
En+1 as a hypersurface. Therefore by virtue of Theorem 3.9, we can state the
following:

Theorem 3.10. Every simply-connected non-Einstein quasi-conformally flat
A(PRS)n of non-constant negative scalar curvature with a + b 6= 0, a + (n −
2)b 6= 0 and 2a − (n − 1)(n − 4)b 6= 0 can be isometrically immersed in an
Euclidean manifold En+1 as a hypersurface.

The notion of K-special conformally flat manifold which generalizes the no-
tion of special conformally flat manifold as well as subprojective manifold was
introduced by Chen and Yano [6]. According to them a conformally flat man-
ifold is said to be K-special conformally flat manifold if the tensor field H of
type (0, 2) defined in (3.23) is expressible in the form

H(X, Y ) = −K + α2

2
g(X, Y ) + βγπ(X)π(Y ), (3.40)

where (Xα) = βπ(X) on G, G is an open set of Mn defined by

G = {p ∈Mn : β 6= 0}

and π is an 1-form on G, and α, β, γ are scalar functions and K is a constant.

We consider a non-Einstein quasi-conformally flat A(PRS)n. Then such
a manifold is conformally flat. Using (3.9) in (3.36) we obtain (3.38). Let us
now put

K + α2 = − r

(n− 1)(n− 2)
> 0, provided r < 0,

where K is a constant. Then proceeding similarly as before it can be easily
shown that

H(X, Y ) = −K + α2

2
g(X, Y ) + βγπ(X)π(Y ),
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where β = 4(n−1)r2

δ2
, γ = 16r3(n−1)2{r+K(n−1)(n−2)}

δ4
. Thus we can state the fol-

lowing:

Theorem 3.11. A non-Einstein quasi-conformally flat A(PRS)n with non-
constant negative scalar curvature, a+ b 6= 0, a+ (n− 2)b 6= 0 and 2a− (n−
1)(n− 4)b 6= 0 is a K-special conformally flat manifold.
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