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1. Introduction

As an extended class of pseudo Ricci symmetric manifolds, very recently M.
C. Chaki and T. Kawaguchi [4] introduced the notion of almost pseudo Ricci
symmetric manifolds. A Riemannian manifold (M",g) is called an almost
pseudo Ricci symmetric manifold if its Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

(VxS)(Y, Z) = [A(X) + B(X)]S(Y, Z) + A(Y)S(X, Z) + A(Z)S(Y, X), (1.1)

where V denotes the operator of covariant differentiation with respect to the
metric tensor g and A, B are nowhere vanishing 1-forms such that g(X, p) =
A(X) and g(X, p) = B(X) for all X and p, u are called the basic vector fields
of the manifold. The 1-forms A and B are called associated 1-forms and an
n-dimensional manifold of this kind is denoted by A(PRS),,.

If, in particular, B = A then (1.1) reduces to
(VxS)Y,Z) =2A(X)S(Y,Z)+ A(Y)S(X, Z) + A(Z)S(Y, X),

which represents a pseudo Ricci symmetric manifold [3]. In [4] Chaki and
Kawaguchi also studied conformally flat A(PRS),,. In 1968 Yano and Sawaki
[10] defined and studied a tensor field W of type (1, 3) which includes both
the conformal curvature tensor C' and the concircular curvature tensor C' as
special cases and is called the quasi-conformal curvature tensor. The present
paper deals with a study of quasi-conformally flat A(PRS),.

The paper is organized as follows. Section 2 is concerned with prelimi-
naries. Section 3 is devoted to the study of quasi-conformally flat A(PRS),
(since the conformal curvature tensor vanishes identically for n = 3, we assume
the condition n > 3 throughout the paper) and proved that such a manifold
is of quasi-constant curvature. It is shown that in a quasi-conformally flat
A(PRS),, the vector field A\ defined by g(X,\) = T'(X) is a unit proper con-
circular vector field and also it is proved that such a non-Einstein manifold is
a subprojective manifold in the sense of Kagan [1]. Again it is proved that a
non-Einstein quasi-conformally flat A(PRS), can be expressed as the warped

product X » M , where ( M : 5) is an (n—1) dimensional Riemannian manifold.
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The notion of special conformally flat manifold which generalizes the no-
tion of subprojective manifold was introduced by Chen and Yano [6]. In [6]
the authors also introduced the notion of K-special conformally flat manifold
which generalizes the notion of special conformally flat manifold as well as
subprojective manifold. In this section it is shown that a non-Einstein quasi-
conformally flat A(PRS), with non-constant and negative scalar curvature is
a K-special conformally flat manifold and also it is proved that such a simply
connected manifold with non-constant and negative scalar curvature can be
isometrically immersed in an Euclidean manifold E"*! as a hypersurface.

2. Preliminaries

In this section we will obtain some formulas for an A(PRS),, which will be
required in the sequel.

Let @ be the symmetric endomorphism of the tangent bundle of the manifold
corresponding to the Ricci tensor S, ie., S(X,Y) = g(QX,Y) for all vector
fields X, Y.

Let {e; : i =1,2,--- ;n} be an orthonormal basis of the tangent space at
any point of the manifold. Then setting Y = Z = ¢; in (1.1) and then taking
summation over 7, 1 < ¢ < n, we obtain

dr(X) = r[A(X) + B(X)] + 24(QX), (2.1)

where 7 is the scalar curvature of the manifold.
Again from (1.1) we get

(VxS)(Y, 2) = (Vy5)(X, Z) = B(X)S(Y, Z) = B(Y)S(X, Z2).  (2.2)

Setting Y = Z = ¢; in (2.2) and then taking summation over i, 1 < i <n, we
obtain
dr(X) =2rB(X) — 2B(QX). (2.3)

If the scalar curvature r is constant then
dr(X)=0 for all X. (2.4)
By virtue of (2.4), (2.3) yields
B(QX)=rB(X), (2.5)
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ie.,
S(X, ) =rg(X, p). (2.6)
This leads to the following:

Proposition 2.1. In an A(PRS),, of constant scalar curvature, r is an eigen-
value of the Ricci tensor S corresponding to the eigenvector .

The quasi-conformal curvature tensor W of type (1, 3) is defined by [10]

W(X,Y)Z = —(n—2)bC(X,Y)Z + [a+ (n — 2)b]C(X,Y)Z, (2.7)

where a, b are arbitrary constants not simultaneously zero and C, C' are respec-
tively the conformal and concircular curvature tensor. Using the expressions
of C'and C in (2.7) we get

W(X,Y)Z
— aR(X,Y)Z +b[S(Y,Z)X — S(X,2)Y + ¢(Y, Z)QX (2.8)
—4(X,2)QY] — % (n - -+ 2b) 9(Y, 2)X — g(X, Z)Y].

Differentiating (2.8) covariantly and contracting we obtain

(divW)(X,Y)Z

= a(divR)(X,Y)Z +b[(VxS)(Y,Z) — (VyS)(X, Z)] (2.9)
— (22(_711_)(?)_ 4>b[d7‘(X)g(Y, Z) —dr(Y)g(X, Z)],

where ‘div’ denotes the divergence.
Again it is known that in a Riemannian manifold, we have

(divR)(X,Y)Z = (VxS)(Y, Z) — (VyS)(X, Z).
Consequently by virtue of the above relation, (2.9) takes the form
(divW)(X,Y)Z

Y, Z) — (VyS)(X, Z)] (2.10)

(
L2z V= Db a0y, 2) — dr(Y)g(X, 2).
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3. quasi-conformally flat A(PRS),
Let us consider a quasi-conformally flat A(PRS),,. Then we have
(divW)(X,Y)Z =0

and hence (2.10) yields

(a+0)[(VxI(Y, Z) = (VyS)(X, Z)] (3.1)
e (27;(_711_)%_ Pl (xX)g(v, 2) - dr(¥)g(X, 2)].

By virtue of (2.2) and (2.3), it follows from (3.1) that

20 — (n—1)(n —4)b
n(n —1)(a+0)
—B(Y)g(X, Z2)} = {B(QX)g(Y, Z) = B(QY)g(X, 2)}],

B(X)S(Y, Z) - BY)S(X, Z) = H{B(X)g(Y. Z) (3.2)

provided that a + b # 0.
Putting Z = p in (3.2) we obtain

B(X)B(QY) - B(Y)B(QX) = 0, (3.3)

provided a +b # 0 and (n+ 1)a + 2(n — 1)b # 0.
Let B(QX) = g(QX,u) = P(X) = g(X,¢§) for all X. Then from (3.3) we get

B(X)P(Y)=B(Y)P(X), (3.4)

which implies that the vector field p and & are co-directional. This leads to
the following:

Theorem 3.1. In a quasi-conformally flat A(PRS), with a +b # 0 and
(n+1)a+2(n—1)b # 0, the vector field p and & are co-directional. If a+b =0
and (n+ 1)a+ 2(n —1)b # 0, then using (2.3) in (3.1), it can be easily shown
that the relation (3.4) holds. Hence we can state the following:

Corollary 3.1. In a quasi-conformally flat A(PRS), with a +b = 0 and
(n+1)a+2(n — 1)b # 0, the vector field pn and & are co-directional.
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Again, if (n+ 1)a+2(n —1)b =0 and a + b # 0, then using (2.2) in (3.1),
it follows that (3.4) holds. Hence we can state the following:

Corollary 3.2. In a quasi-conformally flat A(PRS), with a +b # 0 and
(n+1)a+ 2(n —1)b =0, the vector field u and & are co-directional.

It may be noted that in a quasi-conformally flat A(PRS),, the relations
a+b=0and (n+1)a+2(n—1)b =0 can not hold simultaneously as a and
b are not simultaneously zero.

Again setting Y = Z = ¢; in (3.2) and then taking summation over i,
1 <i < n, we obtain

B(QX)=rB(X), provided that a + (n —2)b # 0, (3.5)

ie.,

S(X, ) = rg(X, p). (3.6)
Hence we can state the following:
Theorem 3.2. In a quasi-conformally flat A(PRS), with a +b # 0 and
a+(n—2)b#0, ris an eigenvalue of the Ricci tensor S corresponding to the

eigenvector . If a+b = 0, then it follows from (3.2) that (3.6) holds provided
that 2a — (n — 1)(n — 4)b # 0. Hence we can state the following:

Corollary 3.3. In a quasi-conformally flat A(PRS), with a +b = 0 and
2a — (n—1)(n—4)b# 0, r is an eigenvalue of the Ricci tensor S correspond-
ing to the eigenvector L.

Also for 2a — (n—1)(n—4)b = 0 and a+ b # 0, we can state the following:

Corollary 3.4. In a quasi-conformally flat A(PRS), with a +b # 0 and
2a — (n—1)(n—4)b =0, r is an eigenvalue of the Ricci tensor S correspond-
ing to the eigenvector .

In view of (3.5), (3.2) yields

B(X)S(Y,Z) — B(Y)S(X, Z) = 0. (3.7)
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Setting X = u in (3.7) we get

S(Y.2) = s BYV)BQ2) (3.5)

In view of (3.5), (3.8) yields
S(Y. Z) = rT(Y)T(Z), (3.9)
where T(X) = g(X,\) = ———B(X), X being a unit vector field associated

v/ B(w)

with the nowhere vanishing 1-form 7.

From (3.9), it follows that if » = 0, then S(Y, Z) = 0, which is inadmissible
by the definition of A(PRS),. Hence we can state the following:

Theorem 3.3. In a quasi-conformally flat A(PRS), with a +b # 0 and
a+(n—2)b+#0, the scalar curvature can not vanish and the Ricci tensor is of
the form (3.9). As a generalization of the manifold of constant curvature, the
notion of the manifold of quasi-constant curvature arose during the study of
conformally flat hypersurfaces by Chen and Yano [5]. A Riemannian manifold
(M™, g)(n > 3) is said to be the manifold of quasi-constant curvature [5] if it
is conformally flat and its curvature tensor R of type (0, 4) is of the form:

R(X= Y, Z, U) = al[g(Y; Z)Q(Xv U) - g<X7 Z)g(}/, U)] (310>
+aslg(Y, Z)AX)A(U) — g(X, Z)A(Y) A(U)
+9(X, U)A(Y)A(Z) — (Y, U)A(X)A(Z)],

where A is a nowhere vanishing 1-form and aq, ay are scalars of which ay # 0.
Now from (2.8) it follows that in a quasi-conformally flat A(PRS),,, the cur-
vature tensor R of type (0, 4) is of the following form:

ROXY.ZU) = —2IS(Y, 2)g(X,U) ~ S(X, 2)g(¥,0) (311)
(X, U)g(Y,Z) ~ SOV U)g(X, 2)]
b (5 20) Y. 2)9(X. ) = 9(X, 2)g(, V)]

for a # 0.
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Using (3.9) in (3.11) we obtain

R(X,Y,Z,U) = [ (Y, Z2)g(X,U) — g(X, Z)g(Y,U)] (3.12)
+blg(X, U)T(Y)T(Z) — g(Y, U)T(X)T(Z)
+o(Y, Z)T(X)T(U) —9(X, 2)T(Y)T(U)]
for a # 0, where @ = =-(-%5 4 2b) and b= —" are non-zero scalars.

By virtue of (3.10), it follows from (3.12) that a quasi-conformally flat A(PRS),,
is a manifold of quasi-constant curvature. This leads to the following:

Theorem 3.4. Every quasi-conformally flat A(PRS), with a #0, a+b# 0
and a+(n—2)b # 0 is a manifold of quasi-constant curvature. Again from (3.9)
we have

(VxS)(Y, Z) = dr(X)T(Y)T(Z) + r[(VxT)(Y)T(2) + T(Y )(VxT)(2)].

Using (3.13) in (3.1) we obtain

(a+0)[dr(X)T(T(Z) — dr(Y)T(X)T(Z)] (3.14)
+r{(VxT)(Y)T(Z)

+T(Y)(VxT)(2) = (VwT)(X)T(2) = T(X)(VyT)(Z)]

2a — (n —1)(n —4)b

— on(n — 1) [dr(X)g(Y,Z) —dr(Y)g(X, Z)].

Setting Y = Z = ¢; in (3.14) and taking summation over ,1 < i < n, we get

n

(@ +b)dr(N)T(X) + r{(VAT)(X) + T(X) Z(VeiT)(ei)} (3.15)
_ 2(n —1)a + (n? _3n+4)bdr(X)
2n '

Again putting Y = Z = X in (3.14) we obtain
2(n* —n—1)a+ (n—1)(3n — 4)b
2n(n — 1)

r(a+0)(VaT)(X) = [dr(X) — dr(N)T(X)].

(3.16)
Using (3.16) in (3.15) we get

r(a+b0)T(X) ) (Ve T)(e:) + (n— 2)Edr(X) + Edr(NT(X) =0, (3.17)

=1
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where F = W.

Substituting X = X in (3.17) we get

n

r(a+b)> (Ve T)(e:) = —(n— 1)Edr()). (3.18)

i=1
From (3.17) and (3.18) it follows that
dr(X) = dr(\)T(X), provided 2a — (n — 1)(n — 4)b # 0. (3.19)
Again plugging Z = X in (3.14) and then using (3.19) we obtain
r(a+{(VxT)(Y) = (VyT)(X)} =0,
which implies that
(VxT)(Y)— (VyT)(X)=0, sincer#0 and a+b=#0. (3.20)

The relation (3.20) implies that the 1-form T is closed.
In view of (3.19) it follows from (3.16) that

(V,T)(X) =0, provided a+b# 0. (3.21)

which implies that V) A = 0 and hence we can state the following:

Theorem 3.5. In a quasi-conformally flat A(PRS), with a +b # 0, a +
(n—2)b# 0 and 2a — (n—1)(n—4)b # 0, the integral curves of the generator
A are geodesics. Also setting Y = A in (3.14) we obtain by virtue of (3.19)
and (3.21) that

E
(VxT)(Z) = (@< ) dr(N[T(X)T(Z) —g9(X,Z)] fora+b#0. (3.22)
Let us now consider a non-zero scalar function f = T(a—ib)dr()\), where the
scalar curvature r is non-constant. Then we have
Vif = ——2ar(Ndr(X) + —E (), X) (3.23)
T 20+ b) r(a + b) e '

From (3.19) it follows that
r(X,Y) = d*r(\,Y)T(X) + dr(\)(VyT)(X). (3.24)
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Again in a Riemannian manifold the second covariant differential of any func-
tion h € C*°(M) is defined by

d*h(X,Y) = X(Yh)— (VxY)h for X,Y € x(M),
which implies that
d*h(X,Y) = d*n(Y,X) forall X,Y € x(M)
and hence (3.24) implies that
c*r(\Y)T(X) = d*r(\, X)T(Y). (3.25)
Replacing Y by A in (3.25) we have
d*r(\, X) = d*r(\NT(X) = —yT(X), (3.26)

where ) = —d?r(), )\) is a scalar function.
Using (3.19) and (3.26) in (3.23) we obtain

Vxf=oT(X), (3.27)
where
2 .
= _m[“ﬂ + {dr(\)}?] is a non-zero scalar.
We now consider an 1-form w given by
() = 2 _ar(WT(X) = fT(X)
“ ~r(a+b) " o :

Then by virtue of (3.20) and (3.27) we have
dw(X,Y) = 0.
Hence the 1-form w is closed. Therefore (3.22) can be rewritten as
(VxT)(2) = =f9(X, Z) + w(X)T(Z), (3.28)

which implies that the vector field A corresponding to the 1-form T defined
by g(X,\) = T(X) is a proper concircular vector field ([8],[9]). Hence we can
state the following;:
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Theorem 3.6. In a quasi-conformally flat A(PRS), of non-constant scalar
curvature with a +b # 0, a4+ (n —2)b # 0 and 2a — (n — 1)(n — 4)b # 0, the
vector field A defined by g(X,\) = T(X) is a unit proper concircular vector
field. If; in particular, a + b = 0 then from (3.1) we get

dr(X)g(Y, Z) —dr(Y)g(X, Z) = 0,
which yields
dr(X)=0 forall X, (3.29)

provided 2a — (n — 1)(n — 4)b # 0. This means that the scalar curvature of
the quasi-conformally flat A(PRS), is constant.

Putting Y = Z = ¢; in (3.13) and taking summation over i, 1 < ¢ < n, we
obtain by virtue of (3.29) that

n

(VAD)(X) +T(X) Y _(Ve,T)(er) =0, (3.30)

i=1
which implies for X = p that

n

> (Ve T)(es) = 0.
i=1
Using this relation in (3.30) we get
(VaT)(X) = 0. (3.31)
Setting Y = X in (3.13) and then using (3.30) and (3.31) we obtain
(VaS)(X,Z)=0 forall X,Z,

which implies that the manifold under consideration is Ricci symmetric along
the direction of the generator \. This leads to the following:

Corollary 3.5. A quasi-conformally flat A(PRS),, with2a—(n—1)(n—4)b # 0
and a +b = 0 is of constant scalar curvature and Ricci symmetric along the
direction of the generator .
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Again if 2a — (n — 1)(n —4)b = 0 and a + b # 0, then (3.13) implies that
(VxS)(Y, Z) = (VyS)(X,Z) forall XY, Z, (3.32)

which means that the Ricci tensor S is of Codazzi type [7] and hence
dr(X) =0 forall X. (3.33)

Hence (3.14) takes the form

(VxT)Y)T(2) + TY)(VXT)(Z) = (VyT)(X)T(Z) - T(X)(VYT)(Z)(B:BZ-)
Putting Z = A in (3.34) we get the relation (3.20). |
Also for Y = A, (3.20) implies that

(VAT)(X) =0 forall X. (3.35)

Using this relation we obtain from (3.34) (for Y = \) that
(VxT)(Z)=0 forall X,Z.

This implies that
g(Z,NVx\) =0 forall X, Z.

Since ¢ is non-degenerate, the last relation yields
(VxA) =0 forall X,
which means that A is a parallel vector field. Thus we can state the following:

Corollary 3.6. In a quasi-conformally flat A(PRS), with 2a — (n — 1)(n —
4)b =0 and a + b # 0, the Ricci tensor is of Codazzi type and the vector field
A defined by g(X,\) = T(X) is a unit parallel vector field.

Remark: It may be noted that in a quasi-conformally flat A(PRS),, the
cases 2a — (n — 1)(n —4)b = 0 and a + b = 0 can not occur simultaneously.
For, if they occur simultaneously then we have

(n—1)(n—4)
2

b.

a=-b and a=
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This together implies that (since n > 3) a = 0 = b, which is inadmissible, by
the definition of quasi-conformal curvature tensor.

In [2] Amur and Maralabhavi proved that a quasi-conformally flat Rie-
mannian manifold is either conformally flat or Einstein. We now consider a
quasi-conformally flat A(PRS),,, which is non-Einstein. Then by [2] such an
A(PRS),, is conformally flat. Again it is known that [1] if a conformally flat
Riemannian manifold (M™, g)(n > 3) admits a proper concircular vector field
then the manifold is a subprojective manifold in the sense of Kagan. Hence
by virtue of Theorem 3.6, we can state the following:

Theorem 3.7. A non-Einstein quasi-conformally flat A(PRS),, of non-constant
scalar curvature with 2a — (n—1)(n—4)b# 0, a+ (n—2)b# 0 and a+b # 0
s a subprojective manifold in the sense of Kagan.

In[9] K. Yano proved that in order that a Riemannian manifold admits a
concircular vector field, it is necessary and sufficient that there exists a co-
ordinate system with respect to which the fundamental quadratic differential
form can be written as

ds® = da'? + e? gy; da'da,

where gzj: gij[z¥] are the functions of z* only (i,7,k = 2,3,---,n) and
p = p(2’) is a non-constant function of 2’ only. Hence if a A(PRS), is con-
formally flat, then it is a warped product I X ]\*4 , where ( ]\*4 , 5) isan (n —1)
dimensional Riemannian manifold. Hence we can state the following:

Theorem 3.8. A non-FEinstein quasi-conformally flat A(PRS),, of non-constant
scalar curvature with a+b# 0, a+ (n —2)b 7é 0 and 2a — (n —1)(n—4)b#0

can be expressed as a warped product IX.» M where (M g) is an (n — 1)
dimensional Riemannian manifold.

Let us consider a quasi-conformally flat A(PRS),. In [6] Chen and Yano
introduced the notion of special conformally flat manifold which generalizes
the notion of subprojective manifold. According to them a conformally flat
Riemannian manifold is said to be a special conformally flat manifold if the
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tensor field H of type (0, 2) defined by

1
n—2

HX,Y)=———S(X,Y)+ g(X,Y) (3.36)

r
2(n—1)(n—2)
is expressible in the form

2

H(X,Y) = —%g(X, Y) + B(Xa)(Ya), (3.37)

where «, § are two scalars such that « is positive.
In view of (3.9), (3.36) can be written as

r r

H(X,Y) = o 2T(X)T( )+ = (= 2)g(X, Y). (3.38)
We now put
af = — CENCE) >0, provided r < 0. (3.39)
Then (e ar(X)
CENICET)
which implies by virtue of (3.19) that
_ dr(VT(X)
20(Xa) = -2
Hence
4(n—1)(n —2)r
TX)T(Y) = - (Xa)(Ya),

52
where § = dr(\). Therefore, by virtue of (3.39), (3.38) can be expressed as

2

H(X,Y) = =Zg(X.Y) + B(Xa)(Ya),

where 3 = 4("5—21)72. Hence the manifold under consideration is a special con-
formally flat manifold. Since a non-Einstein quasi-conformally flat manifold is
conformally flat [2], we can state the following:
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Theorem 3.9. A non-FEinstein quasi-conformally flat A(PRS), with non-
constant negative scalar curvature, a +b# 0, a + (n —2)b # 0 and 2a — (n —
1)(n —4)b # 0 is a special conformally flat manifold.

Also in [6] Chen and Yano proved that every simply-connected special confor-
mally flat manifold can be isometrically immersed in an Euclidean manifold
E™! as a hypersurface. Therefore by virtue of Theorem 3.9, we can state the
following;:

Theorem 3.10. FEvery simply-connected non-Finstein quasi-conformally flat
A(PRS),, of non-constant negative scalar curvature with a +b # 0, a + (n —
2)b # 0 and 2a — (n — 1)(n — 4)b # 0 can be isometrically immersed in an
Euclidean manifold E™™ as a hypersurface.

The notion of K-special conformally flat manifold which generalizes the no-
tion of special conformally flat manifold as well as subprojective manifold was
introduced by Chen and Yano [6]. According to them a conformally flat man-
ifold is said to be K-special conformally flat manifold if the tensor field H of
type (0, 2) defined in (3.23) is expressible in the form

K 2
H(X,Y)=-~"12

9(X,Y) + fym(X)m(Y), (3.40)
where (Xa) = f7(X) on G, G is an open set of M™ defined by

G=1{pe M :3+0)
and 7 is an 1-form on G, and «, (3, v are scalar functions and K is a constant.

We consider a non-Einstein quasi-conformally flat A(PRS),. Then such
a manifold is conformally flat. Using (3.9) in (3.36) we obtain (3.38). Let us

now put
r

(n—1)(n—2)

K+ao®=— > (0, provided r <0,

where K is a constant. Then proceeding similarly as before it can be easily

shown that

K 2
HX,Y) = -~ *¢

g(X.Y) + Bymn(X)m(Y),
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where § = 4("5—21)’”27 v = 167%(n=1)*{r+ K (n=1)(n=2)}

ST . Thus we can state the fol-

lowing;:

Theorem 3.11. A non-Einstein quasi-conformally flat A(PRS),, with non-
constant negative scalar curvature, a +b # 0, a + (n —2)b # 0 and 2a — (n —
1)(n—4)b# 0 is a K-special conformally flat manifold.

References

[1] T. Adati, On subprojective spaces 111, Tohoku Math. J., 3 (1951), 343~
358.

[2] K. Amur and Y. B. Maralabhavi, On quasi-conformally flat spaces, Tensor
N. S., 31(1977), 194-198.

[3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys.,
15(1988), 526 531.

[4] M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric man-
ifolds, Tensor N. S. 68(2007), 10-14.

[5] B.Y. Chen and K. Yano, Hypersurfaces of conformally flat spaces, Tensor
N. S. 26(1972), 318-322.

[6] B. Y. Chen and K. Yano, Special conformally flat spaces and canal hy-
persurfaces, Tohoku Math. J. 25(1973), 177-184.

[7] D. Ferus, A remark on Codazzi tensors on constant curvature space, Lec-
ture Notes Math., 838, Global Differential Geometry and Global Analysis,
Springer-Verlag, New York, 1981.

[8] K. Yano, Concircular geometry, I, Proc. Imp. Acad. Tokyo, 16 (1940),
195-200.

[9] K. Yano, On the torseforming direction in Riemannian spaces, Proc. Imp.
Acad. Tokyo, 20 (1944), 340-345.



On Quasi-Conformally Flat Almost Pseudo Ricci Symmetric Manifolds 219

[10] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal
transformation group, J. Diff. Geom. 2(1968), 161-184.



