On Quasi-Conformally Flat Almost Pseudo Ricci Symmetric Manifolds *

A. A. Shaikh \dagger S. K. Hui
Department of Mathematics, University of Burdwan, Burdwan - 713104, West Bengal, India.
and
C. S. Bagewadi
Department of Mathematics,Kuvempu University,Jnana Sahyadri,Shankaraghatta - 577451,Karnataka, India.

Received November 11, 2008, Accepted August 10, 2009.

Abstract

The object of the present paper is to study quasi-conformally flat almost pseudo Ricci symmetric manifolds.

Keywords and Phrases: Pseudo Ricci symmetric manifold, Almost pseudo Ricci symmetric manifold, Scalar curvature, Conformally flat, Quasi-conformally flat, Special conformally flat, Concircular vector field, Warped product.

[^0]
1. Introduction

As an extended class of pseudo Ricci symmetric manifolds, very recently M. C. Chaki and T. Kawaguchi [4] introduced the notion of almost pseudo Ricci symmetric manifolds. A Riemannian manifold $\left(M^{n}, g\right)$ is called an almost pseudo Ricci symmetric manifold if its Ricci tensor S of type $(0,2)$ is not identically zero and satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=[A(X)+B(X)] S(Y, Z)+A(Y) S(X, Z)+A(Z) S(Y, X) \tag{1.1}
\end{equation*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g and A, B are nowhere vanishing 1-forms such that $g(X, \rho)=$ $A(X)$ and $g(X, \mu)=B(X)$ for all X and ρ, μ are called the basic vector fields of the manifold. The 1-forms A and B are called associated 1 -forms and an n-dimensional manifold of this kind is denoted by $A(P R S)_{n}$.

If, in particular, $B=A$ then (1.1) reduces to

$$
\left(\nabla_{X} S\right)(Y, Z)=2 A(X) S(Y, Z)+A(Y) S(X, Z)+A(Z) S(Y, X)
$$

which represents a pseudo Ricci symmetric manifold [3]. In [4] Chaki and Kawaguchi also studied conformally flat $A(P R S)_{n}$. In 1968 Yano and Sawaki [10] defined and studied a tensor field W of type $(1,3)$ which includes both the conformal curvature tensor C and the concircular curvature tensor \tilde{C} as special cases and is called the quasi-conformal curvature tensor. The present paper deals with a study of quasi-conformally flat $A(P R S)_{n}$.

The paper is organized as follows. Section 2 is concerned with preliminaries. Section 3 is devoted to the study of quasi-conformally flat $A(P R S)_{n}$ (since the conformal curvature tensor vanishes identically for $n=3$, we assume the condition $n>3$ throughout the paper) and proved that such a manifold is of quasi-constant curvature. It is shown that in a quasi-conformally flat $A(P R S)_{n}$, the vector field λ defined by $g(X, \lambda)=T(X)$ is a unit proper concircular vector field and also it is proved that such a non-Einstein manifold is a subprojective manifold in the sense of Kagan [1]. Again it is proved that a non-Einstein quasi-conformally flat $A(P R S)_{n}$ can be expressed as the warped product $I \times{ }_{e^{p}} \stackrel{*}{M}$, where $(\stackrel{*}{M}, \stackrel{*}{g})$ is an $(n-1)$ dimensional Riemannian manifold.

The notion of special conformally flat manifold which generalizes the notion of subprojective manifold was introduced by Chen and Yano [6]. In [6] the authors also introduced the notion of K-special conformally flat manifold which generalizes the notion of special conformally flat manifold as well as subprojective manifold. In this section it is shown that a non-Einstein quasiconformally flat $A(P R S)_{n}$ with non-constant and negative scalar curvature is a K-special conformally flat manifold and also it is proved that such a simply connected manifold with non-constant and negative scalar curvature can be isometrically immersed in an Euclidean manifold E^{n+1} as a hypersurface.

2. Preliminaries

In this section we will obtain some formulas for an $A(P R S)_{n}$ which will be required in the sequel.
Let Q be the symmetric endomorphism of the tangent bundle of the manifold corresponding to the Ricci tensor S, i.e., $S(X, Y)=g(Q X, Y)$ for all vector fields X, Y.

Let $\left\{e_{i}: i=1,2, \cdots, n\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then setting $Y=Z=e_{i}$ in (1.1) and then taking summation over $i, 1 \leq i \leq n$, we obtain

$$
\begin{equation*}
d r(X)=r[A(X)+B(X)]+2 A(Q X) \tag{2.1}
\end{equation*}
$$

where r is the scalar curvature of the manifold.
Again from (1.1) we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)=B(X) S(Y, Z)-B(Y) S(X, Z) \tag{2.2}
\end{equation*}
$$

Setting $Y=Z=e_{i}$ in (2.2) and then taking summation over $i, 1 \leq i \leq n$, we obtain

$$
\begin{equation*}
d r(X)=2 r B(X)-2 B(Q X) \tag{2.3}
\end{equation*}
$$

If the scalar curvature r is constant then

$$
\begin{equation*}
d r(X)=0 \quad \text { for all } X \tag{2.4}
\end{equation*}
$$

By virtue of (2.4), (2.3) yields

$$
\begin{equation*}
B(Q X)=r B(X) \tag{2.5}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
S(X, \mu)=r g(X, \mu) \tag{2.6}
\end{equation*}
$$

This leads to the following:
Proposition 2.1. In an $A(P R S)_{n}$ of constant scalar curvature, r is an eigenvalue of the Ricci tensor S corresponding to the eigenvector μ.

The quasi-conformal curvature tensor W of type $(1,3)$ is defined by [10]

$$
\begin{equation*}
W(X, Y) Z=-(n-2) b C(X, Y) Z+[a+(n-2) b] \tilde{C}(X, Y) Z \tag{2.7}
\end{equation*}
$$

where a, b are arbitrary constants not simultaneously zero and C, \tilde{C} are respectively the conformal and concircular curvature tensor. Using the expressions of C and \tilde{C} in (2.7) we get

$$
\begin{align*}
& W(X, Y) Z \\
= & a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X \tag{2.8}\\
& -g(X, Z) Q Y]-\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

Differentiating (2.8) covariantly and contracting we obtain

$$
\begin{align*}
& (\operatorname{div} W)(X, Y) Z \\
= & a(\operatorname{div} R)(X, Y) Z+b\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)\right] \tag{2.9}\\
& -\frac{2 a-(n-1)(n-4) b}{2 n(n-1)}[d r(X) g(Y, Z)-d r(Y) g(X, Z)],
\end{align*}
$$

where 'div' denotes the divergence.
Again it is known that in a Riemannian manifold, we have

$$
(\operatorname{div} R)(X, Y) Z=\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)
$$

Consequently by virtue of the above relation, (2.9) takes the form

$$
\begin{align*}
& (\operatorname{div} W)(X, Y) Z \\
= & (a+b)\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)\right] \tag{2.10}\\
& -\frac{2 a-(n-1)(n-4) b}{2 n(n-1)}[d r(X) g(Y, Z)-d r(Y) g(X, Z)] .
\end{align*}
$$

3. quasi-conformally flat $A(P R S)_{n}$

Let us consider a quasi-conformally flat $A(P R S)_{n}$. Then we have

$$
(\operatorname{div} W)(X, Y) Z=0
$$

and hence (2.10) yields

$$
\begin{align*}
& (a+b)\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)\right] \tag{3.1}\\
= & \frac{2 a-(n-1)(n-4) b}{2 n(n-1)}[d r(X) g(Y, Z)-d r(Y) g(X, Z)]
\end{align*}
$$

By virtue of (2.2) and (2.3), it follows from (3.1) that

$$
\begin{align*}
B(X) S(Y, Z) & -B(Y) S(X, Z)=\frac{2 a-(n-1)(n-4) b}{n(n-1)(a+b)}[r\{B(X) g(Y, Z) \tag{3.2}\\
& -B(Y) g(X, Z)\}-\{B(Q X) g(Y, Z)-B(Q Y) g(X, Z)\}]
\end{align*}
$$

provided that $a+b \neq 0$.
Putting $Z=\mu$ in (3.2) we obtain

$$
\begin{equation*}
B(X) B(Q Y)-B(Y) B(Q X)=0 \tag{3.3}
\end{equation*}
$$

provided $a+b \neq 0$ and $(n+1) a+2(n-1) b \neq 0$.
Let $B(Q X)=g(Q X, \mu)=P(X)=g(X, \xi)$ for all X. Then from (3.3) we get

$$
\begin{equation*}
B(X) P(Y)=B(Y) P(X) \tag{3.4}
\end{equation*}
$$

which implies that the vector field μ and ξ are co-directional. This leads to the following:

Theorem 3.1. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b \neq 0$ and $(n+1) a+2(n-1) b \neq 0$, the vector field μ and ξ are co-directional. If $a+b=0$ and $(n+1) a+2(n-1) b \neq 0$, then using (2.3) in (3.1), it can be easily shown that the relation (3.4) holds. Hence we can state the following:

Corollary 3.1. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b=0$ and $(n+1) a+2(n-1) b \neq 0$, the vector field μ and ξ are co-directional.

Again, if $(n+1) a+2(n-1) b=0$ and $a+b \neq 0$, then using (2.2) in (3.1), it follows that (3.4) holds. Hence we can state the following:

Corollary 3.2. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b \neq 0$ and $(n+1) a+2(n-1) b=0$, the vector field μ and ξ are co-directional.

It may be noted that in a quasi-conformally flat $A(P R S)_{n}$, the relations $a+b=0$ and $(n+1) a+2(n-1) b=0$ can not hold simultaneously as a and b are not simultaneously zero.

Again setting $Y=Z=e_{i}$ in (3.2) and then taking summation over i, $1 \leq i \leq n$, we obtain

$$
\begin{equation*}
B(Q X)=r B(X), \text { provided that } a+(n-2) b \neq 0 \tag{3.5}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
S(X, \mu)=r g(X, \mu) \tag{3.6}
\end{equation*}
$$

Hence we can state the following:
Theorem 3.2. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b \neq 0$ and $a+(n-2) b \neq 0, r$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector μ. If $a+b=0$, then it follows from (3.2) that (3.6) holds provided that $2 a-(n-1)(n-4) b \neq 0$. Hence we can state the following:

Corollary 3.3. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b=0$ and $2 a-(n-1)(n-4) b \neq 0, r$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector μ.

Also for $2 a-(n-1)(n-4) b=0$ and $a+b \neq 0$, we can state the following:
Corollary 3.4. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b \neq 0$ and $2 a-(n-1)(n-4) b=0, r$ is an eigenvalue of the Ricci tensor S corresponding to the eigenvector μ.

In view of (3.5), (3.2) yields

$$
\begin{equation*}
B(X) S(Y, Z)-B(Y) S(X, Z)=0 \tag{3.7}
\end{equation*}
$$

Setting $X=\mu$ in (3.7) we get

$$
\begin{equation*}
S(Y, Z)=\frac{1}{B(\mu)} B(Y) B(Q Z) \tag{3.8}
\end{equation*}
$$

In view of (3.5), (3.8) yields

$$
\begin{equation*}
S(Y, Z)=r T(Y) T(Z) \tag{3.9}
\end{equation*}
$$

where $T(X)=g(X, \lambda)=\frac{1}{\sqrt{B(\mu)}} B(X), \lambda$ being a unit vector field associated with the nowhere vanishing 1 -form T.

From (3.9), it follows that if $r=0$, then $S(Y, Z)=0$, which is inadmissible by the definition of $A(P R S)_{n}$. Hence we can state the following:

Theorem 3.3. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b \neq 0$ and $a+(n-2) b \neq 0$, the scalar curvature can not vanish and the Ricci tensor is of the form (3.9). As a generalization of the manifold of constant curvature, the notion of the manifold of quasi-constant curvature arose during the study of conformally flat hypersurfaces by Chen and Yano [5]. A Riemannian manifold $\left(M^{n}, g\right)(n>3)$ is said to be the manifold of quasi-constant curvature [5] if it is conformally flat and its curvature tensor R of type (0,4) is of the form:

$$
\begin{align*}
R(X, Y, Z, U)= & a_{1}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] \tag{3.10}\\
& +a_{2}[g(Y, Z) A(X) A(U)-g(X, Z) A(Y) A(U) \\
& +g(X, U) A(Y) A(Z)-g(Y, U) A(X) A(Z)]
\end{align*}
$$

where A is a nowhere vanishing 1 -form and a_{1}, a_{2} are scalars of which $a_{2} \neq 0$. Now from (2.8) it follows that in a quasi-conformally flat $A(P R S)_{n}$, the curvature tensor R of type (0,4) is of the following form:

$$
\begin{align*}
R(X, Y, Z, U)= & -\frac{b}{a}[S(Y, Z) g(X, U)-S(X, Z) g(Y, U) \tag{3.11}\\
& +S(X, U) g(Y, Z)-S(Y, U) g(X, Z)] \\
& +\frac{r}{n a}\left(\frac{a}{n-1}+2 b\right)[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]
\end{align*}
$$

for $a \neq 0$.

Using (3.9) in (3.11) we obtain

$$
\begin{align*}
R(X, Y, Z, U)= & \tilde{a}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] \tag{3.12}\\
& +\tilde{b}[g(X, U) T(Y) T(Z)-g(Y, U) T(X) T(Z) \\
& +g(Y, Z) T(X) T(U)-g(X, Z) T(Y) T(U)]
\end{align*}
$$

for $a \neq 0$, where $\tilde{a}=\frac{r}{n a}\left(\frac{a}{n-1}+2 b\right)$ and $\tilde{b}=-\frac{b r}{a}$ are non-zero scalars. By virtue of (3.10), it follows from (3.12) that a quasi-conformally flat $A(P R S)_{n}$ is a manifold of quasi-constant curvature. This leads to the following:

Theorem 3.4. Every quasi-conformally flat $A(P R S)_{n}$ with $a \neq 0, a+b \neq 0$ and $a+(n-2) b \neq 0$ is a manifold of quasi-constant curvature. Again from (3.9) we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=d r(X) T(Y) T(Z)+r\left[\left(\nabla_{X} T\right)(Y) T(Z)+T(Y)\left(\nabla_{X} T\right)(Z)\right] \tag{3.13}
\end{equation*}
$$

Using (3.13) in (3.1) we obtain

$$
\begin{align*}
& (a+b)[d r(X) T(Y) T(Z)-d r(Y) T(X) T(Z)] \tag{3.14}\\
& +r\left[\left(\nabla_{X} T\right)(Y) T(Z)\right. \\
& \left.+T(Y)\left(\nabla_{X} T\right)(Z)-\left(\nabla_{Y} T\right)(X) T(Z)-T(X)\left(\nabla_{Y} T\right)(Z)\right] \\
= & \frac{2 a-(n-1)(n-4) b}{2 n(n-1)}[d r(X) g(Y, Z)-d r(Y) g(X, Z)]
\end{align*}
$$

Setting $Y=Z=e_{i}$ in (3.14) and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{align*}
& (a+b) d r(\lambda) T(X)+r\left\{\left(\nabla_{\lambda} T\right)(X)+T(X) \sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(e_{i}\right)\right\} \tag{3.15}\\
= & \frac{2(n-1) a+\left(n^{2}-3 n+4\right) b}{2 n} d r(X) .
\end{align*}
$$

Again putting $Y=Z=\lambda$ in (3.14) we obtain
$r(a+b)\left(\nabla_{\lambda} T\right)(X)=\frac{2\left(n^{2}-n-1\right) a+(n-1)(3 n-4) b}{2 n(n-1)}[d r(X)-d r(\lambda) T(X)]$.
Using (3.16) in (3.15) we get

$$
\begin{equation*}
r(a+b) T(X) \sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(e_{i}\right)+(n-2) E d r(X)+E d r(\lambda) T(X)=0 \tag{3.17}
\end{equation*}
$$

where $E=\frac{2 a-(n-1)(n-4) b}{2 n(n-1)}$.
Substituting $X=\lambda$ in (3.17) we get

$$
\begin{equation*}
r(a+b) \sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(e_{i}\right)=-(n-1) E d r(\lambda) \tag{3.18}
\end{equation*}
$$

From (3.17) and (3.18) it follows that

$$
\begin{equation*}
d r(X)=d r(\lambda) T(X), \text { provided } 2 a-(n-1)(n-4) b \neq 0 \tag{3.19}
\end{equation*}
$$

Again plugging $Z=\lambda$ in (3.14) and then using (3.19) we obtain

$$
r(a+b)\left\{\left(\nabla_{X} T\right)(Y)-\left(\nabla_{Y} T\right)(X)\right\}=0,
$$

which implies that

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Y)-\left(\nabla_{Y} T\right)(X)=0, \quad \text { since } r \neq 0 \quad \text { and } \quad a+b \neq 0 \tag{3.20}
\end{equation*}
$$

The relation (3.20) implies that the 1-form T is closed.
In view of (3.19) it follows from (3.16) that

$$
\begin{equation*}
\left(\nabla_{\lambda} T\right)(X)=0, \quad \text { provided } a+b \neq 0 \tag{3.21}
\end{equation*}
$$

which implies that $\nabla_{\lambda} \lambda=0$ and hence we can state the following:
Theorem 3.5. In a quasi-conformally flat $A(P R S)_{n}$ with $a+b \neq 0, a+$ $(n-2) b \neq 0$ and $2 a-(n-1)(n-4) b \neq 0$, the integral curves of the generator λ are geodesics. Also setting $Y=\lambda$ in (3.14) we obtain by virtue of (3.19) and (3.21) that

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Z)=\frac{E}{r(a+b)} d r(\lambda)[T(X) T(Z)-g(X, Z)] \quad \text { for } a+b \neq 0 \tag{3.22}
\end{equation*}
$$

Let us now consider a non-zero scalar function $f=\frac{E}{r(a+b)} d r(\lambda)$, where the scalar curvature r is non-constant. Then we have

$$
\begin{equation*}
\nabla_{X} f=-\frac{E}{r^{2}(a+b)} d r(\lambda) d r(X)+\frac{E}{r(a+b)} d^{2} r(\lambda, X) \tag{3.23}
\end{equation*}
$$

From (3.19) it follows that

$$
\begin{equation*}
d^{2} r(X, Y)=d^{2} r(\lambda, Y) T(X)+d r(\lambda)\left(\nabla_{Y} T\right)(X) \tag{3.24}
\end{equation*}
$$

Again in a Riemannian manifold the second covariant differential of any function $h \in C^{\infty}(M)$ is defined by

$$
d^{2} h(X, Y)=X(Y h)-\left(\nabla_{X} Y\right) h \quad \text { for } X, Y \in \chi(M)
$$

which implies that

$$
d^{2} h(X, Y)=d^{2} h(Y, X) \quad \text { for all } X, Y \in \chi(M)
$$

and hence (3.24) implies that

$$
\begin{equation*}
d^{2} r(\lambda, Y) T(X)=d^{2} r(\lambda, X) T(Y) \tag{3.25}
\end{equation*}
$$

Replacing Y by λ in (3.25) we have

$$
\begin{equation*}
d^{2} r(\lambda, X)=d^{2} r(\lambda, \lambda) T(X)=-\psi T(X) \tag{3.26}
\end{equation*}
$$

where $\psi=-d^{2} r(\lambda, \lambda)$ is a scalar function.
Using (3.19) and (3.26) in (3.23) we obtain

$$
\begin{equation*}
\nabla_{X} f=\sigma T(X) \tag{3.27}
\end{equation*}
$$

where

$$
\sigma=-\frac{E}{r^{2}(a+b)}\left[r \psi+\{d r(\lambda)\}^{2}\right] \quad \text { is a non-zero scalar. }
$$

We now consider an 1-form ω given by

$$
\omega(X)=\frac{E}{r(a+b)} d r(\lambda) T(X)=f T(X) .
$$

Then by virtue of (3.20) and (3.27) we have

$$
d \omega(X, Y)=0
$$

Hence the 1-form ω is closed. Therefore (3.22) can be rewritten as

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Z)=-f g(X, Z)+\omega(X) T(Z) \tag{3.28}
\end{equation*}
$$

which implies that the vector field λ corresponding to the 1-form T defined by $g(X, \lambda)=T(X)$ is a proper concircular vector field ([8],[9]). Hence we can state the following:

Theorem 3.6. In a quasi-conformally flat $A(P R S)_{n}$ of non-constant scalar curvature with $a+b \neq 0, a+(n-2) b \neq 0$ and $2 a-(n-1)(n-4) b \neq 0$, the vector field λ defined by $g(X, \lambda)=T(X)$ is a unit proper concircular vector field. If, in particular, $a+b=0$ then from (3.1) we get

$$
d r(X) g(Y, Z)-d r(Y) g(X, Z)=0
$$

which yields

$$
\begin{equation*}
d r(X)=0 \quad \text { for all } X, \tag{3.29}
\end{equation*}
$$

provided $2 a-(n-1)(n-4) b \neq 0$. This means that the scalar curvature of the quasi-conformally flat $A(P R S)_{n}$ is constant.
Putting $Y=Z=e_{i}$ in (3.13) and taking summation over $i, 1 \leq i \leq n$, we obtain by virtue of (3.29) that

$$
\begin{equation*}
\left(\nabla_{\lambda} T\right)(X)+T(X) \sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(e_{i}\right)=0 \tag{3.30}
\end{equation*}
$$

which implies for $X=\rho$ that

$$
\sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(e_{i}\right)=0
$$

Using this relation in (3.30) we get

$$
\begin{equation*}
\left(\nabla_{\lambda} T\right)(X)=0 \tag{3.31}
\end{equation*}
$$

Setting $Y=\lambda$ in (3.13) and then using (3.30) and (3.31) we obtain

$$
\left(\nabla_{\lambda} S\right)(X, Z)=0 \quad \text { for all } X, Z
$$

which implies that the manifold under consideration is Ricci symmetric along the direction of the generator λ. This leads to the following:

Corollary 3.5. A quasi-conformally flat $A(P R S)_{n}$ with $2 a-(n-1)(n-4) b \neq 0$ and $a+b=0$ is of constant scalar curvature and Ricci symmetric along the direction of the generator λ.

Again if $2 a-(n-1)(n-4) b=0$ and $a+b \neq 0$, then (3.13) implies that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z) \quad \text { for all } X, Y, Z \tag{3.32}
\end{equation*}
$$

which means that the Ricci tensor S is of Codazzi type [7] and hence

$$
\begin{equation*}
d r(X)=0 \quad \text { for all } X \tag{3.33}
\end{equation*}
$$

Hence (3.14) takes the form

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Y) T(Z)+T(Y)\left(\nabla_{X} T\right)(Z)-\left(\nabla_{Y} T\right)(X) T(Z)-T(X)\left(\nabla_{Y} T\right)(Z)=0 \tag{3.34}
\end{equation*}
$$

Putting $Z=\lambda$ in (3.34) we get the relation (3.20).
Also for $Y=\lambda$, (3.20) implies that

$$
\begin{equation*}
\left(\nabla_{\lambda} T\right)(X)=0 \quad \text { for all } X \tag{3.35}
\end{equation*}
$$

Using this relation we obtain from (3.34) (for $Y=\lambda$) that

$$
\left(\nabla_{X} T\right)(Z)=0 \quad \text { for all } X, Z
$$

This implies that

$$
g\left(Z, \nabla_{X} \lambda\right)=0 \quad \text { for all } X, Z
$$

Since g is non-degenerate, the last relation yields

$$
\left(\nabla_{X} \lambda\right)=0 \quad \text { for all } X,
$$

which means that λ is a parallel vector field. Thus we can state the following:
Corollary 3.6. In a quasi-conformally flat $A(P R S)_{n}$ with $2 a-(n-1)(n-$ $4) b=0$ and $a+b \neq 0$, the Ricci tensor is of Codazzi type and the vector field λ defined by $g(X, \lambda)=T(X)$ is a unit parallel vector field.

Remark: It may be noted that in a quasi-conformally flat $A(P R S)_{n}$, the cases $2 a-(n-1)(n-4) b=0$ and $a+b=0$ can not occur simultaneously. For, if they occur simultaneously then we have

$$
a=-b \quad \text { and } a=\frac{(n-1)(n-4)}{2} b .
$$

This together implies that (since $n>3$) $a=0=b$, which is inadmissible, by the definition of quasi-conformal curvature tensor.

In [2] Amur and Maralabhavi proved that a quasi-conformally flat Riemannian manifold is either conformally flat or Einstein. We now consider a quasi-conformally flat $A(P R S)_{n}$, which is non-Einstein. Then by [2] such an $A(P R S)_{n}$ is conformally flat. Again it is known that [1] if a conformally flat Riemannian manifold $\left(M^{n}, g\right)(n>3)$ admits a proper concircular vector field then the manifold is a subprojective manifold in the sense of Kagan. Hence by virtue of Theorem 3.6, we can state the following:

Theorem 3.7. A non-Einstein quasi-conformally flat $A(P R S)_{n}$ of non-constant scalar curvature with $2 a-(n-1)(n-4) b \neq 0, a+(n-2) b \neq 0$ and $a+b \neq 0$ is a subprojective manifold in the sense of Kagan.

In[9] K. Yano proved that in order that a Riemannian manifold admits a concircular vector field, it is necessary and sufficient that there exists a coordinate system with respect to which the fundamental quadratic differential form can be written as

$$
d s^{2}=d x^{\prime 2}+e^{p} \stackrel{g}{g}_{i j}^{*} d x^{i} d x^{j},
$$

where $g_{i j}^{*}=g_{i j}\left[x^{k}\right]$ are the functions of x^{k} only ($i, j, k=2,3, \cdots, n$) and $p=p\left(x^{\prime}\right)$ is a non-constant function of x^{\prime} only. Hence if a $A(P R S)_{n}$ is conformally flat, then it is a warped product $I \times{ }_{e^{p}} \stackrel{*}{M}$, where $(\stackrel{*}{M}, \stackrel{*}{g})$ is an $(n-1)$ dimensional Riemannian manifold. Hence we can state the following:

Theorem 3.8. A non-Einstein quasi-conformally flat $A(P R S)_{n}$ of non-constant scalar curvature with $a+b \neq 0, a+(n-2) b \neq 0$ and $2 a-(n-1)(n-4) b \neq 0$ can be expressed as a warped product $I \times_{e^{p}} \stackrel{*}{M}$, where $(\stackrel{*}{M}, \stackrel{*}{g})$ is an $(n-1)$ dimensional Riemannian manifold.

Let us consider a quasi-conformally flat $A(P R S)_{n}$. In [6] Chen and Yano introduced the notion of special conformally flat manifold which generalizes the notion of subprojective manifold. According to them a conformally flat Riemannian manifold is said to be a special conformally flat manifold if the
tensor field H of type $(0,2)$ defined by

$$
\begin{equation*}
H(X, Y)=-\frac{1}{n-2} S(X, Y)+\frac{r}{2(n-1)(n-2)} g(X, Y) \tag{3.36}
\end{equation*}
$$

is expressible in the form

$$
\begin{equation*}
H(X, Y)=-\frac{\alpha^{2}}{2} g(X, Y)+\beta(X \alpha)(Y \alpha) \tag{3.37}
\end{equation*}
$$

where α, β are two scalars such that α is positive.
In view of (3.9), (3.36) can be written as

$$
\begin{equation*}
H(X, Y)=-\frac{r}{n-2} T(X) T(Y)+\frac{r}{2(n-1)(n-2)} g(X, Y) \tag{3.38}
\end{equation*}
$$

We now put

$$
\begin{equation*}
\alpha^{2}=-\frac{r}{(n-1)(n-2)}>0, \quad \text { provided } r<0 \tag{3.39}
\end{equation*}
$$

Then

$$
2 \alpha(X \alpha)=-\frac{d r(X)}{(n-1)(n-2)}
$$

which implies by virtue of (3.19) that

$$
2 \alpha(X \alpha)=-\frac{d r(\lambda) T(X)}{(n-1)(n-2)}
$$

Hence

$$
T(X) T(Y)=-\frac{4(n-1)(n-2) r}{\delta^{2}}(X \alpha)(Y \alpha)
$$

where $\delta=d r(\lambda)$. Therefore, by virtue of (3.39), (3.38) can be expressed as

$$
H(X, Y)=-\frac{\alpha^{2}}{2} g(X, Y)+\beta(X \alpha)(Y \alpha)
$$

where $\beta=\frac{4(n-1) r^{2}}{\delta^{2}}$. Hence the manifold under consideration is a special conformally flat manifold. Since a non-Einstein quasi-conformally flat manifold is conformally flat [2], we can state the following:

Theorem 3.9. A non-Einstein quasi-conformally flat $A(P R S)_{n}$ with nonconstant negative scalar curvature, $a+b \neq 0, a+(n-2) b \neq 0$ and $2 a-(n-$ $1)(n-4) b \neq 0$ is a special conformally flat manifold.

Also in [6] Chen and Yano proved that every simply-connected special conformally flat manifold can be isometrically immersed in an Euclidean manifold E^{n+1} as a hypersurface. Therefore by virtue of Theorem 3.9, we can state the following:

Theorem 3.10. Every simply-connected non-Einstein quasi-conformally flat $A(P R S)_{n}$ of non-constant negative scalar curvature with $a+b \neq 0, a+(n-$ $2) b \neq 0$ and $2 a-(n-1)(n-4) b \neq 0$ can be isometrically immersed in an Euclidean manifold E^{n+1} as a hypersurface.

The notion of K-special conformally flat manifold which generalizes the notion of special conformally flat manifold as well as subprojective manifold was introduced by Chen and Yano [6]. According to them a conformally flat manifold is said to be K-special conformally flat manifold if the tensor field H of type $(0,2)$ defined in (3.23) is expressible in the form

$$
\begin{equation*}
H(X, Y)=-\frac{K+\alpha^{2}}{2} g(X, Y)+\beta \gamma \pi(X) \pi(Y) \tag{3.40}
\end{equation*}
$$

where $(X \alpha)=\beta \pi(X)$ on G, G is an open set of M^{n} defined by

$$
G=\left\{p \in M^{n}: \beta \neq 0\right\}
$$

and π is an 1 -form on G, and α, β, γ are scalar functions and K is a constant.
We consider a non-Einstein quasi-conformally flat $A(P R S)_{n}$. Then such a manifold is conformally flat. Using (3.9) in (3.36) we obtain (3.38). Let us now put

$$
K+\alpha^{2}=-\frac{r}{(n-1)(n-2)}>0, \quad \text { provided } r<0
$$

where K is a constant. Then proceeding similarly as before it can be easily shown that

$$
H(X, Y)=-\frac{K+\alpha^{2}}{2} g(X, Y)+\beta \gamma \pi(X) \pi(Y)
$$

where $\beta=\frac{4(n-1) r^{2}}{\delta^{2}}, \gamma=\frac{16 r^{3}(n-1)^{2}\{r+K(n-1)(n-2)\}}{\delta^{4}}$. Thus we can state the following:

Theorem 3.11. A non-Einstein quasi-conformally flat $A(P R S)_{n}$ with nonconstant negative scalar curvature, $a+b \neq 0, a+(n-2) b \neq 0$ and $2 a-(n-$ 1) $(n-4) b \neq 0$ is a K-special conformally flat manifold.

References

[1] T. Adati, On subprojective spaces III, Tohoku Math. J., 3 (1951), 343358.
[2] K. Amur and Y. B. Maralabhavi, On quasi-conformally flat spaces, Tensor N. S., 31(1977), 194-198.
[3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 15(1988), 526-531.
[4] M. C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor N. S. 68(2007), 10-14.
[5] B. Y. Chen and K. Yano, Hypersurfaces of conformally flat spaces, Tensor N. S. 26(1972), 318-322.
[6] B. Y. Chen and K. Yano, Special conformally flat spaces and canal hypersurfaces, Tohoku Math. J. 25(1973), 177-184.
[7] D. Ferus, A remark on Codazzi tensors on constant curvature space, Lecture Notes Math., 838, Global Differential Geometry and Global Analysis, Springer-Verlag, New York, 1981.
[8] K. Yano, Concircular geometry, I, Proc. Imp. Acad. Tokyo, 16 (1940), 195-200.
[9] K. Yano, On the torseforming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20 (1944), 340-345.

On Quasi-Conformally Flat Almost Pseudo Ricci Symmetric Manifolds
[10] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2(1968), 161-184.

[^0]: *2000 Mathematics Subject Classification. 53B30, 53B50, 53C15, 53C25.
 ${ }^{\dagger}$ Corresponding author. E-mail: aask2003@yahoo.co.in

