Geometric Properties of Randers and Other Changes of Rizza Manifolds^{*}

H. G. Nagaraja[†]

Department of Mathematics, Central College, Bangalore University, Bangalore-1, Karnataka, India

Received October 25, 2008, Accepted August 26, 2009.

Abstract

In this paper we study the β -change of Rizza manifold associated with the generalized Finsler metric. It is proved that Randers change preserves the C-reducibility. We consider the Randers-change $*L = L + \beta$ and proved the conditions for Rizza manifold to be C-reducible, Berwald and Landsbergian. Also we obtain condition for Rizza manifold to be C-conformal to a locally Minkowski space.

Keywords and Phrases: Rizza manifold, Kahlerian Finsler, C-conformal, β -change, Randers-change.

^{*2000} Mathematics Subject Classification. Primary 53C60, 53B40. †E-mail: hgnraj@yahoo.com

1. Introduction

Let (M, L) be a Finsler space, where M is an n-dimensional differentiable manifold associated with the fundamental function L. If (M, L) is endowed with an almost complex structure $f^{i}{}_{j}(x)$ on M with $f^{i}{}_{r}f^{r}{}_{j} = -\delta^{i}{}_{j}$ satisfying the condition

$$g_{ij}f^{i}_{\ r}y^{r}y^{j} = 0 (1.1)$$

where $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2$, $\dot{\partial}_i = \frac{\partial}{\partial y^i}$ then the structure $R_n = (M, L, f)$ is called Rizza manifold and the condition (1.1) is called Rizza condition. In section 2, we consider the Randers change and obtain conditions for Rizza manifold to be C-reducible, Berwald and Landsberg. In section 3, we establish that Rizza manifold is C-conformal to a locally Minkowski space under certain conditions.

2. Randers Change $^*L = L + \beta$

Let $R_n = (M, L, f)$ be a Rizza manifold and $*R_n = (M, *L, f)$ be obtained from R_n by Randers change

$$^{*}L = L + \beta \tag{2.1}$$

where $\beta = b_i(x)y^i$ for some covariant vector $b_i(x)$. The Randers change of the metric tensor $*g_{ij}$ and its reciprocal $*g^{ij}$ are given by

$${}^{*}g_{ij} = \rho \ g_{ij} + (1-\rho)l_i l_j + l_i b_j + l_j b_i + b_i b_j$$
(2.2)

where

$$\rho = \frac{^*L}{L} \tag{2.3}$$

and

$${}^{*}g^{ij} = \rho^{-1} g^{ij} + \rho^{-2} [(\rho^{-1} b^{2} + \frac{\beta}{*L})l^{i}l^{j} - l^{i}b^{j} - l^{j}b^{i}]$$
(2.4)

The Randers changes of normalized vector ${}^{*}l_{i}$ and the angular metric tensor ${}^{*}h_{ij}$ are given by

$$^*l_i = l_i + b_i \tag{2.5}$$

$${}^{*}h_{ij} = {}^{*}L {}^{*}l_{ij} = \rho h_{ij}$$
(2.6)

where ${}^*l_{ij} = \dot{\partial}_j {}^*l_i$.

Transvecting (2.2) by $f^i_{\ r} y^r y^j$, we get

$${}^{*}g_{ij}f^{i}{}_{r}y^{r}y^{j} = {}^{*}L f_{r} y^{r}$$
(2.7)

where

$$f_r = f^i_{\ r} b_i \tag{2.8}$$

(2.7) shows that

Lemma 2.1. The Randers change (2.1) preserves the Rizza condition (1.1) if and only if $f_r y^r = 0$ holds.

The Randers change of Cartan's tensor $c_{ijk} = \frac{1}{2}\dot{\partial}_k g_{ij}$ is given by

$$^{*}c_{ijk} = \rho \ c_{ijk} + L^{-1}[m_k h_{ij} + m_j h_{ik} + m_i h_{jk}]$$
(2.9)

$$m_i = b_i - \frac{\beta}{L} l_i \tag{2.10}$$

Transvecting (2.9) by ${}^{*}g^{ij}$ as given in (2.4), and using $c_{j}{}^{i}{}_{k} = c_{jrk}g^{ir}$, we obtain

$${}^{*}c_{j}{}^{i}{}_{k} = c_{j}{}^{i}{}_{k} + \rho^{-1}L^{-1}[m_{k}h^{i}{}_{j} + m_{j}h^{i}{}_{k} + m^{i}h_{jk}]$$
(2.11)

where $h^{i}{}_{j} = h_{rj}g^{ir}$ and

$$m^2 = m_i m^i. (2.12)$$

Contracting (2.11) with *i* and *k* and using $c_i = c^i{}_{ji}$, we obtain

$${}^{*}c_{i} = c_{i} + (\frac{n+1}{{}^{*}L})m_{i}$$

or

$$m_i = \frac{({}^*c_i - c_i){}^*L}{n+1} \tag{2.13}$$

In a Rizza manifold $R_n = (M, L, f)$ if we put $G_{ij} = \frac{1}{2}(g_{ij} + g_{pq}f^p{}_i f^q{}_j)$ then we have $G_{ij} = G_{ji}, G_{ij} = G_{pq}f^p{}_i f^q{}_j$ and $y^m f^r{}_m \dot{\partial}_r G_{ij} = 0, \dot{\partial}_i G_{pq} y^p y^q = 0.$

This G_{ij} is positively homogeneous of degree 0 in y^i and is a generalized Finsler metric(GFM) [1]. Here afterwards we call R_n the Rizza manifold associated with GFM. The Randers change of G_{ij} is given by

$${}^{*}G_{ij} = \rho G_{ij} + \frac{1}{2} \left((1-\rho)l_{i}l_{j} + l_{i}b_{j} + l_{j}b_{i} + b_{i}b_{j} + (1-\rho)l_{p}l_{q} + l_{p}b_{q} + l_{q}b_{p} + b_{p}b_{q}f^{p}{}_{i}f^{q}{}_{j} \right)$$

$$(2.14)$$

Taking the derivative of (2.14) by y^k , we can derive that the C-tensor of the generalized Finsler metric as

$${}^{*}C_{ijk} = \rho C_{ijk} + L^{-1} \{ (m_k h_{ij} + m_j h_{ik} + m_i h_{jk}) + (m_q h_{pk} + m_p h_{qk} - l_p l_q) f^p_{\ i} f^q_{\ j} \}$$

$$(2.15)$$

Substituting (2.13) in (2.15) we get

$${}^{*}C_{ijk} = \rho \{ C_{ijk} - \frac{1}{n+1} (C_{i}H_{jk} + C_{j} H_{ik} + C_{k} H_{ij}) \} + \frac{1}{n+1} \{ {}^{*}C_{i} {}^{*}H_{jk} + {}^{*}C_{j} {}^{*}H_{ik} + {}^{*}C_{k} {}^{*}H_{ij} \}$$

$$(2.16)$$

196

where H_{ij} and $^*H_{ij}$ are the angular metric tensors respectively of R_n and *R_n with respect to generalized Finsler metric G_{ij} .

It is well known that a non Riemannian Finsler space F_n is called Creducible if the hv-torsion tensor C_{ijk} is written in the form

$$C_{ijk} = \frac{1}{n+1} (C_i H_{jk} + C_j H_{ki} + C_k H_{ij}).$$

Thus from (2.16), we have

Theorem 2.1. The space $*R_n = (M, *L, f)$ obtained from $R_n = (M, L, f)$ by Randers change is C-reducible if and only if R_n is C-reducible.

Consider the Cartan connection $C\Gamma = (\Gamma^{i}{}_{jk}, N^{i}{}_{k}, C^{i}{}_{j}k).$

Since $C\Gamma$ is h-metrical, we have $g_{ij|k} = 0$, where |k| denotes the h-covariant derivative with respect to $C\Gamma$.

Further we have $g^{ij}_{|k} = 0$, $L_{|k} = 0$ and $y^i_{|k} = 0$. If $f^i_{j|k} = 0$, then the Rizza manifold R_n is called Kaehlerian Finsler.

If ${}^{*}R_{n}$ is also a Rizza manifold, then by lemma (2.1), $f_{r}^{i} b_{i} y^{r} = 0$. Further we have $0 = (f_{j}^{i} b_{i} y^{j})_{|k} = f_{j|k}^{i} b_{i} y^{j} + f_{j}^{i} b_{i|k} y^{j}$. In turn this implies $b_{i|k} = 0$, provided the space R_{n} is Kaehlerian Finsler. Now from $b_{i|k} = 0$, we obtain ${}^{*}L_{|k} = 0$ and $\rho_{|k} = 0$.

In view of the above relations, the covariant derivative of (2.15) yields

$$^*C_{ijk|m} = \rho \ C_{ijk|m}. \tag{2.17}$$

Thus we can state the following theorem

Theorem 2.2. Let $R_n = (M, L, f)$ be a Kahlerian Finsler manifold associated with generalized Finsler metric G_{ij} . Let $*R_n = (M, *L, f)$ be a Rizza manifold obtained from R_n by Randers change (2.1). Then $*R_n$ is Berwald if and only if R_n is Berwald.

As it is well known that, A Landsberg space is characterized by $P_{ijk} = C_{ijk|0} = 0.$

Transvecting (2.17) by y^m , we obtain

$$^*C_{ijk|0} = \rho \ C_{ijk|0}.$$

Thus we have

Theorem 2.3. Let $R_n = (M, L, f)$ be a Kahlerian Finsler manifold associated with generalized Finsler metric G_{ij} . Let $*R_n = (M, *L, f)$ be a Rizza manifold obtained from R_n by Randers change (2.1). $*R_n$ is Landsberg if and only if R_n is Landsberg.

3. C-Conformal Change

Let $R_n = (M, L, f)$ be a Rizza manifold and $*R_n = (M, *L, f)$ be obtained from R_n by conformal change

$$\overline{L} = e^{\sigma(x)} L \tag{3.1}$$

where $\sigma = \sigma(x)$ satisfies $\sigma^h C_{jh}^i = 0$.

Let $F\Gamma = (\Gamma_{jk}^{i}, N^{i}_{k}, C_{jk}^{i})$, where

$$\Gamma^{i}{}_{jk} = \frac{1}{2}G^{im}(X_{j}G_{mk} + X_{k}G_{mj} + X_{m}G_{jk})$$
$$C^{i}{}_{jk} = \frac{1}{2}G^{im}(\dot{\partial}_{j}G_{mk} + \dot{\partial}_{k}G_{mj} - \dot{\partial}_{m}G_{jk})$$

and $X_j = \partial_j - N^m{}_j \dot{\partial}_m$, $\partial_j = \frac{\partial}{\partial x^j}$ $\dot{\partial}_j = \frac{\partial}{\partial y^j}$ be a Finsler conection associated with (G, N)-structure.

Under the C-conformal change (3.1), we have

$$\overline{g}_{ij} = e^{2\sigma}g_{ij}, \quad \overline{g}^{ij} = e^{-2\sigma}g^{ij}, \quad \overline{C}_{ijk} = e^{2\sigma}C_{ijk}$$
$$\overline{C_j}^i_{\ k} = C_j^i_{\ k} \quad \overline{G}_{ij} = e^{2\sigma}G_{ij}$$

and

$$\overline{N}^i{}_j = N^i{}_j + A^i{}_j \tag{3.2}$$

$$\overline{\Gamma}_{j\ k}^{\ i} = \Gamma_{j\ k}^{\ i} + A^{i}_{\ jk} \tag{3.3}$$

where $A^{i}{}_{j} = y^{i}\sigma_{j} - f^{i}{}_{h}y^{h}f^{r}{}_{j}\sigma_{r}$ and $A^{i}{}_{jk} = \delta^{i}{}_{j}\sigma_{k} + \delta^{i}{}_{k}\sigma_{j} - G_{jk} G^{im}\sigma_{m}$.

The h-torsion and h-curvature tensors of $F\Gamma$ are given by

$$R^i{}_{jk} = \{X_k N^i{}_j - j/k\}$$

and

$$R_{h\,jk}^{\ i} = X_{h}\Gamma_{h\,j}^{\ i} + \Gamma_{m\,k}^{\ i}\Gamma_{h\,j}^{\ m} - j/k + C_{h\,m}^{\ i}R^{m}_{\ jk},$$

where -j/k denote the interchange of indices j and k and substraction. C-conformal change of $R^i{}_{hjk}$ is given by

$$\overline{R}_{h\ jk}^{\ i} = R_{h\ jk}^{\ i} + B^{i}_{\ hj|k} + \delta^{i}_{\ k}(\sigma^{2}G_{hj} - \sigma_{j}\sigma_{h}) - G_{hk}\sigma^{i}\sigma_{j},$$

where $B^{i}_{hj} = \delta^{i}_{h}\sigma_{j} + \delta^{i}_{j}\sigma_{h} - G_{hj}G^{ir}\sigma_{r}$. Now $\overline{R}_{h}^{i}_{jk} = 0$ if

$$R_h^{\ i}{}_{jk} = G_{hk}\sigma^i\sigma_j - \delta^i{}_k(\sigma^2 g_{hj} - \sigma_j\sigma_h) - B^i{}_{hj|k}.$$
(3.4)

Taking the covariant derivative of \overline{C}_{hjk} with respect to $\overline{F\Gamma}$, we obtain

$$\overline{C}_{hjk\ \bar{\mid}\ m} = \overline{X}_m \overline{C}_{hjk} - \overline{C}_{hjr} \overline{\Gamma}_k^{\ r}{}_m - \overline{C}_{hrk} \overline{\Gamma}_j^{\ r}{}_m - \overline{C}_{rjk} \overline{\Gamma}_h^{\ r}{}_m$$

where $\overline{X}_m = \partial_m - \overline{N^s}_m \dot{\partial}_s$.

The above equation may be written in the form

$$\overline{C}_{hjk\bar{|}m} = e^{2\sigma}(C_{hjk|m} - \sigma_m C_{hjk}).$$

Thus \overline{R}_n is C^h -recurrent with the recurrence vector σ_h if and only if $\overline{C}_{hjk\bar{l}m} = 0$. As it is known that a locally Minkowski space is characterized by $R_h^{i}{}_{jk}^{i} = 0$ and $C_{ijk|m} = 0$. Hence we have

Theorem 3.1. Suppose the conditon (3.4) holds in the Rizza manifold R_n . Then R_n is C-conformal to a locally Minkowski space if and only if it is C^h -recurrent with respect to the recurrence vector σ_h .

References

- Eun-Seo Choi, Certain conformally invariant connections of Rizza manifolds, *Commun. Korean math. Soc.*, **17**, no.3(2002), 505-517.
- [2] M. Matsumoto, Foundations of Finsler geometry and Special Finsler spaces, Kaiseisha press, Otsu, Saikawa 1986.
- [3] M. Kitayama, Finsler spaces admtting a parallel vector field, Balkan Journal of Geometry and its applications, 3, no.2(1998), 29-36.

- [4] M. Hashiguchi, On generalized Finsler spaces, An. Stiint. univ. AI. I. Cuza Iasi, Sect.1 a Mat. 30(1984), no.1, 69-73.
- [5] Y. Ichijyō, Kaehlerian Finsler manifolds, J. Math. Tokushima Univ. 25 (1994), 19-27.
- [6] Y. Ichijyō and M. Hashiguchi, On locally flat generalized (α, β) metrics and conformally flat Randers metrics, *Rep. Fac. Sci. Kagoshima Univ. Math, Phys. Chem.* 27(1994), 17-55.
- [7] Y. Ichijyō and M. Hashiguchi, On (a, b, f)-metrics, Rep. Fac. Sci. Kagoshima Univ Math, Phys. Chem. 28(1995), 1-9.
- [8] Y. Ichijyō and M. Hashiguchi, On (a, b, f)-metrics-II, Rep. Fac. Sci. Kagoshima Univ. Math . Phys . Chem. 29(1996), 1-5.
- [9] C. Shibata and M. Azuma, C-conformal invariant tensors of Finsler spaces, *Tensor*, N. S. 52(1993), 76-81.