

Jin-Lin Liu[†]

Department of Mathematic, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China

Received October 24, 2008, Accepted February 17, 2009.

Abstract

In this paper we derive some interesting properties of certain integral operator I^{σ} which was considered recently by Jung, Kim, and Srivastava [*J. Math. Anal. Appl.* **176**(1993), 138-147].

Keywords and Phrases: Analytic, Subordination, Integral operator.

^{* 2000} Mathematics Subject Classification. Primary 30C45.

[†] E-mail: jlliucn@yahoo.com.cn

1. Introduction

Let A(p,k) denote the class of functions of the form

$$f(z) = z^{p} + \sum_{m=k}^{\infty} a_{p+m} z^{p+m} \qquad (p, k \in \mathbb{N} = \{1, 2, 3, \dots\})$$
 (1.1)

which are analytic in the unit disk $E = \{z : |z| < 1\}$. The Hadamard product or convolution $(f_1 * f_2)(z)$ of two functions

$$f_j(z) = z^p + \sum_{m=k}^{\infty} a_{p+m,j} z^{p+m} \in A(p,k)$$
 $(j=1,2)$ (1.2)

is given by

$$(f_1 * f_2)(z) = z^p + \sum_{m=k}^{\infty} a_{p+m,1} a_{p+m,2} z^{p+m}.$$

Let f(z) and g(z) be analytic in E. Then we say that the function g(z) is subordinate to f(z) if there exists an analytic function w(z) in E such that |w(z)|<1 ($z\in E$) and g(z)=f(w(z)). For this relation the symbol $g(z)\prec f(z)$ is used. In case f(z) is univalent in E we have that the subordination $g(z)\prec f(z)$ is equivalent to g(0)=f(0) and $g(E)\subset f(E)$.

Recently, Jung, Kim, and Srivastava [2] introduced the following one-parameter family of integral operator

$$I^{\sigma} f(z) = \frac{2^{\sigma}}{z\Gamma(\sigma)} \int_{0}^{z} \left(\log \frac{z}{t}\right)^{\sigma-1} f(t) dt$$
 (1.3)

for $f(z) \in A(1,1)$ and $\sigma > 0$. They showed that

$$I^{\sigma} f(z) = z + \sum_{m=1}^{\infty} \left(\frac{2}{m+2}\right)^{\sigma} a_{m+1} z^{m+1} . \tag{1.4}$$

The operator I^{σ} is closely related to the multiplier transformations studied

earlier by Flett [1]. It follows from (1.4) that one can define the operator I^{σ} for any real number σ . Certain properties of this operator have been investigated by Jung, Kim and Srivastava [2], Uralegaddi and Somanatha [6], Li [3] and the author [4].

Motivated essentially by some recent works [2,3,4], we now extend the operator I^{σ} to multivalent functions, which is given by the following

$$I^{\sigma} f(z) = z^{p} + \sum_{m=k}^{\infty} \left(\frac{p+1}{m+p+1} \right)^{\sigma} a_{p+m} z^{p+m}$$
 (1.5)

for $f(z) \in A(p,k)$ and any real number σ . It is easily verified from the definition (1.5) that

$$z(I^{\sigma+1}f(z))' = (p+1)I^{\sigma}f(z) - I^{\sigma+1}f(z).$$
(1.6)

In this note, we shall derive some interesting properties of the operator I^{σ} .

2. Main Results

We begin by recalling the following result due to Miller and Mocanu [5], which we shall apply in proving our first theorem.

Lemma. Let h(z) be analytic and convex univalent in E, h(0) = 1, and let

$$g(z) = 1 + b_k z^k + b_{k+1} z^{k+1} + \cdots$$
 be analytic in E. If

$$g(z) + zg'(z)/c \prec h(z), \qquad (2.1)$$

then for $c \neq 0$ and $\operatorname{Re} c \geq 0$

$$g(z) \prec \frac{c}{k} z^{-c/k} \int_0^z t^{c/k-1} h(t) dt$$
 (2.2)

Theorem 1. Let $-1 \le B < A \le 1$ and $0 < \delta < 1$. Let $f(z) = z^p + \sum_{m=1}^{\infty} a_{p+m} z^{p+m}$

 $\in A(p,k)$. Suppose that

$$\sum_{m=k}^{\infty} c_m \mid a_{p+m} \mid \le 1, \tag{2.3}$$

where

$$c_{m} = \frac{1 - B}{A - B} \cdot \frac{(p+1)^{\sigma} (p+1 + m(1 - \delta))}{(m+p+1)^{\sigma+1}}.$$
 (2.4)

(i) If $-1 \le B \le 0$, then

$$(1-\delta)\frac{I^{\sigma}f(z)}{z^{p}} + \delta\frac{I^{\sigma+1}f(z)}{z^{p}} \prec \frac{1+Az}{1+Bz}.$$
(2.5)

(ii) If $-1 \le B \le 0$ and $\lambda \ge 1$, then for $z \in E$

$$\operatorname{Re}\left\{\left(\frac{I^{\sigma+1}f(z)}{z^{p}}\right)^{1/\lambda}\right\} > \left\{\frac{p+1}{k(1-\delta)}\int_{0}^{1}u^{(p+1)/k(1-\delta)-1}\left(\frac{1-Au}{1-Bu}\right)du\right\}^{1/\lambda}.$$
 (2.6)

The result is sharp.

Proof. (i) Let

$$J = (1 - \delta) \frac{I^{\sigma} f(z)}{z^{p}} + \delta \frac{I^{\sigma+1} f(z)}{z^{p}},$$
 (2.7)

then

$$J = 1 + \sum_{m=k}^{\infty} \frac{(p+1)^{\sigma} (p+1+m(1-\delta))}{(m+p+1)^{\sigma+1}} a_{p+m} z^{p+m} . \tag{2.8}$$

For $-1 \le B \le 0$ and $z \in E$, it follows from (2.3) that

$$\left| \frac{J-1}{A-BJ} \right| = \frac{\sum_{m=k}^{\infty} \frac{(p+1)^{\sigma} (p+1+m(1-\delta))}{(m+p+1)^{\sigma+1}} a_{p+m} z^{m}}{A-B-B \sum_{m=k}^{\infty} \frac{(p+1)^{\sigma} (p+1+m(1-\delta))}{(m+p+1)^{\sigma+1}} a_{p+m} z^{m}}$$

$$\leq \frac{\displaystyle\sum_{m=k}^{\infty} c_m \mid a_{p+m}\mid}{1 - B + B \displaystyle\sum_{m=k}^{\infty} c_m \mid a_{p+m}\mid}$$

which show that

$$(1-\delta)\frac{I^{\sigma}f(z)}{z^{p}}+\delta\frac{I^{\sigma+1}f(z)}{z^{p}}\prec\frac{1+Az}{1+Bz}.$$

$$g(z) = I^{\sigma+1} f(z) / z^{p}$$
 (2.9)

Then the function $g(z) = 1 + b_k z^k + b_{k+1} z^{k+1} + \cdots$ is analytic in E. Using (1.6) and

(2.9) we obtain

$$\frac{I^{\sigma}f(z)}{z^{p}} = g(z) + \frac{1}{p+1}zg'(z) \quad . \tag{2.10}$$

Thus

$$(1 - \delta) \frac{I^{\sigma} f(z)}{z^{p}} + \delta \frac{I^{\sigma+1} f(z)}{z^{p}} = g(z) + \frac{1 - \delta}{p+1} z g'(z)$$

$$< \frac{1 + Az}{1 + Bz}.$$

Now an application of the lemma leads to

$$g(z) \prec \frac{p+1}{k(1-\delta)} z^{-(p+1)/k(1-\delta)} \int_0^z t^{(p+1)/k(1-\delta)-1} \left(\frac{1+Az}{1+Bz}\right) dt$$

or

$$\frac{I^{\sigma+1}f(z)}{z^{p}} = \frac{p+1}{k(1-\delta)} \int_{0}^{1} u^{(p+1)/k(1-\delta)-1} \left(\frac{1+Auw(z)}{1+Buw(z)} \right) du, \qquad (2.11)$$

where w(z) is analytic in E with w(0) = 0 and |w(z)| < 1 $(z \in E)$.

In view of $-1 \le B < A \le 1$, it follows from (2.11) that

$$\operatorname{Re}\left\{\frac{I^{\sigma+1}f(z)}{z^{p}}\right\} > \frac{p+1}{k(1-\delta)} \int_{0}^{1} u^{(p+1)/k(1-\delta)-1} \left(\frac{1-Au}{1-Bu}\right) du > 0 \qquad (z \in E).$$

Therefore, with the aid of the elementary inequality $\operatorname{Re}(w^{1/\lambda}) \ge (\operatorname{Re} w)^{1/\lambda}$ for $\operatorname{Re} w > 0$ and $\lambda \ge 1$, the inequality (2.6) follows immediately.

To show the sharpness of (2.6), we take $f(z) \in A(p,k)$ defined by

$$\frac{I^{\sigma+1}f(z)}{z^{p}} = \frac{p+1}{k(1-\delta)} \int_{0}^{1} u^{(p+1)/k(1-\delta)-1} \left(\frac{1+Auz^{k}}{1+Buz^{k}}\right) du.$$
 (2.12)

For this function we find that

$$(1 - \delta) \frac{I^{\sigma} f(z)}{z^{p}} + \delta \frac{I^{\sigma+1} f(z)}{z^{p}} = \frac{1 + Az^{k}}{1 + Bz^{k}}$$

and

$$\frac{I^{\sigma+1}f(z)}{z^p} \to \frac{p+1}{k(1-\delta)} \int_0^1 u^{(p+1)/k(1-\delta)-1} \left(\frac{1-Au}{1-Bu}\right) du \quad \text{as} \quad z \to e^{i\pi/k}.$$

Hence the proof of the theorem is complete.

Theorem 2. Let
$$f(z) = z^p + \sum_{m=k}^{\infty} a_{p+m} z^{p+m} \in A(p,k)$$
, $s_1(z) = z^p$ and

$$s_n(z) = z^p + \sum_{m=k}^{k+n-2} a_{p+m} z^{p+m}$$
 $(n \ge 2)$. If the sequence $\{c_m\}$ $(m \ge k)$ is

nondecreasing with $c_k > 1$, where c_m is given by (2.4) and satisfies the condition (2.3), then

$$\operatorname{Re}\left\{\frac{f(z)}{s_{n}(z)}\right\} > \frac{c_{k+n-1} - 1}{c_{k+n-1}}$$
(2.13)

and

$$\operatorname{Re}\left\{\frac{s_{n}(z)}{f(z)}\right\} > 1 - \frac{1}{1 + c_{k+n-1}}.$$
(2.14)

Each of the bounds in (2.13) and (2.14) is best possible for $n \in N$.

Proof. Under the hypothesis of the theorem, we have

$$\sum_{m=k}^{k+n-2} |a_{p+m}| + c_{k+n-1} \sum_{m=k+n-1}^{\infty} |a_{p+m}| \le \sum_{m=k}^{\infty} c_m |a_{p+m}| \le 1.$$
 (2.15)

Let

$$g_1(z) = c_{k+n-1} \left\{ \frac{f(z)}{s_n(z)} - \frac{c_{k+n-1} - 1}{c_{k+n-1}} \right\},$$

then

$$g_1(z) = 1 + \frac{c_{k+n-1} \sum_{m=k+n-1}^{\infty} a_{p+m} z^m}{1 + \sum_{m=k}^{k+n-2} a_{p+m} z^m}$$

and it follows from (2.15) that

$$\left| \frac{g_1(z) - 1}{g_1(z) + 1} \right| \le \frac{c_{k+n-1} \sum_{m=k+n-1}^{\infty} |a_{p+m}|}{2 - 2 \sum_{m=k}^{k+n-2} |a_{p+m}| - c_{k+n-1} \sum_{m=k+n-1}^{\infty} |a_{p+m}|} \le 1 \quad (z \in E),$$

which readily yields the inequality (2.13).

If we take

$$f(z) = z^{p} - \frac{z^{p+k+n-1}}{c_{k+n-1}},$$
(2.16)

then

$$\frac{f(z)}{s_n(z)} = 1 - \frac{z^{k+n-1}}{c_{k+n-1}} \to 1 - \frac{1}{c_{k+n-1}}$$
 as $z \to 1^-$.

This show that the bound in (2.13) is best possible for each n.

Similarly, if we put

$$g_2(z) = (1 + c_{k+n-1}) \left\{ \frac{s_n(z)}{f(z)} - \left(1 - \frac{1}{1 + c_{k+n-1}}\right) \right\},$$

then we deduce that

$$\begin{split} \left| \frac{g_2(z) - 1}{g_2(z) + 1} \right| &\leq \frac{(1 + c_{k+n-1}) \sum_{m=k+n-1}^{\infty} |a_{p+m}|}{2 - 2 \sum_{m=k}^{k+n-2} |a_{p+m}| + (1 - c_{k+n-1}) \sum_{m=k+n-1}^{\infty} |a_{p+m}|} \\ &\leq 1 \quad (z \in E) \,, \end{split}$$

which yields (2.14). The estimate (2.14) is sharp for each n with the extremal function f(z) given by (2.16). The proof is now complete.

References

- [1] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, *J. Math. Anal. Appl.* **38**(1972), 746-765.
- [2] I. B. Jung, Y. C. Kim, and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, *J. Math. Anal. Appl.* **176**(1993), 138-147.
- [3] J. L. Li, Some properties of two integral operators, *Soochow J. Math.* **25**(1999), 91-96.
- [4] J.-L. Liu, A linear operator and strongly starlike functions, *J. Math. Soc. Japan*, **54**(2002),975-981.
- [5] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, *Michigan Math. J.* **28**(1981), 157-171.
- [6] B. A. Uralegaddi and Somanatha, Certain integral operators for starlike functions, *J. Math. Res. Expo.* **15**(1995), 14-16.