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Abstract
The aim of the present paper is to establish a new finite difference

inequality with explicit estimate which can be used as a tool in the
study of some basic properties of solutions of certain Volterra-Fredholm
type sum-difference equations.
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1. Introduction

In [5] it was shown how an equation of the form

u (x, t) = f (x, t) +

t∫
0

∫
Ω

K (x, t, y, s, u (y, s)) dyds, (1.1)
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arises as a model of the spatio-temporal development of an epidemic and anal-
ysed. There are also some other physical and engineering problems which can
be described by such equations, see [4, p. 18], [7, Chapter VI] and [6,8]. The
numerical methods are often used very effectively in studying the behavior
of solutions of equations of the forms (1.1), see [1,2,3,12] and the references
cited therein. An important approach on numerical methods for solving such
equations is to suitably combine discretization in space and in time in order
to generate high order approximations at a reasonable computational cost.

In [3] the equation (1.1) is studied by time-stepping methods and the per-
formance is then compared with that of time-stepping based on cocollection
methods. In fact, the study of equations of the forms (1.1) by discretization
methods, motivated us for the present work. In this paper we investigate a
new finite difference inequality with explicit estimate, which can be used to
study the qualitative behavior of solutions of discrete versions of more general
equations of the forms (1.1) in ready fashion. Some applications to illustrate
the usefulness of our main result are also given.

2. A Basic Finite Difference Inequality

Let N denote the set of natural numbers, R+ = [0,∞) , N0 = {0, 1, 2, ...} be the
given subsets ofR, the set of real numbers. LetNi [α, β] = {αi, αi + 1, ..., βi} , αi ∈
N0, βi ∈ N , i = 1, ...,m and G =

m∏
i=1

Ni [α, β] . For any function w : G→ R, we

denote the m-fold sum over G with respect to the variable y = (y1, ..., ym) ∈

G by
∑
G

w (y) =
β1∑

y1=α1

...
βm∑

ym=αm

w (y1, ..., ym) . Clearly,
∑
G

w (y) =
∑
G

w (x) for

x, y ∈ G. Let E = G × N0 and denote by D (S1, S2) the class of discrete
functions from the set S1 to the set S2. We use the usual convention that
empty sums and products are taken to be 0 and 1 respectively and assume
that all sums and products involved exist on the respective domains of their
definitions and are finite.

Our main result is given in the following theorem.
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Theorem 1. Let u, a, b, p, q ∈ D (E,R+) and

u (x, n) ≤ a (x, n) + b (x, n)
n−1∑
s=0

∑
G

p (y, s)u (y, s)

+c (x, n)
∞∑
s=0

∑
G

q (y, s)u (y, s), (2.1)

for (x, n) ∈ E. If

d =
∞∑
s=0

∑
G

q (y, s)B (y, s) < 1, (2.2)

then

u (x, n) ≤ A (x, n) +DB (x, n) , (2.3)

for (x, n) ∈ E, where

A (x, n) = a (x, n) + b (x, n)
n−1∑
s=0

∑
G

p (y, s) a (y, s)

×
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]
, (2.4)

B (x, n) = c (x, n) + b (x, n)
n−1∑
s=0

∑
G

p (y, s) c (y, s)

×
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]
, (2.5)

for (x, n) ∈ E and

D =
1

1− d

∞∑
s=0

∑
G

q (y, s)A (y, s) . (2.6)
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Remark 1. By taking q = 0 in (2.1), the estimate obtained in (2.3) reduces
to

u (x, n) ≤ a (x, n) + b (x, n)
n−1∑
s=0

∑
G

p (y, s) a (y, s)

×
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]
, (2.7)

for (x, n) ∈ E. If we choose p = 0 in (2.1), then the bound obtained in (2.3)
reduces to

u (x, n) ≤ a (x, n) + c (x, n)

{
1

1− d0

n−1∑
s=0

∑
G

q (y, s) a (y, s)

}
, (2.8)

for (x, n) ∈ E, where

d0 =
∞∑
s=0

∑
G

q (y, s) c (y, s) < 1. (2.9)

For detailed account on such inequalities, see [9,10].

Proof. Let

z (n) =
n−1∑
s=0

∑
G

p (y, s)u (y, s), (2.10)

λ =
∞∑
s=0

∑
G

q (y, s)u (y, s) . (2.11)

Then (2.1) can be restated as

u (x, n) ≤ a (x, n) + b (x, n) z (n) + c (x, n)λ. (2.12)

Introducing the notation

e (s) =
∑
G

p (y, s)u (y, s), (2.13)

in (2.10), we get

z (n) =
n−1∑
s=0

e (s). (2.14)
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From (2.14) and (2.12), we have

∆z (n) = z (n+ 1)− z (n) = e (n)

=
∑
G

p (y, n)u (y, n)

≤
∑
G

p (y, n) [a (y, n) + b (y, n) z (n) + c (y, n)λ]

= z (n)
∑
G

p (y, n) b (y, n) +
∑
G

p (y, n) [a (y, n) + c (y, n)λ]. (2.15)

Now applying the inequality in Theorem 1.2.1 given in [9, p. 11] with z(0) = 0
to (2.15) yields

z (n) ≤
n−1∑
s=0

∑
G

p (y, s) [a (y, s) + c (y, s)λ]

×
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]

=
n−1∑
s=0

∑
G

p (y, s) a (y, s)
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]

+λ
n−1∑
s=0

∑
G

p (y, s) c (y, s)
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]
. (2.16)

From (2.12) and (2.16), we get

u (x, n) ≤ a (x, n)+b (x, n)

{
n−1∑
s=0

∑
G

p (y, s) a (y, s)
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]

+λ
n−1∑
s=0

∑
G

p (y, s) c (y, s)
n−1∏
σ=s+1

[
1 +

∑
G

p (y, σ) b (y, σ)

]}
+ c (x, n)λ

= A (x, n) + λB (x, n) . (2.17)
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From (2.11) and (2.17), we observe that

λ =
∞∑
s=0

∑
G

q (y, s)u (y, s)

≤
∞∑
s=0

∑
G

q (y, s) [A (y, s) + λB (y, s)] ,

which implies
λ ≤ D. (2.18)

Using (2.18) in (2.17), we get (2.3) and the proof is complete.

3. Some Applications

In this section we apply the inequality established in Theorem 1 to study some
basic properties of solutions of Volterra-Fredholm type sum-difference equation

u (x, n) = f (x, n) +
n−1∑
s=0

∑
G

F (x, n, y, s, u (y, s))

+
∞∑
s=0

∑
G

H (x, n, y, s, u (y, s)) , (3.1)

for (x, n) ∈ E, where f ∈ D (E,R) , F,H ∈ D (E2 ×R,R) . One can formulate
existence result for the solution of equation (3.1) by using the idea employed
in [8,11].

First we shall give the following theorem which deals with the uniqueness
of solutions of equation (3.1).

Theorem 2. Suppose that the functions F,H in equation (3.1) satisfy the
conditions

|F (x, n, y, s, u)− F (x, n, y, s, v)| ≤ b (x, n) p (y, s) |u− v| , (3.2)

|H (x, n, y, s, u)−H (x, n, y, s, v)| ≤ c (x, n) q (y, s) |u− v| , (3.3)

where b, p, c, q ∈ D (E,R+) . Let d,D,A(x, n), B(x, n) be as in Theorem 1.
Then the equation (3.1) has at most one solution on E.
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Proof. Let u(x, n) and v(x, n) be two solutions of equation (3.1). Then by
using the hypotheses, we have

|u (x, n)− v (x, n)| ≤
n−1∑
s=0

∑
G

|F (x, n, y, s, u (y, s))− F (x, n, y, s, v (y, s))|

+
∞∑
s=0

∑
G

|H (x, n, y, s, u (y, s))−H (x, n, y, s, v (y, s))|

≤ b (x, n)
n−1∑
s=0

∑
G

p (y, s) |u (y, s)− v (y, s)|

+c (x, n)
∞∑
s=0

∑
G

q (y, s) |u (y, s)− v (y, s)|. (3.4)

Here, it is easy to see that A(x, n) and D given by (2.4) and (2.6) gives
A(x, n) = 0 and D = 0. Now a suitable application of Theorem 1 to (3.4)
yields |u (x, n)− v (x, n)| ≤ 0, and hence u (x, n) = v (x, n). Thus there is at
most one solution to equation (3.1) on E.

The following theorem deals with the estimate on the solution of equation
(3.1).

Theorem 3. Suppose that the functions F,H in equation (3.1) satisfy the
conditions

|F (x, n, y, s, u)| ≤ b (x, n) p (y, s) |u| , (3.5)

|H (x, n, y, s, u)| ≤ c (x, n) q (y, s) |u| , (3.6)

where b, p, c, q ∈ D (E,R+) . Let d,B(x, n) be as in (2.2), (2.5) and

D1 =
1

1− d

∞∑
s=0

∑
G

q (y, s)A1 (y, s), (3.7)

where A1 (x, n) is defined by the right hand side of (2.4) by replacing a(x, n)
by |f (x, n)| . If u(x, n) is any solution of equation (3.1), then

|u (x, n)| ≤ A1 (x, n) +D1B (x, n) , (3.8)

for (x, n) ∈ E.
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Proof. Using the fact that u(x, n) is a solution of equation (3.1) and the
hypotheses, we have

|u (x, n)| ≤ |f (x, n)|+
n−1∑
s=0

∑
G

|F (x, n, y, s, u (y, s))|

+
∞∑
s=0

∑
G

|H (x, n, y, s, u (y, s))|

≤ |f (x, n)|+ b (x, n)
n−1∑
s=0

∑
G

p (y, s) |u (y, s)|

+c (x, n)
∞∑
s=0

∑
G

q (y, s) |u (y, s)|. (3.9)

Now an application of Theorem 1 to (3.9) yields (3.8).

The next theorem gives the estimation on the solution of equation (3.1)
assuming that the functions F,H in equation (3.1) satisfy the Lipschitz type
conditions.

Theorem 4. Suppose that the functions F,H in equation (3.1) satisfy the
conditions (3.2), (3.3). Let d,B(x, n) be as in (2.2), (2.5) and

r (x, n) =
n−1∑
s=0

∑
G

|F (x, n, y, s, f (y, s))|

+
∞∑
s=0

∑
G

|H (x, n, y, s, f (y, s))|, (3.10)

D2 =
1

1− d

∞∑
s=0

∑
G

q (y, s)A2 (y, s) , (3.11)

where A2 (x, n) is defined by the right hand side of (2.4) by replacing a(x, n)
by r(x, n). If u(x, n) is any solution of equation (3.1), then

|u (x, n)− f (x, n)| ≤ A2 (x, n) +D2B (x, n) , (3.12)

for (x, n) ∈ E.
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Proof. Using the fact that u(x, n) is a solution of equation (3.1) and the
hypotheses, we have

|u (x, n)− f (x, n)| ≤
n−1∑
s=0

∑
G

|F (x, n, y, s, u (y, s))− F (x, n, y, s, f (y, s))|

+
n−1∑
s=0

∑
G

|F (x, n, y, s, f (y, s))|

+
∞∑
s=0

∑
G

|H (x, n, y, s, u (y, s))−H (x, n, y, s, f (y, s))|

+
∞∑
s=0

∑
G

|H (x, n, y, s, f (y, s))|

≤ r (x, n) + b (x, n)
n−1∑
s=0

∑
G

p (y, s) |u (y, s)− f (y, s)|

+c (x, n)
∞∑
s=0

∑
G

q (y, s) |u (y, s)− f (y, s)|. (3.13)

Now an application of Theorem 1 to (3.13) yields (3.12).

Finally, we obtain the estimate on the difference between the solutions of
equation (3.1) and the following Volterra type sum-difference equation

v (x, n) = f̄ (x, n) +
n−1∑
s=0

∑
G

F (x, n, y, s, v (y, s)) , (3.14)

for (x, n) ∈ E, where f̄ ∈ D (E,R) , F ∈ D (E2 ×R,R) .

The following theorem holds.
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Theorem 5. Suppose that the functions F,H in equations (3.1), (3.14) sat-
isfy the conditions (3.2), (3.3) and H(x, n, y, s, 0) = 0. Let v(x, n) be a solution
of equation (3.14) such that |v (x, n)| ≤ Q, for (x, n) ∈ E, where Q ≥ 0 is a
constant. Let d,B(x, n) be as in (2.2), (2.5) and

ā (x, n) =
∣∣f (x, n)− f̄ (x, n)

∣∣+Qc (x, n)
∞∑
s=0

∑
G

q (y, s) , (3.15)

D3 =
1

1− d

∞∑
s=0

∑
G

q (y, s)A3 (y, s) , (3.16)

where A3 (x, n) is defined by the right hand side of (2.4) by replacing a(x, n)
by ā (x, n). If u(x, n) is any solution of equation (3.1) on E, then

|u (x, n)− v (x, n)| ≤ A3 (x, n) +D3B (x, n) , (3.17)

for (x, n) ∈ E.

Proof. Using the facts that u(x, n) and v(x, n) are respectively the solutions
of equations (3.1) and (3.14) and the hypotheses, we observe that

|u (x, n)− v (x, n)| ≤
∣∣f (x, n)− f̄ (x, n)

∣∣
+

n−1∑
s=0

∑
G

|F (x, n, y, s, u (y, s))− F (x, n, y, s, v (y, s))|

+
∞∑
s=0

∑
G

|H (x, n, y, s, u (y, s))−H (x, n, y, s, v (y, s))|

+
∞∑
s=0

∑
G

|H (x, n, y, s, v (y, s))−H (x, n, y, s, 0)|

≤
∣∣f (x, n)− f̄ (x, n)

∣∣+ b (x, n)
n−1∑
s=0

∑
G

p (y, s) |u (y, s)− v (y, s)|

+c (x, n)
∞∑
s=0

∑
G

q (y, s) |u (y, s)− v (y, s)|



On a New Inequality Applicable to Certain Volterra-Fredholm Type 183

+c (x, n)
∞∑
s=0

∑
G

q (y, s) |v (y, s)|

≤ ā (x, n) + b (x, n)
n−1∑
s=0

∑
G

p (y, s) |u (y, s)− v (y, s)|

+c (x, n)
∞∑
s=0

∑
G

q (y, s) |u (y, s)− v (y, s)|. (3.18)

Now an application of Theorem 1 to (3.18) yields (3.17).

Remark 2. We note that the generality of the equation (3.1) allow us to
include the study of sum-difference equations of the forms

u (x, n) = f (x, n) +
n−1∑
s=0

∑
G

F (x, n, y, s, u (y, s)) , (3.19)

and

u (x, n) = f (x, n) +
∞∑
s=0

∑
G

H (x, n, y, s, u (y, s)) . (3.20)

Moreover, our approach here is different and we believe that the results given
here are of independent interest.
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