Convex Functions and Functions with Bounded Turning*

Nikola Tuneski ${ }^{\dagger}$
Faculty of Mechanical Engineering, Karpoš II b.b., 1000 Skopje, Republic of Macedonia

Received October 16, 2008, Accepted March 22, 2010.

Abstract

Let \mathcal{A} be the class of analytic functions in the unit disk $\mathcal{U}=\{z:|z|<$ $1\}$ that are normalized with $f(0)=f^{\prime}(0)-1=0$ and let $-1 \leq B<A \leq$ 1 and $-1 \leq D<C \leq 1$. In this paper the following generalizations of the class of convex functions and of the class of functions with bounded turn are studied

$$
K[A, B]=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}\right\}
$$

and

$$
R_{k}[C, D]=\left\{f \in \mathcal{A}: \sqrt[k]{f^{\prime}(z)} \prec \frac{1+C z}{1+D z}\right\},
$$

$k \geq 1$. Conditions when $K[A, B] \subset R_{k}[C, D]$ are given together with several corollaries for different choices of A, B, C, D and k.

Keywords and Phrases: Convex function, Function with bounded turn, Subclass, Subordination, Differential subordination.

[^0]
1. Introduction and Preliminaries

A region Ω from the complex plane \mathbb{C} is called convex if for every two points $\omega_{1}, \omega_{2} \in \Omega$ the closed line segment $\left[\omega_{1}, \omega_{2}\right]=\left\{(1-t) \omega_{1}+t \omega_{2}: 0 \leq t \leq 1\right\}$ lies in Ω. Fixing $\omega_{1}=0$ brings the definition of starlike region. If \mathcal{A} denotes the class of functions $f(z)$ that are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$, then a function $f \in \mathcal{A}$ is called convex or starlike if it maps \mathcal{U} into a convex or starlike region, respectively. Corresponding classes are denoted by K and S^{*}. It is well known that $K \subset$ S^{*}, that both are subclasses of the class of univalent functions and have the following analytical representations

$$
f \in K \quad \Leftrightarrow \quad \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad z \in \mathcal{U}
$$

and

$$
f \in S^{*} \quad \Leftrightarrow \quad \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in \mathcal{U}
$$

More on these classes can be found in [1].
Further, let $f, g \in \mathcal{A}$. Then we say that $f(z)$ is subordinate to $g(z)$, and we write $f(z) \prec g(z)$, if there exists a function $\omega(z)$, analytic in the unit disk \mathcal{U}, such that $\omega(0)=0,|\omega(z)|<1$ and $f(z)=g(\omega(z))$ for all $z \in \mathcal{U}$. Specially, if $g(z)$ is univalent in \mathcal{U} than $f(z) \prec g(z)$ if and only if $f(0)=g(0)$ and $f(\mathcal{U}) \subseteq g(\mathcal{U})$.

In the terms of subordination we have

$$
S^{*}=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}\right\}
$$

and

$$
K=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+z}{1-z}\right\} .
$$

Now, let A and B be real numbers such that $-1 \leq B<A \leq 1$. Then, the function $\frac{1+A z}{1+B z}$ maps the unit disc univalently onto an open disk that lies in the right half of the complex plane and is centered on the real axis with diameter end points $(1-A) /(1-B)$ and $(1+A) /(1+B)$. Thus, classes S^{*} and K can be generalized with

$$
S^{*}[A, B]=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}\right\}
$$

and

$$
K[A, B]=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}\right\} .
$$

Similarly, the class of functions with bounded turning

$$
R=\left\{f \in \mathcal{A}: \operatorname{Re} f^{\prime}(z)>0, z \in \mathcal{U}\right\}=\left\{f \in \mathcal{A}: f^{\prime}(z) \prec \frac{1+z}{1-z}, z \in \mathcal{U}\right\}
$$

can be generalized by

$$
R_{k}[A, B]=\left\{f \in \mathcal{A}: \sqrt[k]{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}\right\},
$$

where $k \geq 1$ and the root is taken by its principal value. The name of the class comes from the fact that $\operatorname{Re} f^{\prime}(z)>0$ is equivalent with $\left|\arg f^{\prime}(z)\right|<\pi / 2$ and $\arg f^{\prime}(z)$ is the angle of rotation of the image of a line segment from z under the mapping f.

It is well known sharp result due to A . Marx ([5]) that $K \subset R_{2}[0,-1]$, i.e., $\operatorname{Re} \sqrt{f^{\prime}(z)}>1 / 2, z \in \mathcal{U}$. This paper aims to obtain conditions when $K[A, B] \subset R_{k}[C, D]$, i.e., we will look for a conditions over k so that for fixed A, B, C and D, the subordination $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}$ implies $f^{\prime}(z) \prec\left(\frac{1+C z}{1+D z}\right)^{k}$. Also, some corollaries and examples for different choices of A, B, C, D and k will be given having in mind that

- $K(\alpha) \equiv K[1-2 \alpha,-1], 0 \leq \alpha<1$, is the class of convex functions of order α, with analytical representation $\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathcal{U}$;
- $K \equiv K[1,-1]=K(0)$ is the class of convex functions; and
- $R(\alpha, k) \equiv R_{k}[1-2 \alpha,-1], 0 \leq \alpha<1, k \geq 1$, with analytical representation $\operatorname{Re} \sqrt[k]{f^{\prime}(z)}>\alpha, z \in \mathcal{U}$.

For obtaining the main result we will use the method of differential subordinations. Valuable reference on this topic is [2]. The general theory of differential subordinations, as well as the theory of first-order differential subordinations, was introduced by Miller and Mocanu in [3] and [4]. Namely, if $\phi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is analytic in a domain D, if $h(z)$ is univalent in \mathcal{U}, and if $p(z)$ is
analytic in \mathcal{U} with $\left(p(z), z p^{\prime}(z)\right) \in D$ when $z \in \mathcal{U}$, then $p(z)$ is said to satisfy a first-order differential subordination if

$$
\begin{equation*}
\phi\left(p(z), z p^{\prime}(z)\right) \prec h(z) . \tag{1.1}
\end{equation*}
$$

The univalent function $q(z)$ is said to be a dominant of the differential subordination (1.1) if $p(z) \prec q(z)$ for all $p(z)$ satisfying (1.1). If $\widetilde{q}(z)$ is a dominant of (1.1) and $\widetilde{q}(z) \prec q(z)$ for all dominants of (1.1), then we say that $\widetilde{q}(z)$ is the best dominant of the differential subordination (1.1).

From the theory of first-order differential subordinations we will make use of the following lemma.

Lemma 1 ([4]). Let $q(z)$ be univalent in the unit disk \mathcal{U}, and let $\theta(\omega)$ and $\phi(\omega)$ be analytic in a domain \mathcal{D} containing $q(\mathcal{U})$, with $\phi(\omega) \neq 0$ when $\omega \in q(\mathcal{U})$. Set $Q(z)=z q^{\prime}(z) \phi(q(z)), h(z)=\theta(q(z))+Q(z)$, and suppose that
i) $Q(z) \in S^{*}$; and
ii) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0, z \in \mathcal{U}$.

If $p(z)$ is analytic in \mathcal{U}, with $p(0)=q(0), p(\mathcal{U}) \subseteq \mathcal{D}$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z))=h(z) \tag{1.2}
\end{equation*}
$$

then $p(z) \prec q(z)$, and $q(z)$ is the best dominant of (1.2).

2. Main Results and Consequences

In the beginning, using Lemma 1 we will prove the following useful result.
Lemma 2. Let $f \in \mathcal{A}, k \geq 1$ and let C and D be real numbers such that $-1 \leq D<C \leq 1$. If

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec 1+\frac{k z(C-D)}{(1+C z)(1+D z)} \equiv h(z) \tag{2.1}
\end{equation*}
$$

then $\sqrt[k]{f^{\prime}(z)} \prec \frac{1+C z}{1+D z} \equiv q(z)$, i.e., $f \in R_{k}[C, D]$, where function $q(z)$ is the best dominant of (2.1).

Proof. We choose $p(z)=\sqrt[k]{f^{\prime}(z)}, q(z)=\frac{1+C z}{1+D z}, \theta(\omega)=1$ and $\phi(\omega)=k / \omega$. Then $q(z)$ is convex, thus univalent, because $1+z q^{\prime \prime}(z) / q^{\prime}(z)=(1-D z) /(1+$ $D z) ; \theta(\omega)$ and $\phi(\omega)$ are analytic with domain $\mathcal{D}=\mathbb{C} \backslash\{0\}$ which contains $q(\mathcal{U})$ and $\phi(\omega) \neq 0$ when $\omega \in q(\mathcal{U})$. Further,

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\frac{k(C-D) z}{(1+C z)(1+D z)}
$$

and for $z=e^{i \lambda}, \lambda \in[-\pi, \pi]$ we have

$$
\operatorname{Re} \frac{z Q^{\prime}(z)}{Q(z)}=\operatorname{Re} \frac{1-C D z^{2}}{(1+C z)(1+D z)}=\frac{(1-C D)[1+C D+(C+D) \cos \lambda]}{\left|1+C e^{i \lambda}\right|^{2} \cdot\left|1+D e^{i \lambda}\right|^{2}} .
$$

If $C D \geq 0$ then $1+C D+(C+D) \cos \lambda \geq(1-|C|)(1-|D|)$ and if $C D<0$, i.e., $-1 \leq D<0<C \leq 1$, then $1+C D+(C+D) \cos \lambda \geq 1-C|D|-|C-|D||=\left\{\begin{array}{cc}(1-C)(1+|D|) \geq 0, & C \geq|D| \\ (1+C)(1-|D|) \geq 0, & C<|D|\end{array}\right.$.

Thus $Q(z)$ is a starlike function.
Also, $h^{\prime}(z)=Q^{\prime}(z), p(z)$ is analytic in $\mathcal{U}, p(0)=q(0)=1, p(\mathcal{U}) \subseteq \mathcal{D}$, and so, the conditions of Lemma 1 are satisfied. Finally, concerning that subordinations (1.2) and (2.1) are equivalent we receive the conclusion of Lemma 2.

The next theorem gives conditions when $K[A, B] \subset R_{k}[C, D]$.
Theorem 1. Let A, B, C, D and k be real numbers such that $-1 \leq B<$ $A \leq 1,-1 \leq D<C \leq 1$ and $k \geq 1$. Also let $a=C D(A-B), b=$ $(A-B)(C+D)-k B(C-D), c=A-B$ and

$$
\Delta=\left\{\begin{array}{cc}
(c-a) \cdot \sqrt{1-\frac{b^{2}}{4 a c}} \equiv \Delta_{1}, & a c<0 \text { and }|b|(a+c) \leq-4 a c \\
a+c+|b| \equiv \Delta_{2}, & \text { otherwise }
\end{array} .\right.
$$

If $\Delta \leq k(C-D)$ then $K[A, B] \subset R_{k}[C, D]$, i.e.,

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z} \tag{2.2}
\end{equation*}
$$

implies the subordination $\sqrt[k]{f^{\prime}(z)} \prec \frac{1+C z}{1+D z} \equiv q(z)$, meaning that $q^{k}(\mathcal{U})$ contains $f^{\prime}(\mathcal{U})$ for all $f \in K[A, B]$.

Proof. According to Lemma 2 in order to prove this theorem it is enough to show that $g(z) \equiv \frac{1+A z}{1+B z} \prec h(z)$. By the definition of subordination and the fact that $h(z)$ is starlike univalent function (shown in the proof of lemma 2 since $\left.z Q^{\prime}(z) / Q(z)=z h^{\prime}(z) / h(z)\right)$, subordination $g \prec h$ is equivalent to

$$
\left(\frac{A-B}{g(z)-1}-B\right)^{-1} \prec\left(\frac{A-B}{h(z)-1}-B\right)^{-1}
$$

i.e.,

$$
\begin{equation*}
z \prec \frac{k(C-D) z}{(A-B)(1+C z)(1+D z)-k B(C-D) z} \equiv g_{1}(z) . \tag{2.3}
\end{equation*}
$$

Further, function $g_{1}(z)$ is univalent because $h(z)$ is univalent and so (2.3) can be rewritten as $\mathcal{U} \subset g_{1}(\mathcal{U})$ or as

$$
\begin{equation*}
\left|g_{1}(z)\right| \geq 1 \tag{2.4}
\end{equation*}
$$

for all $|z|=1$. Now, putting $z=e^{i \lambda}$ and $t=\cos \lambda$ and using notations for a, b and c given in the statement of the theorem we obtain that inequality (2.4) is equivalent with

$$
\Sigma \equiv \max \{\psi(t):-1 \leq t \leq 1\} \leq k^{2}(C-D)^{2}
$$

where

$$
\begin{aligned}
\psi(t) & =|(A-B)(1+C z)(1+D z)-k B(C-D) z|^{2}=\left|a z^{2}+b z+c\right|^{2}= \\
& =4 a c t^{2}+2 b(a+c) t+b^{2}+(a-c)^{2}
\end{aligned}
$$

Simple calculus shows that the parabola $\psi(t)$ has vertex $\left(t_{*}, \psi\left(t_{*}\right)\right.$, where $t_{*}=$ $-\frac{b(a+c)}{4 a c}$ and $\psi\left(t_{*}\right)=(c-a)^{2}\left(1-\frac{b^{2}}{4 a c}\right)$. Therefore if $a c<0$ and $\left|\frac{b(a+c)}{4 a c}\right| \leq 1$ then $\Sigma=\psi\left(t_{*} 0\right.$. Otherwise, $\Sigma=\max \{\psi(1), \psi(-1)\}=(a+c+|b|)^{2}$.

Combining all this we receive the statement of the theorem.
In order to obtain more explicit conditions over k the last theorem can be rewritten in the following way.

Theorem 2. Let A, B, C, D and k be real numbers such that $-1 \leq B<A \leq$ $1,-1 \leq D<C \leq 1$ and $k \geq 1$. Also, let
$k_{1} \equiv \frac{A-B}{C-D}\left[C(1+D)^{2}+D(1+C)^{2}\right], \quad k_{2} \equiv \frac{A-B}{C-D}\left[C(1-D)^{2}+D(1-C)^{2}\right]$,

$$
\bar{a}=4 C D+B^{2}(1-C D)^{2}, \quad \bar{b}=-2 B \frac{A-B}{C-D}(C+D)(1-C D)^{2}
$$

and $\bar{c}=(A-B)^{2}(1-C D)^{2}$. If one of the following two sets of conditions is satisfied
i) $C D<0, k_{1} \leq k B(1+C D) \leq k_{2}$ and $\bar{a} k^{2}+\bar{b} k+\bar{c} \leq 0$;
ii) $C D \geq 0$ or $k_{1} \geq k B(1+C D)$ or $k_{2} \leq k B(1+C D)$, together with

$$
k \geq\left\{\begin{array}{lc}
\frac{(1+A)(1-C)}{1+C} \equiv \widehat{k_{3}}, & B=D=-1 \tag{2.5}\\
\frac{A-B}{C-D} \cdot \max \left\{\frac{(1-C)(1-D)}{1-B}, \frac{(1+C)(1+D)}{1+B}\right\} \equiv \overline{k_{3}}, & B \neq-1
\end{array}\right.
$$

then $K[A, B] \subset R_{k}[C, D]$, i.e., $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}$ implies $\sqrt[k]{f^{\prime}(z)} \prec \frac{1+C z}{1+D z} \equiv$ $q(z)$, meaning that $q^{k}(\mathcal{U})$ contains $f^{\prime}(\mathcal{U})$ for all $f \in K[A, B]$. If none of the conditions (i) and (ii) is satisfied or in (ii) $B=-1$ and $D \neq-1$ then $K[A, B] \nsubseteq R_{k}[C, D]$.

Proof. Considering notations defined in Theorem 1 it can be easily verified that inequalities $a c<0,|b|(a+c) \leq-4 a c$ and $\Delta_{1} \leq k(C-D)$ are equivalent to $C D<0, k_{1} \leq k B(1+C D) \leq k_{2}$ and $\bar{a} k^{2}+\bar{b} k+\bar{c} \leq 0$, respectively. Equivalency between $|b|(a+c) \leq-4 a c$ and $k_{1} \leq k B(1+C D) \leq k_{2}$ is not so obvious and it follows from

$$
|b|(a+c) \leq-4 a c \quad \Leftrightarrow \quad \frac{4 a c}{a+c} \leq b \leq-\frac{4 a c}{a+c}
$$

This, according to Theorem 1, shows that condition (i) implies $K[A, B] \subset$ $R_{k}[C, D]$.

Now we will show that $\Delta_{2} \leq k(C-D)$ is equivalent to (2.5). First let note that $\Delta_{2} \leq k(C-D)$ if and only if

$$
\begin{aligned}
-k(C-D)+(A-B)(1+C D) & \leq(A-B)(C+D)-k B(C-D) \leq \\
& \leq k(C-D)-(A-B)(1+C D),
\end{aligned}
$$

i.e., if and only if both

$$
\begin{equation*}
(A-B)(1-C)(1-D) \leq k(C-D)(1-B) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(A-B)(1+C)(1+D) \leq k(C-D)(1+B) \tag{2.7}
\end{equation*}
$$

hold. In the case when $B \neq-1$ we can divide both sides of (2.7) and (2.6) with $(C-D)(1-B)$ and $(C-D)(1+B)$, respectively, and obtain that $\Delta_{2} \leq k(C-D)$ is equivalent to $k \geq \overline{k_{3}}$. If $B=-1$ then in order (2.6) to hold it is necessary and sufficient $D=-1$ and then (2.7) is equivalent to $k \geq \widehat{k_{3}}$.

If none of the conditions (i) and (ii) is satisfied or in (ii) $B=-1$ and $D \neq$ -1 then $\Delta>k(C-D)$ that by the proof of Theorem 1 implies $g(z) \nprec h(z)$. Therefore, for a function $f(z) \in K[A, B]$ defined by

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=g(z)
$$

we have $f(z) \notin R_{k}[C, D]$ since $q(z)$ is the best dominant of the subordination (2.1).

Now we will study the problem of finding the smallest $k \geq 1$, if any, such that for given A, B, C and $D, q^{k}(\mathcal{U})$ is the smallest region contains $f^{\prime}(\mathcal{U})$ for all $f \in K[A, B]$. Such k will be denoted by \widetilde{k}. The idea is to see under which conditions over k Theorem 2 can be applied. We will consider the following cases:
case 1 : $B=0$
case $2: B \neq 0, B \neq-1$ and $C D=-1$
case $3: B=-1$
case $4: B \neq 0, B \neq-1$ and $C D \neq-1$
The following theorem covers the cases 1 and 2 .
Theorem 3. Let A, B, C and D be real numbers such that $-1 \leq B<A \leq 1$ and $-1 \leq D<C \leq 1$. Then $\widetilde{k}=\max \{1, \widehat{k}\}$, where
$\widehat{k}=\left\{\begin{array}{cl}\frac{A(1-C D)}{2 \sqrt{-C D}}, & \text { if } B=0, C D<0, k_{1} \leq 0 \leq k_{2} \\ \frac{A}{C-D}(1+|C|)(1+|D|), & \text { if } B=0 \text { and }\left(C D \geq 0 \text { or } k_{2} \leq 0 \text { or } k_{1} \geq 0\right) . \\ \frac{A-B}{\sqrt{1-B^{2}}}, & \text { if } B \neq-1, C D=-1\end{array}\right.$.
Proof. Let $B=0$. Then $\bar{a}=4 C D, \bar{b}=0$ and $\bar{c}=A^{2}(1-C D)^{2}>0$.
If $C D<0$ and $k_{1} \leq 0 \leq k_{2}$ then, by Theorem 2(i), \widetilde{k} is the smallest $k \geq 1$ such that $\bar{a} k^{2}+\bar{c} \leq 0$. Since $\bar{a}<0$, we have $\widetilde{k}=\max \{1, \widehat{k}\}$, where $\widehat{k}=\sqrt{-\frac{\bar{c}}{\bar{a}}}=\frac{A(1-C D)}{2 \sqrt{-C D}}$ is the positive root of the equation $\bar{a} k^{2}+\bar{c}=0$.

If $C D \geq 0$ or $k_{2} \leq 0$ or $k_{1} \geq 0$ then by Theorem 2(ii) we have $\widetilde{k}=$ $\max \{1, \widehat{k}\}$, where $\widehat{k}=\overline{k_{3}}=\frac{A}{C-D}(1+|C|)(1+|D|)$.

Now let $B \neq-1$ and $C D=-1$, i.e., $B \neq-1, C=1$ and $D=-1$. Then, $k_{1}=-2(A-B), k_{2}=2(A-B), \bar{a}=4\left(B^{2}-1\right)<0, \bar{b}=0$ and $\bar{c}=4(A-B)^{2}>0$. So, according to Theorem $2(\mathrm{i}), \widetilde{k}=\max \{1, \widehat{k}\}$, where $\widehat{k}=\sqrt{-\frac{\bar{c}}{\bar{a}}}=\frac{A-B}{\sqrt{1-B^{2}}}$ is the positive root of the equation $\bar{a} k^{2}+\bar{c}=0$.

Now we will explore case 3 when $B=-1$.
Theorem 4. Let C and D be real numbers such that $-1 \leq D<C \leq 1$ and let $0 \leq \alpha<1$. If $C D=-1$ or $D \neq-1$ then \widetilde{k} does not exist. Otherwise, i.e., if $D=-1$ and $C \neq 1$ then $\widetilde{k}=\max \{1, \widehat{k}\}$, where $\widehat{k}=\widehat{k_{3}}=(1+A)(1-C) /(1+C)$.

Proof. First we will prove the cases when \widetilde{k} does not exist.
If $C D=-1$, i.e., $C=1$ and $D=-1$, then $\bar{a}=\bar{b}=0, \bar{c}=4(1+A)^{2}>0$, i.e., for any real k condition (i) of Theorem 2 can not be satisfied.

The same holds if $D \neq-1$. First note that (ii) from Theorem 2 can not be applied because $B=-1$ and $D \neq-1$. Further, for $C D<0$ and $C \neq 1$ we have

$$
\bar{b}^{2}-4 \cdot \bar{a} \cdot \bar{c}=\frac{16 C D(A-B)^{2}(1-C D)^{2}(1-D)(1+D)(1-C)(1+C)}{(C-D)^{2}}<0
$$

and $\bar{a}=(1+C D)^{2}>0$, and so $\bar{a} k^{2}+\bar{b} k+\bar{c}>0$ for any k. Or, if $C D<0$ and $C=1$ then $\bar{a}>0, \bar{b}^{2}-4 \cdot \bar{a} \cdot \bar{c}=0$ and so $\bar{a} k^{2}+\bar{b} k+\bar{c} \leq 0$ only if $k=-\bar{b} /(2 \bar{a})=-(1+A) \frac{1-D}{1+D}<0$ and (i) can not be satisfied because we are looking for $k \geq 1$.

The case $C D \geq 0$ and $D \neq-1$ is excluded since expression (2.5) can not be true.

In all the remaining cases \widetilde{k} is the lowest $k \geq 1$ that satisfies (i) or (ii) from Theorem 2, i.e., $\widetilde{k}=\max \{1, \widehat{k}\}$, where \widehat{k} is the lowest positive k that satisfies (i) or (ii) from Theorem 2.

So, let $D=-1$ and $C D \neq-1$, i.e., $D=-1$ and $C \neq 1$. Then $\bar{a}=$ $(1-C)^{2}>0$ and $\bar{b}^{2}-4 \overline{a c}=0$. Thus, $\bar{a} k^{2}+\bar{b} k+\bar{c} \leq 0$ only for $k=-\bar{b} /(2 \bar{a})=$ $(1+A)(1+C) /(1-C)$. For such k we have

$$
k_{1} \leq k B(1+C D) \quad \Leftrightarrow \quad C \leq 0
$$

and

$$
k B(1+C D) \leq k_{2} \quad \Leftrightarrow \quad C \geq 0
$$

Therefore, part (i) from Theorem 2 can not be applied due to the condition $C D<0(\Rightarrow C \neq 0)$. Also, either $k_{1} \geq k B(1+C D)$ or $k_{2} \leq k B(1+C D)$ and by Theorem 2(ii) we obtain $\widehat{k}=\widehat{k_{3}}$.

Now we will study a part of case $4: B \neq 0, C D \neq-1$ and $B \neq-1$. We will use the notations

$$
\overline{k_{1}}=\min \left\{\frac{k_{1}}{B(1+C D)}, \frac{k_{2}}{B(1+C D)}\right\}, \quad \overline{k_{2}}=\max \left\{\frac{k_{1}}{B(1+C D)}, \frac{k_{2}}{B(1+C D)}\right\} .
$$

Theorem 5. Let A, B, C and D be real numbers such that $-1 \leq B<A \leq 1$ and $-1 \leq D<C \leq 1$. Also let $B \neq 0, B \neq-1$ and $C D \neq-1$.
i) If $C D<0$ then $\left.\widetilde{k}=\min \left\{\left(I_{1} \cup I_{2}\right) \cap[1,+\infty)\right\}\right\}$, where $I_{1}=\left[\overline{k_{1}}, \overline{k_{2}}\right] \cap \overline{I_{1}}$ with

$$
\overline{I_{1}}=\left\{\begin{array}{cc}
& |B|>\frac{C-D}{1-C D} \text { or } \\
\emptyset, & \text { if } \\
\left(|B|=\frac{2 \sqrt{-C D}}{1-C D} \text { and } B(C+D) \leq 0\right) \\
{\left[k_{4}, k_{5}\right],} & \text { if } \frac{2 \cdot \sqrt{-C D}}{1-C D}<|B| \leq \frac{C-D}{1-C D} \\
\left(\left(-\infty, k_{4}\right] \cup\left[k_{5},+\infty\right)\right), & \text { if }|B|<\frac{2 \cdot \sqrt{-C D}}{1-C D} \\
{[-\bar{c} / \bar{b},+\infty),} & \text { if }|B|=\frac{2 \cdot \sqrt{-C D}}{1-C D} \text { and } B(C+D)>0
\end{array}\right.
$$

and $k_{4} \leq k_{5}$ are the real roots of the equation $\bar{a} k^{2}+\bar{b} k+\bar{c}=0$. The second interval is

$$
I_{2}=\left(\left(-\infty, \overline{k_{1}}\right] \cup\left[\overline{k_{2}},+\infty\right)\right) \cap\left[\overline{k_{3}},+\infty\right)
$$

ii) If $C D \geq 0$ then $\widetilde{k}=\max \left\{1, \overline{k_{3}}\right\}$.

Proof. (i) Let $C D<0$. Then it is enough to show that I_{1} and I_{2} are the sets of all k satisfying conditions (i) and (ii) of Theorem 2, respectively. Expressions for I_{1} follow after simple calculus from the fact that

$$
I_{1}=\left[\overline{k_{1}}, \overline{k_{2}}\right] \cap\left\{k: \bar{a} k^{2}+\bar{b} k+\bar{c} \leq 0\right\}
$$

and

$$
\bar{b}^{2}-4 \cdot \bar{a} \cdot \bar{c}=\frac{16 C D(A-B)^{2}(1-C D)^{2}\left[B^{2}(1-C D)^{2}-(C-D)^{2}\right]}{(C-D)^{2}}
$$

Namely,
$\bar{b}^{2}-4 \cdot \bar{a} \cdot \bar{c}<0 \quad \Leftrightarrow \quad B^{2}(1-C D)^{2}-(C-D)^{2}>0 \quad \Leftrightarrow \quad|B|>\frac{C-D}{1-C D}$
and also

$$
B^{2}(1-C D)^{2}-(C-D)^{2}>0 \quad \Rightarrow \quad \bar{a}=4 C D+B^{2}(1-C D)^{2}>0
$$

Further,

$$
|B|>\frac{2 \sqrt{-C D}}{1-C D} \quad \Leftrightarrow \quad \bar{a}>0
$$

and

$$
B(C+D)>0 \quad \Leftrightarrow \quad \bar{b}<0
$$

Set I_{2} is obvious from Theorem 2(ii).
(ii) If $C D \geq 0$ from Theorem 2(ii) directly follows that $\widetilde{k}=\max \left\{1, \overline{k_{3}}\right\}$.

Remark 1. Theorem 5 does not close the problem. For example there may be values of A, B, C and D when $\left(I_{1} \cup I_{2}\right) \cap[1,+\infty)=\emptyset$ but \widetilde{k} can be obtained from part (ii) of Theorem 2. This was too robust to solve and we leave it for further investigation.

Remark 2. It can be verified that

$$
i_{2} \equiv \min \left\{I_{2} \cap[1, \infty)\right\}=\left\{\begin{array}{cc}
\overline{k_{2}}, & \text { if } \overline{k_{1}} \leq \max \left\{1, \overline{k_{3}}\right\} \leq \overline{k_{2}} \\
\max \left\{1, \overline{k_{3}}\right\}, & \text { otherwise }
\end{array}\right.
$$

Thus in Theorem $5(\mathrm{i})$ we can put $\left.\widetilde{k}=\min \left\{\left(I_{1} \cap[1,+\infty)\right) \cup i_{2}\right\}\right\}$.
Theorems 3, 4 and 5 yield to a more simple ones for special choices of A, B, C and D. Next is the case $B=D=-1, A=1-2 \alpha, 0 \leq \alpha<1$, and $C=1-2 \beta, 0 \leq \beta<1$.

Corollary 1. Let $0 \leq \alpha<1$ and $0 \leq \beta<1$. If $\beta=0$ then \widetilde{k} does not exist. Otherwise $\widetilde{k}=\max \{1, \widehat{k}\}$, where

$$
\widehat{k}=\left\{\begin{array}{cl}
\frac{2(1-\alpha)(1-\beta)}{\beta}, & 0<\beta<1 / 2 \\
\frac{2 \beta(1-\alpha)}{1-\beta}, & 1 / 2 \leq \beta<1
\end{array} .\right.
$$

Remark 3. For $\alpha=0$ and $\beta=1 / 2$ in Corollary 1 we receive $\widetilde{k}=2$. This is the classical result obtained by A. Marx, [5].

Acknowledgement. The work on this paper was supported by the Joint Research Project financed by The Ministry of Education and Science of the Republic of Macedonia (MESRM) (Project No.17-1383/1) and The Scientific and Technical Research Council of Turkey (TUBITAK) (Project No. TBGA-U-105T056).

References

[1] P. L. Duren, Univalent functions (Springer-Verlag, 1983).
[2] S. S. Miller and P. T. Mocanu, Differential subordinations, Theory and Applications, Marcel Dekker, New York-Basel, 2000.
[3] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
[4] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), 185-195.
[5] A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932/33), 40-65.

[^0]: *2000 Mathematics Subject Classification. Primary 30C45.
 †E-mail: nikolat@mf.edu.mk

