
Convex Functions and Functions with

Bounded Turning∗

Nikola Tuneski†

Faculty of Mechanical Engineering, Karpoš II b.b.,
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Abstract

LetA be the class of analytic functions in the unit disk U = {z : |z| <
1} that are normalized with f(0) = f ′(0)−1 = 0 and let −1 ≤ B < A ≤
1 and −1 ≤ D < C ≤ 1. In this paper the following generalizations of
the class of convex functions and of the class of functions with bounded
turn are studied

K[A, B] =
{

f ∈ A : 1 +
zf ′′(z)
f ′(z)

≺ 1 + Az

1 + Bz

}
and

Rk[C, D] =
{

f ∈ A : k
√

f ′(z) ≺ 1 + Cz

1 + Dz

}
,

k ≥ 1. Conditions when K[A, B] ⊂ Rk[C, D] are given together with
several corollaries for different choices of A, B, C, D and k.
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1. Introduction and Preliminaries

A region Ω from the complex plane C is called convex if for every two points
ω1, ω2 ∈ Ω the closed line segment [ω1, ω2] = {(1 − t)ω1 + tω2 : 0 ≤ t ≤ 1}
lies in Ω. Fixing ω1 = 0 brings the definition of starlike region. If A denotes
the class of functions f(z) that are analytic in the unit disk U = {z : |z| < 1}
and normalized by f(0) = f ′(0) − 1 = 0, then a function f ∈ A is called
convex or starlike if it maps U into a convex or starlike region, respectively.
Corresponding classes are denoted by K and S∗. It is well known that K ⊂
S∗, that both are subclasses of the class of univalent functions and have the
following analytical representations

f ∈ K ⇔ Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ U ,

and

f ∈ S∗ ⇔ Re
zf ′(z)

f(z)
> 0, z ∈ U .

More on these classes can be found in [1].
Further, let f, g ∈ A. Then we say that f(z) is subordinate to g(z), and

we write f(z) ≺ g(z), if there exists a function ω(z), analytic in the unit disk
U , such that ω(0) = 0, |ω(z)| < 1 and f(z) = g(ω(z)) for all z ∈ U . Specially,
if g(z) is univalent in U than f(z) ≺ g(z) if and only if f(0) = g(0) and
f(U) ⊆ g(U).

In the terms of subordination we have

S∗ =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + z

1− z

}
and

K =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ 1 + z

1− z

}
.

Now, let A and B be real numbers such that −1 ≤ B < A ≤ 1. Then, the
function 1+Az

1+Bz
maps the unit disc univalently onto an open disk that lies in the

right half of the complex plane and is centered on the real axis with diameter
end points (1−A)/(1−B) and (1 +A)/(1 +B). Thus, classes S∗ and K can
be generalized with

S∗[A,B] =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz

}
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and

K[A,B] =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ 1 + Az

1 +Bz

}
.

Similarly, the class of functions with bounded turning

R = {f ∈ A : Re f ′(z) > 0, z ∈ U} =

{
f ∈ A : f ′(z) ≺ 1 + z

1− z
, z ∈ U

}
can be generalized by

Rk[A,B] =

{
f ∈ A : k

√
f ′(z) ≺ 1 + Az

1 +Bz

}
,

where k ≥ 1 and the root is taken by its principal value. The name of the class
comes from the fact that Re f ′(z) > 0 is equivalent with | arg f ′(z)| < π/2 and
arg f ′(z) is the angle of rotation of the image of a line segment from z under
the mapping f.

It is well known sharp result due to A. Marx ([5]) that K ⊂ R2[0,−1],
i.e., Re

√
f ′(z) > 1/2, z ∈ U . This paper aims to obtain conditions when

K[A,B] ⊂ Rk[C,D], i.e., we will look for a conditions over k so that for fixed

A, B, C and D, the subordination 1 + zf ′′(z)
f ′(z)

≺ 1+Az
1+Bz

implies f ′(z) ≺
(

1+Cz
1+Dz

)k
.

Also, some corollaries and examples for different choices of A, B, C, D and k
will be given having in mind that

- K(α) ≡ K[1 − 2α,−1], 0 ≤ α < 1, is the class of convex functions of

order α, with analytical representation Re
(

1 + zf ′′(z)
f ′(z)

)
> α, z ∈ U ;

- K ≡ K[1,−1] = K(0) is the class of convex functions ; and

- R(α, k) ≡ Rk[1− 2α,−1], 0 ≤ α < 1, k ≥ 1, with analytical representa-
tion Re k

√
f ′(z) > α, z ∈ U .

For obtaining the main result we will use the method of differential sub-
ordinations. Valuable reference on this topic is [2]. The general theory of
differential subordinations, as well as the theory of first-order differential sub-
ordinations, was introduced by Miller and Mocanu in [3] and [4]. Namely, if
φ : C2 → C is analytic in a domain D, if h(z) is univalent in U , and if p(z) is
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analytic in U with (p(z), zp′(z)) ∈ D when z ∈ U , then p(z) is said to satisfy
a first-order differential subordination if

φ(p(z), zp′(z)) ≺ h(z). (1.1)

The univalent function q(z) is said to be a dominant of the differential subor-
dination (1.1) if p(z) ≺ q(z) for all p(z) satisfying (1.1). If q̃(z) is a dominant
of (1.1) and q̃(z) ≺ q(z) for all dominants of (1.1), then we say that q̃(z) is the
best dominant of the differential subordination (1.1).

From the theory of first-order differential subordinations we will make use
of the following lemma.

Lemma 1 ([4]). Let q(z) be univalent in the unit disk U , and let θ(ω) and φ(ω)
be analytic in a domain D containing q(U), with φ(ω) 6= 0 when ω ∈ q(U). Set
Q(z) = zq′(z)φ(q(z)), h(z) = θ(q(z)) +Q(z), and suppose that

i) Q(z) ∈ S∗; and

ii) Re zh′(z)
Q(z)

= Re
{
θ′(q(z))
φ(q(z))

+ zQ′(z)
Q(z)

}
> 0, z ∈ U .

If p(z) is analytic in U , with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) = h(z) (1.2)

then p(z) ≺ q(z), and q(z) is the best dominant of (1.2).

2. Main Results and Consequences

In the beginning, using Lemma 1 we will prove the following useful result.

Lemma 2. Let f ∈ A, k ≥ 1 and let C and D be real numbers such that
−1 ≤ D < C ≤ 1. If

1 +
zf ′′(z)

f ′(z)
≺ 1 +

kz(C −D)

(1 + Cz)(1 +Dz)
≡ h(z) (2.1)

then k
√
f ′(z) ≺ 1+Cz

1+Dz
≡ q(z), i.e., f ∈ Rk[C,D], where function q(z) is the best

dominant of (2.1).
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Proof. We choose p(z) = k
√
f ′(z), q(z) = 1+Cz

1+Dz
, θ(ω) = 1 and φ(ω) = k/ω.

Then q(z) is convex, thus univalent, because 1 + zq′′(z)/q′(z) = (1−Dz)/(1 +
Dz); θ(ω) and φ(ω) are analytic with domain D = C\{0} which contains q(U)
and φ(ω) 6= 0 when ω ∈ q(U). Further,

Q(z) = zq′(z)φ(q(z)) =
k(C −D)z

(1 + Cz)(1 +Dz)

and for z = eiλ, λ ∈ [−π, π] we have

Re
zQ′(z)

Q(z)
= Re

1− CDz2

(1 + Cz)(1 +Dz)
=

(1− CD)[1 + CD + (C +D) cosλ]

|1 + Ceiλ|2 · |1 +Deiλ|2
.

If CD ≥ 0 then 1 + CD + (C +D) cosλ ≥ (1− |C|)(1− |D|) and if CD < 0,
i.e., −1 ≤ D < 0 < C ≤ 1, then

1+CD+(C+D) cosλ ≥ 1−C|D|−|C−|D|| =
{

(1− C)(1 + |D|) ≥ 0, C ≥ |D|
(1 + C)(1− |D|) ≥ 0, C < |D| .

Thus Q(z) is a starlike function.
Also, h′(z) = Q′(z), p(z) is analytic in U , p(0) = q(0) = 1, p(U) ⊆ D, and

so, the conditions of Lemma 1 are satisfied. Finally, concerning that subor-
dinations (1.2) and (2.1) are equivalent we receive the conclusion of Lemma
2.

The next theorem gives conditions when K[A,B] ⊂ Rk[C,D].

Theorem 1. Let A, B, C, D and k be real numbers such that −1 ≤ B <
A ≤ 1, −1 ≤ D < C ≤ 1 and k ≥ 1. Also let a = CD(A − B), b =
(A−B)(C +D)− kB(C −D), c = A−B and

∆ =

{
(c− a) ·

√
1− b2

4ac
≡ ∆1, ac < 0 and |b|(a+ c) ≤ −4ac

a+ c+ |b| ≡ ∆2, otherwise
.

If ∆ ≤ k(C −D) then K[A,B] ⊂ Rk[C,D], i.e.,

1 +
zf ′′(z)

f ′(z)
≺ 1 + Az

1 +Bz
(2.2)

implies the subordination k
√
f ′(z) ≺ 1+Cz

1+Dz
≡ q(z), meaning that qk(U) contains

f ′(U) for all f ∈ K[A,B].
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Proof. According to Lemma 2 in order to prove this theorem it is enough to
show that g(z) ≡ 1+Az

1+Bz
≺ h(z). By the definition of subordination and the fact

that h(z) is starlike univalent function (shown in the proof of lemma 2 since
zQ′(z)/Q(z) = zh′(z)/h(z)), subordination g ≺ h is equivalent to(

A−B
g(z)− 1

−B
)−1

≺
(
A−B
h(z)− 1

−B
)−1

,

i.e.,

z ≺ k(C −D)z

(A−B)(1 + Cz)(1 +Dz)− kB(C −D)z
≡ g1(z). (2.3)

Further, function g1(z) is univalent because h(z) is univalent and so (2.3) can
be rewritten as U ⊂ g1(U) or as

|g1(z)| ≥ 1 (2.4)

for all |z| = 1. Now, putting z = eiλ and t = cosλ and using notations for a, b
and c given in the statement of the theorem we obtain that inequality (2.4) is
equivalent with

Σ ≡ max{ψ(t) : −1 ≤ t ≤ 1} ≤ k2(C −D)2,

where

ψ(t) = |(A−B)(1 + Cz)(1 +Dz)− kB(C −D)z|2 = |az2 + bz + c|2 =

= 4act2 + 2b(a+ c)t+ b2 + (a− c)2.

Simple calculus shows that the parabola ψ(t) has vertex (t∗, ψ(t∗), where t∗ =

− b(a+c)
4ac

and ψ(t∗) = (c − a)2
(

1− b2

4ac

)
. Therefore if ac < 0 and

∣∣∣ b(a+c)4ac

∣∣∣ ≤ 1

then Σ = ψ(t∗0. Otherwise, Σ = max{ψ(1), ψ(−1)} = (a+ c+ |b|)2. �
Combining all this we receive the statement of the theorem.

In order to obtain more explicit conditions over k the last theorem can be
rewritten in the following way.

Theorem 2. Let A, B, C, D and k be real numbers such that −1 ≤ B < A ≤
1, −1 ≤ D < C ≤ 1 and k ≥ 1. Also, let

k1 ≡
A−B
C −D

[
C(1 +D)2 +D(1 + C)2

]
, k2 ≡

A−B
C −D

[
C(1−D)2 +D(1− C)2

]
,
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a = 4CD +B2(1− CD)2, b = −2B
A−B
C −D

(C +D)(1− CD)2

and c = (A − B)2(1 − CD)2. If one of the following two sets of conditions is
satisfied

i) CD < 0, k1 ≤ kB(1 + CD) ≤ k2 and ak2 + bk + c ≤ 0;

ii) CD ≥ 0 or k1 ≥ kB(1 + CD) or k2 ≤ kB(1 + CD), together with

k ≥

{
(1+A)(1−C)

1+C
≡ k̂3, B = D = −1

A−B
C−D ·max

{
(1−C)(1−D)

1−B , (1+C)(1+D)
1+B

}
≡ k3, B 6= −1

;

(2.5)

then K[A,B] ⊂ Rk[C,D], i.e., 1 + zf ′′(z)
f ′(z)

≺ 1+Az
1+Bz

implies k
√
f ′(z) ≺ 1+Cz

1+Dz
≡

q(z), meaning that qk(U) contains f ′(U) for all f ∈ K[A,B]. If none of the
conditions (i) and (ii) is satisfied or in (ii) B = −1 and D 6= −1 then
K[A,B] * Rk[C,D].

Proof. Considering notations defined in Theorem 1 it can be easily verified
that inequalities ac < 0, |b|(a+ c) ≤ −4ac and ∆1 ≤ k(C −D) are equivalent
to CD < 0, k1 ≤ kB(1 + CD) ≤ k2 and ak2 + bk + c ≤ 0, respectively.
Equivalency between |b|(a + c) ≤ −4ac and k1 ≤ kB(1 + CD) ≤ k2 is not so
obvious and it follows from

|b|(a+ c) ≤ −4ac ⇔ 4ac

a+ c
≤ b ≤ − 4ac

a+ c
.

This, according to Theorem 1, shows that condition (i) implies K[A,B] ⊂
Rk[C,D].

Now we will show that ∆2 ≤ k(C−D) is equivalent to (2.5). First let note
that ∆2 ≤ k(C −D) if and only if

−k(C −D) + (A−B)(1 + CD) ≤ (A−B)(C +D)− kB(C −D) ≤
≤ k(C −D)− (A−B)(1 + CD),

i.e., if and only if both

(A−B)(1− C)(1−D) ≤ k(C −D)(1−B) (2.6)

and
(A−B)(1 + C)(1 +D) ≤ k(C −D)(1 +B) (2.7)
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hold. In the case when B 6= −1 we can divide both sides of (2.7) and (2.6) with
(C−D)(1−B) and (C−D)(1+B), respectively, and obtain that ∆2 ≤ k(C−D)
is equivalent to k ≥ k3. If B = −1 then in order (2.6) to hold it is necessary

and sufficient D = −1 and then (2.7) is equivalent to k ≥ k̂3.
If none of the conditions (i) and (ii) is satisfied or in (ii) B = −1 and D 6=

−1 then ∆ > k(C −D) that by the proof of Theorem 1 implies g(z) ⊀ h(z).
Therefore, for a function f(z) ∈ K[A,B] defined by

1 +
zf ′′(z)

f ′(z)
= g(z)

we have f(z) /∈ Rk[C,D] since q(z) is the best dominant of the subordination
(2.1).

Now we will study the problem of finding the smallest k ≥ 1, if any, such
that for given A, B, C and D, qk(U) is the smallest region contains f ′(U) for

all f ∈ K[A,B]. Such k will be denoted by k̃. The idea is to see under which
conditions over k Theorem 2 can be applied. We will consider the following
cases:

case 1 : B = 0

case 2 : B 6= 0, B 6= −1 and CD = −1

case 3 : B = −1

case 4 : B 6= 0, B 6= −1 and CD 6= −1

The following theorem covers the cases 1 and 2.

Theorem 3. Let A, B, C and D be real numbers such that −1 ≤ B < A ≤ 1
and −1 ≤ D < C ≤ 1. Then k̃ = max{1, k̂}, where

k̂ =


A(1−CD)

2
√
−CD , if B = 0, CD < 0, k1 ≤ 0 ≤ k2

A
C−D (1 + |C|)(1 + |D|), if B = 0 and (CD ≥ 0 or k2 ≤ 0 or k1 ≥ 0)

A−B√
1−B2 , if B 6= −1, CD = −1

.

Proof. Let B = 0. Then a = 4CD, b = 0 and c = A2(1− CD)2 > 0.

If CD < 0 and k1 ≤ 0 ≤ k2 then, by Theorem 2(i), k̃ is the smallest

k ≥ 1 such that ak2 + c ≤ 0. Since a < 0, we have k̃ = max{1, k̂}, where

k̂ =
√
− c
a

= A(1−CD)

2
√
−CD is the positive root of the equation ak2 + c = 0.
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If CD ≥ 0 or k2 ≤ 0 or k1 ≥ 0 then by Theorem 2(ii) we have k̃ =

max{1, k̂}, where k̂ = k3 = A
C−D (1 + |C|)(1 + |D|).

Now let B 6= −1 and CD = −1, i.e., B 6= −1, C = 1 and D = −1.
Then, k1 = −2(A − B), k2 = 2(A − B), a = 4(B2 − 1) < 0, b = 0 and

c = 4(A − B)2 > 0. So, according to Theorem 2(i), k̃ = max{1, k̂}, where

k̂ =
√
− c
a

= A−B√
1−B2 is the positive root of the equation ak2 + c = 0. �

Now we will explore case 3 when B = −1.

Theorem 4. Let C and D be real numbers such that −1 ≤ D < C ≤ 1 and let
0 ≤ α < 1. If CD = −1 or D 6= −1 then k̃ does not exist. Otherwise, i.e., if
D = −1 and C 6= 1 then k̃ = max{1, k̂}, where k̂ = k̂3 = (1+A)(1−C)/(1+C).

Proof. First we will prove the cases when k̃ does not exist.
If CD = −1, i.e., C = 1 and D = −1, then a = b = 0, c = 4(1 + A)2 > 0,

i.e., for any real k condition (i) of Theorem 2 can not be satisfied.
The same holds if D 6= −1. First note that (ii) from Theorem 2 can not

be applied because B = −1 and D 6= −1. Further, for CD < 0 and C 6= 1 we
have

b
2 − 4 · a · c =

16CD(A−B)2(1− CD)2(1−D)(1 +D)(1− C)(1 + C)

(C −D)2
< 0

and a = (1 + CD)2 > 0, and so ak2 + bk + c > 0 for any k. Or, if CD < 0

and C = 1 then a > 0, b
2 − 4 · a · c = 0 and so ak2 + bk + c ≤ 0 only if

k = −b/(2a) = −(1 + A)1−D
1+D

< 0 and (i) can not be satisfied because we are
looking for k ≥ 1.

The case CD ≥ 0 and D 6= −1 is excluded since expression (2.5) can not
be true.

In all the remaining cases k̃ is the lowest k ≥ 1 that satisfies (i) or (ii) from

Theorem 2, i.e., k̃ = max{1, k̂}, where k̂ is the lowest positive k that satisfies
(i) or (ii) from Theorem 2.

So, let D = −1 and CD 6= −1, i.e., D = −1 and C 6= 1. Then a =

(1−C)2 > 0 and b
2− 4ac = 0. Thus, ak2 + bk+ c ≤ 0 only for k = −b/(2a) =

(1 + A)(1 + C)/(1− C). For such k we have

k1 ≤ kB(1 + CD) ⇔ C ≤ 0
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and
kB(1 + CD) ≤ k2 ⇔ C ≥ 0.

Therefore, part (i) from Theorem 2 can not be applied due to the condition
CD < 0 (⇒ C 6= 0). Also, either k1 ≥ kB(1 + CD) or k2 ≤ kB(1 + CD) and

by Theorem 2(ii) we obtain k̂ = k̂3. �

Now we will study a part of case 4: B 6= 0, CD 6= −1 and B 6= −1. We
will use the notations

k1 = min

{
k1

B(1 + CD)
,

k2

B(1 + CD)

}
, k2 = max

{
k1

B(1 + CD)
,

k2

B(1 + CD)

}
.

Theorem 5. Let A, B, C and D be real numbers such that −1 ≤ B < A ≤ 1
and −1 ≤ D < C ≤ 1. Also let B 6= 0, B 6= −1 and CD 6= −1.

i) If CD < 0 then k̃ = min{(I1 ∪ I2) ∩ [1,+∞)}}, where I1 =
[
k1, k2

]
∩ I1

with

I1 =



∅, if

|B| > C−D
1−CD or(

|B| = 2
√
−CD

1−CD and B(C +D) ≤ 0
)

[k4, k5], if 2·
√
−CD

1−CD < |B| ≤ C−D
1−CD

((−∞, k4] ∪ [k5,+∞)), if |B| < 2·
√
−CD

1−CD

[−c/b,+∞), if |B| = 2·
√
−CD

1−CD and B(C +D) > 0

and k4 ≤ k5 are the real roots of the equation ak2 + bk + c = 0. The
second interval is

I2 = ((−∞, k1] ∪ [k2,+∞)) ∩ [k3,+∞).

ii) If CD ≥ 0 then k̃ = max{1, k3}.

Proof. (i) Let CD < 0. Then it is enough to show that I1 and I2 are the sets of
all k satisfying conditions (i) and (ii) of Theorem 2, respectively. Expressions
for I1 follow after simple calculus from the fact that

I1 =
[
k1, k2

]
∩
{
k : ak2 + bk + c ≤ 0

}
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and

b
2 − 4 · a · c =

16CD(A−B)2(1− CD)2[B2(1− CD)2 − (C −D)2]

(C −D)2
.

Namely,

b
2 − 4 · a · c < 0 ⇔ B2(1− CD)2 − (C −D)2 > 0 ⇔ |B| > C −D

1− CD

and also

B2(1− CD)2 − (C −D)2 > 0 ⇒ a = 4CD +B2(1− CD)2 > 0.

Further,

|B| > 2
√
−CD

1− CD
⇔ a > 0

and

B(C +D) > 0 ⇔ b < 0.

Set I2 is obvious from Theorem 2(ii).

(ii) If CD ≥ 0 from Theorem 2(ii) directly follows that k̃ = max{1, k3}.

Remark 1. Theorem 5 does not close the problem. For example there may
be values of A, B, C and D when (I1∪I2)∩ [1,+∞) = ∅ but k̃ can be obtained
from part (ii) of Theorem 2. This was too robust to solve and we leave it for
further investigation.

Remark 2. It can be verified that

i2 ≡ min{I2 ∩ [1,∞)} =

{
k2, if k1 ≤ max{1, k3} ≤ k2

max{1, k3}, otherwise
.

Thus in Theorem 5(i) we can put k̃ = min{(I1 ∩ [1,+∞)) ∪ i2}}.

Theorems 3, 4 and 5 yield to a more simple ones for special choices of A,
B, C and D. Next is the case B = D = −1, A = 1 − 2α, 0 ≤ α < 1, and
C = 1− 2β, 0 ≤ β < 1.
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Corollary 1. Let 0 ≤ α < 1 and 0 ≤ β < 1. If β = 0 then k̃ does not exist.
Otherwise k̃ = max{1, k̂}, where

k̂ =

{
2(1−α)(1−β)

β
, 0 < β < 1/2

2β(1−α)
1−β , 1/2 ≤ β < 1

.

Remark 3. For α = 0 and β = 1/2 in Corollary 1 we receive k̃ = 2. This is
the classical result obtained by A. Marx, [5].
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