The Hardy-Littlewood Inequality for the Solution to P-Harmonic Type System *

Zhenhua Cao, Gejun Bao, Ronglu Li, Lifeng Guo
Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, P.R. China
and
Yi Ling ${ }^{\ddagger}$
Department of Mathematics, The University of Toledo Toledo, OH 43606, U. S. A.

Received May 7, 2008, Accepted November 6, 2008.

Abstract

Hardy-Littlewood inequality is instrumental in virtually all analytic aspects of the theory of partial differential equations, linear and nonlinear. And conjugate A-harmonic tensors, the solutions to conjugate A harmonic equation, are generalizations of conjugate harmonic functions to differential forms. In this paper, we shall prove the Hardy-Littlewood inequality for the p-harmonic type system which is nonhomogeneous conjugate A-harmonic equation.

Keywords and Phrases: Hardy-Littlewood inequality, p-harmonic type system, A-harmonic equation.

[^0]
1. Introduction

It is well known that the conjugate harmonic functions play very important role in many areas of mathematics such as harmonic analysis, the theory of H^{p}-spaces and potential theory. Conjugate harmonic functions have lots of analytical properties in common, among which are global L^{p}-integrability and Hölder continuity. These discoveries essentially began with the work of Hardy and Littlewood in the 1930's (see [1], [2]). And see [3] for an earlier reference on Hölder continuity.

Conjugate A-harmonic equation is an important extension of conjugate p-harmonic equation which has various applications in many fields, such as potential theory, quasi-regular mappings, and the theory of elasticity. Many interesting results about conjugate A-harmonic tensors have been established recently (see [4-7]). In 2004, L. D'Onofrio and T. Iwaniec introduced p-harmonic type system in [7], which is an important extension of conjugate A-harmonic equation. Now we mention some notions and definitions to p-harmonic type system.

Let $e_{1}, e_{2}, \ldots, e_{n}$ denote the standard ordered basis of \mathbb{R}^{n}. For $l=0,1, . ., n$ we denote by $\Lambda^{l}=\Lambda^{l}\left(\mathbb{R}^{n}\right)$ the linear space of all l-vectors, spanned by the exterior product $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{l}}$ corresponding to all ordered l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right), 1 \leq i_{1}<i_{2}<\ldots<i_{l} \leq n$. The Grassmann algebra $\Lambda=\oplus \Lambda^{l}$ is a graded algebra with respect to the exterior products. For $\alpha=\sum \alpha_{I} e_{I} \in \Lambda$ and $\beta=\sum \beta_{I} e_{I} \in \Lambda$, then its inner product is obtained by

$$
\langle\alpha, \beta\rangle=\sum \alpha_{I} \beta_{I},
$$

where the summation taken all $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ and all integers $l=0,1, . . n$. The Hodge star operator $*: \Lambda \rightarrow \Lambda$ is defined by the rule

$$
* 1=e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{n}}
$$

and

$$
\alpha \wedge * \beta=\beta \wedge * \alpha=\langle\alpha, \beta\rangle(* 1)
$$

for all $\alpha, \beta \in \Lambda$. Hence the norm of $\alpha \in \Lambda$ can be given by

$$
|\alpha|^{2}=\langle\alpha, \alpha\rangle=*(\alpha \wedge * \alpha) \in \Lambda_{0}=\mathbb{R}
$$

Throughout this paper, $\Omega \subset \mathbb{R}^{n}$ is an open subset, for any constant $\sigma>1$, Q denotes a cube such that $Q \subset \sigma Q \subset \Omega$, where σQ denotes the cube which
center is as same as Q and $\operatorname{diam}(\sigma Q)=\sigma \operatorname{diam} Q$. We say $\alpha=\sum \alpha_{I} e_{I} \in \Lambda$ is a differential l-form on Ω, if every coefficient α_{I} of α is Schwartz distribution on Ω. And the space spanned by differential l-form on Ω denotes by $D^{\prime}\left(\Omega, \Lambda^{l}\right)$. We write $\int_{\Omega} f$ short for $\int_{\Omega} f d x$ and we shall denote $\|d u\|_{p, Q, \omega^{\alpha}}^{p}$ by $\int_{Q}|u|^{p} \omega^{\alpha}$. We write $L^{p}\left(\Omega, \Lambda^{l}\right)$ for the l-form $\alpha=\sum \alpha_{I} d x_{I}$ on Ω with $\alpha_{I} \in L^{p}(\Omega)$ for all ordered l-tuple I. Thus $L^{p}\left(\Omega, \Lambda^{l}\right)$ is a Banach space with the norm

$$
\|\alpha\|_{p, \Omega}=\left(\int_{\Omega}|\alpha|^{p}\right)^{1 / p}=\left(\int_{\Omega}\left(\sum_{I}\left|\alpha_{I}\right|^{2}\right)^{p / 2}\right)^{1 / p}
$$

Similarly $W^{k, p}\left(\Omega, \Lambda^{l}\right)$ denotes those l-forms on Ω with all coefficients are belong to $W^{k, p}(\Omega)$. We denote the exterior derivative by

$$
d: D^{\prime}\left(\Omega, \Lambda^{l}\right) \rightarrow D^{\prime}\left(\Omega, \Lambda^{l+1}\right)
$$

and its formal adjoint (the Hodge co-differential) is the operator

$$
d^{*}: D^{\prime}\left(\Omega, \Lambda^{l}\right) \rightarrow D^{\prime}\left(\Omega, \Lambda^{l-1}\right),
$$

where operators d and d^{*} are given by the formulas

$$
d \alpha=\sum_{I} d \alpha_{I} \wedge d x_{I}, \text { and } d^{*}=(-1)^{n l+1} * d * .
$$

Definition1.1. ${ }^{[7]}:(p$-harmonic type system) We say the Hodge system

$$
\begin{equation*}
A(x, a+d u)=b+d^{*} v \tag{1.1}
\end{equation*}
$$

where $a \in L^{p}\left(\Omega, \Lambda^{l}\right)$ and $b \in L^{q}\left(\Omega, \Lambda^{l}\right)$, is a p-harmonic type system if A is a mapping from $\Omega \times \Lambda^{l}$ to Λ^{l} satisfying:

1) $x \rightarrow A(x, \xi)$ is measurable in $x \in \Omega$ for every $\xi \in \Lambda^{l}$
2) $x \rightarrow A(x, \xi)$ is continuous in $\xi \in \Lambda^{l}$ for almost every $x \in \Omega$
3) $A(x, t \xi)=t^{p-1} A(x, \xi)$ for every $t \geq 0$
4) $K\langle A(x, \xi)-A(x, \zeta), \xi-\zeta\rangle \geq|\xi-\zeta|^{2}(|\xi|+|\zeta|)^{p-2}$
5) $|A(x, \xi)-A(x, \zeta)| \leq K|\xi-\zeta|(|\xi|+|\zeta|)^{p-2}$
for almost every $x \in \Omega$ and all $\xi, \zeta \in \Lambda^{l}$, where $K \geq 1$ is a constant. It should be noted that $A(x, *): \Omega \times \Lambda^{l} \rightarrow \Lambda^{l}$ is invertible and its inverse denoted by A^{-1} satisfies similar conditions as A but with Hölder conjugate exponent q in place of p.

Definition1.2. ${ }^{[7]}$: (p-harmonic type equation) If the equation (1.1) is a p harmonic type system, then we say the equation

$$
\begin{equation*}
d^{*} A(x, a+d u)=d^{*} b \tag{1.2}
\end{equation*}
$$

is a p-harmonic type equation.
Definition1.3. ${ }^{[5]}$: A differential form u is a weak solution for the equation (1.2) in Ω if u satisfies

$$
\begin{equation*}
\int_{\Omega}\langle A(x, a+d u), d \varphi\rangle+\left\langle d^{*} b, \varphi\right\rangle \equiv 0 \tag{1.3}
\end{equation*}
$$

for every $\varphi \in W^{k, p}\left(\Omega, \Lambda^{l-1}\right)$ with compact support.
We can find that if we let $a=0$ and $b=0$, then the p-harmonic type system

$$
A(x, a+d u)=b+d^{*} v
$$

becomes

$$
A(x, d u)=d^{*} v .
$$

It is the conjugate A-harmonic equation in which $A: \Omega \times \Lambda^{l} \rightarrow \Lambda^{l}$ is a mapping and satisfies the following conditions

$$
|A(x, \xi)| \leq a|\xi|^{p-1} \quad,\langle A(x, \xi), \xi\rangle \geq|\xi|^{p}
$$

and if we let $A(x, \xi)=|\xi|^{p-2} \xi$, then conjugate A-harmonic equation becomes the form

$$
|d u|^{p-2} d u=d^{*} v .
$$

It is the conjugate p-harmonic equation.

So we can see that conjugate p-harmonic equation and conjugate A-harmonic equation are the specific p-harmonic type system.

Before we prove the Hardy-Littlewood inequality for the solution to p harmonic type system, let us recall the following theorems.

TheoremA. ${ }^{[1]}$: For each $p>0$, there is a constant C such that

$$
\int_{\mathbb{D}}|u-u(0)|^{p} d x d y \leq C \int_{\mathbb{D}}|v-v(0)|^{p} d x d y
$$

for all analytic functions $u+i v$ in the disk \mathbb{D}.
TheoremB.$^{[6]}$: Let u and v be conjugate A-harmonic tensors in a domain $\Omega \subset \mathbb{R}^{n}, \sigma>1$ and $0<s, t<\infty$. There exists a constant C, independent of u and v, such that

$$
\left\|u-u_{Q}\right\|_{s, Q} \leq C|Q|^{\beta}\left\|v-c_{1}\right\|_{t, \sigma Q}^{q / p}
$$

and

$$
\left\|v-v_{Q}\right\|_{t, Q} \leq C|Q|^{-p \beta / q}\left\|u-c_{2}\right\|_{s, \sigma Q}^{p / q}
$$

for all cubes Q with $\sigma Q \subset \Omega$, where c_{1} is any form in $W_{p, l o c}^{1}(\Omega, \Lambda)$ with $d^{*} c_{1}=$ $0, c_{2}$ is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d c_{2}=0$ and

$$
\beta=1 / s+1 / n-q / p t-q / p n
$$

TheoremC. ${ }^{[6]}$: Let $u \in D^{\prime}\left(\Omega, \Lambda^{0}\right)$ and $v \in D^{\prime}\left(\Omega, \Lambda^{2}\right)$ be conjugate A-harmonic tensors. If Ω is $\delta-J o h n, q \leq p, v-c \in L^{t}\left(\Omega, \Lambda^{2}\right)$ and $s=\phi(t)=$ $n p t /(n q-t q-t p)$, then $u-u_{Q_{0}} \in L^{s}\left(\Omega, \Lambda^{0}\right)$ and moreover, there exists a constant C, independent of u and v, such that

$$
\left\|u-u_{Q_{0}}\right\|_{s, \Omega} \leq C\|v-c\|_{t, \Omega}^{q / p}
$$

where c is any form in $W_{q, l o c}^{1}(\Omega, \Lambda)$ with $d c=0$ and Q_{0} is the distinguished cube in lemma 4.5 of [6].

2. The Local Norm Comparison on L-domain

First of all, we introduce the operator ω_{Q}. Given $d \omega \in L^{p}\left(Q, \Lambda^{l}\right), 1 \leq$ $p<\infty$, we can construct the closed l-form ω_{Q} which will be used below by the rule: $\omega_{Q}=\frac{1}{|Q|} \int_{Q} \omega d x$ for $l=0$ and $\omega_{Q}=d\left(T_{Q}\right)$ for the other. By the definition of the operator T, we easily know $\omega_{\sigma Q} \mid Q=\omega_{Q}$, for any $\sigma>1$. The details of the above constructions and results can be found in [5].

For our results we need the following lemma.
Lemma 2.1. ${ }^{[5]}$ If $\omega \in D^{\prime}\left(Q, \Lambda^{l}\right)$ and $d \omega \in L^{p}\left(Q, \Lambda^{L+1}\right)$, then $\omega-\omega_{Q} \in$ $W_{p}^{1}\left(Q, \Lambda^{l}\right)$ and

$$
\left\|\omega-\omega_{Q}\right\|_{p, Q} \leq C(n, p) \operatorname{diam} Q\|d \omega\|_{p, Q}
$$

for $1<p<\infty$. Moreover,

$$
\left\|\omega_{Q}\right\|_{p, Q} \leq C_{2}(n, p)\|\omega\|_{p, Q} .
$$

Lemma 2.2. ${ }^{[7]}$ Let $\Omega \subset \mathbb{R}^{n}$ be any L-domain. The A-harmonic system $A(x, a+d u)=b+d^{*} v$ with given $(a, b) \in L^{\lambda p}\left(\Omega, \Lambda^{l}\right) \times L^{\lambda p}\left(\Omega, \Lambda^{l}\right), 1 \leq \lambda<\lambda_{A}$, admits at least one solution $(u, v) \in W_{T}^{1, \lambda p}\left(\Omega, \Lambda^{l-1}\right) \times W^{1, \lambda q}\left(\Omega, \Lambda^{l+1}\right)$. This solution is unique if Ω is bounded.

By the lemma 2.1 and lemma 2.2, we have
Lemma 2.3. If (u, v) is a pair of solution to the p-harmonic type system, then we have

$$
\begin{equation*}
\left\|u-u_{Q}\right\|_{p, Q} \leq C(n, p) \operatorname{diam} Q\|d u\|_{p, Q} \tag{2.1}
\end{equation*}
$$

We shall use the Caccoippoli estimate and reverse Hölder inequality when we prove the Hardy-Littlewood inequality.

Lemma 2.4. ${ }^{[8]}$ Let (u, v) be a solution of the p-harmonic type system, $\sigma>1$ is a constant and $Q \subset \sigma Q \subset \Omega$, then we have a constant C only depending on K, l, p, n, such that

$$
\|d u\|_{p, Q} \leq C \operatorname{diam} Q^{-1}\|u-c\|_{p, \sigma Q}+C\|a\|_{p, \sigma Q}
$$

where c is any closed form (i.e. $d c=0$). Also we have a constant C^{\prime} only depending on K, n, l, q, such that

$$
\begin{equation*}
\left\|d^{*} v\right\|_{q, Q} \leq C^{\prime} \operatorname{diam} Q^{-1}\left\|v-c^{\prime}\right\|_{q, \sigma Q}+C^{\prime}\|b\|_{q, \sigma Q} \tag{2.2}
\end{equation*}
$$

where c^{\prime} is any co-closed form (i.e. $d^{*} c^{\prime}=0$) and q is the conjugate exponent of p given by $p^{-1}+q^{-1}=1$.

Lemma 2.5. ${ }^{[9]}$ If (u, v) is a pair of a solution to the p-harmonic type system, $\sigma>1$ is any constant then we have a constant C only depending on K, p, n, l, such that

$$
\left(\frac{1}{|Q|} \int_{Q}(|a|+|u|)^{s} d x\right)^{1 / s} \leq C\left(1-\sigma^{-1}\right)^{-t \chi / p(\chi-1)}\left(\frac{1}{|\sigma Q|} \int_{\sigma Q}(|a|+|u|)^{t} d x\right)^{1 / t}
$$

for any $0<s, t<\infty, \sigma>1$ and all cubes Q with $Q \subset \sigma Q \subset \Omega$. Also we have a constant C^{\prime} only depending on K, q, n, l, such that

$$
\left(\frac{1}{|Q|} \int_{Q}(|b|+|v|)^{s} d x\right)^{1 / s} \leq C^{\prime}\left(1-\sigma^{-1}\right)^{-t \chi / q(\chi-1)}\left(\frac{1}{|\sigma Q|} \int_{\sigma Q}(|b|+|u|)^{t} d x\right)^{1 / t}
$$

where q is the conjugate exponent of p and χ is the Poincaré constant.
By lemma 2.5, we can obtain lemma 2.6.
Lemma 2.6. If (u, v) is a pair of a solution to the p-harmonic type system, $\sigma>1$ is any given constant then we have a constant C, independent of u, v, a, b and Q, such that

$$
\begin{equation*}
\|u\|_{s, Q} \leq C|Q|^{1 / s-1 / t}\left(\|u\|_{t, \sigma Q}+\|a\|_{t, \sigma Q}\right) \tag{2.3}
\end{equation*}
$$

for any $0<s, t<\infty$ and all cubes Q with $Q \subset \sigma Q \subset \Omega$. Also we have a constant C^{\prime}, independent of u and v, such that

$$
\begin{equation*}
\|v\|_{s, Q} \leq C|Q|^{1 / s-1 / t}\left(\|v\|_{t, \sigma Q}+\|b\|_{t, \sigma Q}\right) \tag{2.4}
\end{equation*}
$$

for any $0<s, t<\infty$ and all cubes Q with $Q \subset \sigma Q \subset \Omega$.
Proof. We only prove (2.3) because the proof of (2.4) is similar to (2.3). If $t \geq 1$, then by Minkowski inequality we obtain

$$
\|u\|_{s, Q} \leq C_{1}|Q|^{1 / s-1 / t}\left(\|u\|_{t, \sigma Q}+\|a\|_{t, \sigma Q}\right)
$$

where $C_{1}=C\left(1-\sigma^{-1}\right)^{-t \chi / p(\chi-1)} \sigma^{-n / t}$ and C is the constant in lemma 2.5. If $0 \leq t<1$, by the elementary inequality

$$
(a+b)^{p} \leq a^{p}+b^{p}
$$

for all $a, b \geq 0$ and $0 \leq p<1$, then we get

$$
\left(\int_{\sigma Q}(|a|+|u|)^{t} d x\right)^{1 / t} \leq\left(\int_{\sigma Q}\left(|a|^{t}+|u|^{t}\right) d x\right)^{1 / t}
$$

and by the elementary inequality

$$
(a+b)^{p} \leq 2^{p}\left(a^{p}+b^{p}\right)
$$

for all $a, b \geq 0$ and $p \geq 0$, then we obtain

$$
\||a|+|u|\|_{t, \sigma Q} \leq 2^{1 / t}\left(\|u\|_{t, \sigma Q}+\|a\|_{t, \sigma Q}\right) .
$$

So we have

$$
\|u\|_{s, Q} \leq C_{2}|Q|^{1 / s-1 / t}\left(\|u\|_{t, \sigma Q}+\|a\|_{t, \sigma Q}\right)
$$

where $C_{2}=2^{1 / t} C_{1}$. The lemma 2.6 is proved.
Lemma 2.7. If (u, v) is a pair of a solution to the p-harmonic type system and q is the conjugate exponent of p, then we have

$$
\begin{equation*}
K^{-q}|a+d u|^{p} \leq\left|b+d^{*} v\right|^{q} \leq K^{q}|a+d u|^{p}, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K^{-p}\left|b+d^{*} v\right|^{q} \leq|a+d u|^{p} \leq K^{p}\left|b+d^{*} v\right|^{q} . \tag{2.6}
\end{equation*}
$$

Proof. Let (u, v) be a pair of a solution to the p-harmonic type system. By 3) in definition 1.1, we have

$$
A(x, 0)=0 .
$$

And by 4) in definition 1.1, we obtain

$$
K\left\langle b+d^{*} v, a+d u\right\rangle \geq|a+d u|^{p} .
$$

Thus, we can deduce

$$
\left|b+d^{*} v\right| \leq K|a+d u|^{p-1}
$$

That is,

$$
\left|b+d^{*} v\right|^{q} \leq K^{q}|a+d u|^{p} .
$$

Using similar computation, we can obtain

$$
\left|b+d^{*} v\right|^{q} \geq K^{-q}|a+d u|^{p} .
$$

(2.5) is proved. The proof of (2.6) is similar to (2.5).

Theorem 2.1. Let (u, v) be a pair of a solution to the p-harmonic type system with $(a, b) \in L^{p}\left(\Omega, \Lambda^{l}\right) \times L^{q}\left(\Omega, \Lambda^{l}\right)$ and q be the conjugate exponent of p. if $\sigma>1$ and $0<s, t<\infty$, then there exists a constant C, independent of u, v, a, b and Q, such that

$$
\begin{equation*}
\left\|u-u_{Q}\right\|_{s, Q} \leq C|Q|^{\alpha}\left(\left\|v-c_{1}\right\|_{t, \sigma Q}^{q / p}+\|a\|_{p, \sigma Q}+\|b\|_{q, \sigma Q}^{q / p}+\|b\|_{t, \sigma Q}^{q / p}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v-v_{Q}\right\|_{t, Q} \leq C|Q|^{-p \alpha / q}\left(\left\|u-c_{2}\right\|_{s, \sigma Q}^{p / q}+\|b\|_{q, \sigma Q}+\|a\|_{p, \sigma Q}^{p / q}+\|a\|_{s, \sigma Q}^{p / q}\right) \tag{2.8}
\end{equation*}
$$

for cubes with $Q \subset \sigma Q \subset \Omega$, where c_{1} is any co-closed form, c_{2} is any closed form, $\alpha=\max (1 / s-1 / p+1 / n, 1 / s+1 / n-q / t p-q / n p)$ for $|Q|>1$ and $\alpha=\min (1 / s-1 / p, 1 / s+1 / n-q / t p-q / n p)$ for the others.

Proof. Let $\rho=\sigma^{1 / 3}>1$. We only prove the inequality (2.7) because (2.8) is similar to (2.7). First by (2.3) in the lemma 2.6, we get

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{s, Q}=\left\|u-u_{\sigma Q}\right\|_{s, Q} & \leq C|Q|^{1 / s-1 / p}\left(\left\|u-u_{\sigma Q}\right\|_{p, \rho Q}+\|a\|_{p, \rho Q}\right) \tag{2.9}\\
& =C|Q|^{1 / s-1 / p}\left(\left\|u-u_{\rho Q}\right\|_{p, \rho Q}+\|a\|_{p, \rho Q}\right)
\end{align*}
$$

Then by the Poincaré inequality (2.1), we obtain

$$
\begin{equation*}
\left\|u-u_{\rho Q}\right\|_{p, \rho Q} \leq C(n, p) \operatorname{diam}(\rho Q)\|d u\|_{p, \rho Q} \tag{2.10}
\end{equation*}
$$

Combining (2.9) and (2.10) and using Minkowski inequality, we can deduce

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{s, Q} \leq & C|Q|^{1 / s-1 / p}\|a\|_{p, \rho Q}+C|Q|^{1 / s-1 / p+1 / n}\|d u\|_{p, \rho Q} \\
\leq & C|Q|^{1 / s-1 / p}\|a\|_{p, \rho Q}+C|Q|^{1 / s-1 / p+1 / n}\|a\|_{p, \rho Q} \\
& +C|Q|^{1 / s-1 / p+1 / n}\|a+d u\|_{p, \rho Q} \tag{2.11}\\
\leq & C|Q|^{\beta_{1}}\|a\|_{p, \sigma Q}+C|Q|^{1 / s-1 / p+1 / n}\|a+d u\|_{p, \rho Q},
\end{align*}
$$

where $\beta=1 / s+1 / n-1 / p$ when $|Q|>1$ and $\beta=1 / s-1 / p$ for the others (i.e. $\beta=\max (1 / s-1 / p, 1 / s+1 / n-1 / p)$ when $|Q| \geq 1$ and $\beta=\min (1 / s-$ $1 / p, 1 / s+1 / n-1 / p$) for the others). Now using the inequality (2.5) and Minkowski inequality, (2.11) becomes

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{s, Q} \leq & C|Q|^{\beta}\|a\|_{p, \sigma Q}+C|Q|^{1 / s-1 / p+1 / n}\left\|b+d^{*} v\right\|_{q, \rho Q}^{q / p} \\
\leq & C|Q|^{\beta}\|a\|_{p, \sigma Q}+C|Q|^{1 / s-1 / p+1 / n}\|b\|_{q, \rho Q}^{q / p} \tag{2.12}\\
& +C|Q|^{1 / s-1 / p+1 / n}\left\|d^{*} v\right\|_{q, \rho Q}^{q / p} \\
\leq & C|Q|^{\beta}\left(\|a\|_{p, \sigma Q}+\|b\|_{q, \sigma Q}^{q / p}\right)+C|Q|^{1 / s-1 / p+1 / n}\left\|d^{*} v\right\|_{q, \rho Q}^{q / p} .
\end{align*}
$$

By the Caccoippoli estimate (2.2) and the elementary inequality

$$
(a+b)^{p} \leq 2^{p}\left(a^{p}+b^{p}\right)
$$

for all $a, b \geq 0$ and $p \geq 0$, we have

$$
\begin{align*}
\left\|d^{*} v\right\|_{q, \rho Q}^{q / p} & \leq C_{1} \operatorname{diam} \rho(Q)^{-q / p}\left\|v-c_{1}\right\|_{q, \rho^{2} Q}^{q / p}+C_{1}\|b\|_{q, \rho^{2} Q}^{q / p} \tag{2.13}\\
& \leq C|Q|^{-q / n p}\left\|v-c_{1}\right\|_{q, \rho^{2} Q}^{q / p}+C\|b\|_{q, \sigma Q}^{q / p},
\end{align*}
$$

where c_{1} is a co-closed form (i.e. $d^{*} c_{1}=0$). Combining (2.12) and (2.13), we have

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{s, Q} \leq & C|Q|^{\beta}\left(\|a\|_{p, \sigma Q}+\|b\|_{q, \sigma Q}^{q / p}\right) \\
& +C|Q|^{1 / s-1 / p+1 / n-q / n p}\left\|v-c_{1}\right\|_{q, \rho^{2} Q}^{q / p} . \tag{2.14}
\end{align*}
$$

And by the inequality (2.4), we can obtain

$$
\begin{align*}
\left\|u-u_{Q}\right\|_{s, Q} \leq & C|Q|^{\beta}\left(\|a\|_{p, \sigma Q}+\|b\|_{q, \sigma Q}^{q / p}\right) \\
& +C|Q|^{1 / s+1 / n-q / n p-q / p t}\left(\left\|v-c_{1}\right\|_{t, \sigma Q}^{q / p}+\|b\|_{t, \sigma Q}^{q / p}\right) . \tag{2.15}
\end{align*}
$$

Now let $\alpha=\max (1 / s-1 / p+1 / n, 1 / s+1 / n-q / t p-q / n p)$ for $|Q|>1$ and $\alpha=\min (1 / s-1 / p, 1 / s+1 / n-q / t p-q / n p)$ for the others, then (2.15) becomes

$$
\left\|u-u_{Q}\right\|_{s, Q} \leq C|Q|^{\alpha}\left(\left\|v-c_{1}\right\|_{t, \sigma Q}^{q / p}+\|a\|_{p, \sigma Q}+\|b\|_{q, \sigma Q}^{q / p}+\|b\|_{t, \sigma Q}^{q / p}\right) .
$$

The theorem 2.1 is proved.
Remark 2.1. If the $a=0$ and $b=0$, then theorem 2.1 becomes theorem B by (2.15).

References

[1] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. für Math. 167(1931), 405-423.
[2] G. H. Hardy and J. E. Littlewood, Some properties of fractional integral II, Math. Z. 34(1932), 403-439.
[3] I. I. Privalov, Sur les fonctions conjugées, Bull. Soc. Math. France 44(1916), 100-103.
[4] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136(1992), 589-624.
[5] T. Iwaniec and A. Lotoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125(1993), 25-79.
[6] C. A. Nolder, Hardy-Littlewoood theorems for A-harmonic tensors, Illinois J. Math. 43 no. 4 (1999), 613-632.
[7] L. D'Onofrio and T. Iwaniec, The p-harmonic transform beyond its natural domains of definition, Indiana Univ. math. j. 53 no. 3 (2004), 683-718.
[8] Zhenhua Cao, Gejun Bao, Ronglu Li and Haijing Zhu, The reverse Hölder inequality for the solution to p-harmonic type system, Journal of Inequalities and Applications 2008 (2008), Art. ID 397340, 15 PP.
[9] Zhenhua Cao, Gejun Bao, Ronglu Li and Xiaopan Ma, The Caccoippoli estimate for the solution to p-harmonic type system, to appear.

[^0]: *2000 This work is supported by the NSF of P.R. China. No. 10671046 and No. 10771044.
 ${ }^{\dagger}$ Corresponding author. E-mail: baogj@hit.edu.cn
 ${ }^{\ddagger}$ E-mail: lingyi2001@hotmail.com

