
The Hardy-Littlewood Inequality for the

Solution to P-Harmonic Type System ∗

Zhenhua Cao, Gejun Bao†, Ronglu Li, Lifeng Guo
Department of Mathematics, Harbin Institute of Technology,

Harbin, 150001, P.R. China

and

Yi Ling‡

Department of Mathematics, The University of Toledo Toledo,

OH 43606, U. S. A.

Received May 7, 2008, Accepted November 6, 2008.

Tamsui Oxford Journal of Mathematical Sciences 26(2) (2010) 149-159
Aletheia University

Abstract

Hardy-Littlewood inequality is instrumental in virtually all analytic
aspects of the theory of partial differential equations, linear and nonlin-
ear. And conjugate A−harmonic tensors, the solutions to conjugate A-
harmonic equation, are generalizations of conjugate harmonic functions
to differential forms. In this paper, we shall prove the Hardy-Littlewood
inequality for the p−harmonic type system which is nonhomogeneous
conjugate A−harmonic equation.
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1. Introduction

It is well known that the conjugate harmonic functions play very important
role in many areas of mathematics such as harmonic analysis, the theory of
Hp−spaces and potential theory. Conjugate harmonic functions have lots of
analytical properties in common, among which are global Lp−integrability and
Hölder continuity. These discoveries essentially began with the work of Hardy
and Littlewood in the 1930’s (see [1], [2]). And see [3] for an earlier reference
on Hölder continuity.

Conjugate A−harmonic equation is an important extension of conju-
gate p−harmonic equation which has various applications in many fields,
such as potential theory, quasi-regular mappings, and the theory of elastic-
ity. Many interesting results about conjugate A−harmonic tensors have been
established recently (see [4-7]). In 2004, L. D’Onofrio and T. Iwaniec intro-
duced p−harmonic type system in [7], which is an important extension of con-
jugate A−harmonic equation. Now we mention some notions and definitions
to p-harmonic type system.

Let e1, e2, ..., en denote the standard ordered basis of Rn. For l = 0, 1, .., n
we denote by Λl = Λl(Rn) the linear space of all l−vectors, spanned by the
exterior product eI = ei1 ∧ ei2 ∧ ... ∧ eil corresponding to all ordered l−tuples
I = (i1, i2, ..., il), 1 ≤ i1 < i2 < ... < il ≤ n. The Grassmann algebra Λ = ⊕Λl

is a graded algebra with respect to the exterior products. For α =
∑
αIeI ∈ Λ

and β =
∑
βIeI ∈ Λ, then its inner product is obtained by

〈α, β〉 =
∑

αIβI ,

where the summation taken all I = (i1, i2, ..., il) and all integers l = 0, 1, .., n.
The Hodge star operator ∗:Λ→ Λ is defined by the rule

∗1 = ei1 ∧ ei2 ∧ ... ∧ ein

and
α ∧ ∗β = β ∧ ∗α = 〈α, β〉(∗1)

for all α, β ∈ Λ. Hence the norm of α ∈ Λ can be given by

|α|2 = 〈α, α〉 = ∗(α ∧ ∗α) ∈ Λ0 = R.

Throughout this paper, Ω ⊂ Rn is an open subset, for any constant σ > 1,
Q denotes a cube such that Q ⊂ σQ ⊂ Ω, where σQ denotes the cube which
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center is as same as Q and diam(σQ) = σdiamQ. We say α =
∑
αIeI ∈ Λ is a

differential l−form on Ω, if every coefficient αI of α is Schwartz distribution on
Ω. And the space spanned by differential l−form on Ω denotes by D

′
(Ω,Λl).

We write
∫

Ω
f short for

∫
Ω
fdx and we shall denote ‖du‖pp,Q,ωα by

∫
Q
|u|pωα .

We write Lp(Ω,Λl) for the l−form α =
∑
αIdxI on Ω with αI ∈ Lp(Ω) for all

ordered l−tuple I. Thus Lp(Ω,Λl) is a Banach space with the norm

‖α‖p,Ω = (

∫
Ω

|α|p)1/p = (

∫
Ω

(
∑
I

|αI |2)
p/2

)1/p.

Similarly W k,p(Ω,Λl) denotes those l−forms on Ω with all coefficients are
belong to W k,p(Ω). We denote the exterior derivative by

d : D
′
(Ω,Λl)→ D

′
(Ω,Λl+1),

and its formal adjoint (the Hodge co-differential) is the operator

d∗ : D
′
(Ω,Λl)→ D

′
(Ω,Λl−1),

where operators d and d∗ are given by the formulas

dα =
∑
I

dαI ∧ dxI , and d∗ = (−1)nl+1 ∗ d ∗ .

Definition1.1.[7]: (p−harmonic type system) We say the Hodge system

A(x, a+ du) = b+ d∗v, (1.1)

where a ∈ Lp(Ω,Λl) and b ∈ Lq(Ω,Λl), is a p-harmonic type system if A is a
mapping from Ω× Λl to Λl satisfying:

1) x→ A(x, ξ) is measurable in x ∈ Ω for every ξ ∈ Λl

2) x→ A(x, ξ) is continuous in ξ ∈ Λl for almost every x ∈ Ω

3) A(x, tξ) = tp−1A(x, ξ) for every t ≥ 0

4) K〈A(x, ξ)− A(x, ζ), ξ − ζ〉 ≥ |ξ − ζ|2(|ξ|+ |ζ|)p−2
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5) |A(x, ξ)− A(x, ζ)| ≤ K|ξ − ζ|(|ξ|+ |ζ|)p−2

for almost every x ∈ Ω and all ξ, ζ ∈ Λl, where K ≥ 1 is a constant. It should
be noted that A(x, ∗) : Ω × Λl → Λl is invertible and its inverse denoted by
A−1 satisfies similar conditions as A but with Hölder conjugate exponent q in
place of p.

Definition1.2.[7]: (p−harmonic type equation) If the equation (1.1) is a p-
harmonic type system,then we say the equation

d∗A(x, a+ du) = d∗b (1.2)

is a p- harmonic type equation.

Definition1.3.[5]: A differential form u is a weak solution for the equation
(1.2) in Ω if u satisfies∫

Ω

〈A(x, a+ du), dϕ〉+ 〈d∗b, ϕ〉 ≡ 0 (1.3)

for every ϕ ∈ W k,p(Ω,Λl−1) with compact support.

We can find that if we let a = 0 and b = 0, then the p−harmonic type
system

A(x, a+ du) = b+ d∗v

becomes
A(x, du) = d∗v.

It is the conjugate A−harmonic equation in which A : Ω × Λl → Λl is a
mapping and satisfies the following conditions

|A(x, ξ)| ≤ a|ξ|p−1 , 〈A(x, ξ), ξ〉 ≥ |ξ|p,

and if we let A(x, ξ) = |ξ|p−2ξ, then conjugate A−harmonic equation becomes
the form

|du|p−2du = d∗v.

It is the conjugate p−harmonic equation.
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So we can see that conjugate p−harmonic equation and conjugateA−harmonic
equation are the specific p−harmonic type system.

Before we prove the Hardy-Littlewood inequality for the solution to p-
harmonic type system, let us recall the following theorems.

TheoremA.[1]: For each p > 0, there is a constant C such that∫
D
|u− u(0)|pdxdy ≤ C

∫
D
|v − v(0)|pdxdy

for all analytic functions u+ iv in the disk D.

TheoremB.[6]: Let u and v be conjugate A−harmonic tensors in a domain
Ω ⊂ Rn, σ > 1 and 0 < s, t < ∞. There exists a constant C, independent of
u and v, such that

‖u− uQ‖s,Q ≤ C|Q|β‖v − c1‖q/pt,σQ

and

‖v − vQ‖t,Q ≤ C|Q|−pβ/q‖u− c2‖p/qs,σQ

for all cubes Q with σQ ⊂ Ω, where c1 is any form in W 1
p,loc(Ω,Λ) with d∗c1 =

0, c2 is any form in W 1
q,loc(Ω,Λ) with dc2 = 0 and

β = 1/s+ 1/n− q/pt− q/pn.

TheoremC.[6]: Let u ∈ D′
(Ω,Λ0) and v ∈ D′

(Ω,Λ2) be conjugate A−harmonic
tensors. If Ω is δ − John, q ≤ p, v − c ∈ Lt(Ω,Λ2) and s = φ(t) =
npt/(nq − tq − tp), then u − uQ0 ∈ Ls(Ω,Λ0) and moreover , there exists
a constant C, independent of u and v, such that

‖u− uQ0‖s,Ω ≤ C‖v − c‖q/pt,Ω ,

where c is any form in W 1
q,loc(Ω,Λ) with dc = 0 and Q0 is the distinguished

cube in lemma 4.5 of [6].
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2. The Local Norm Comparison on L-domain

First of all, we introduce the operator ωQ. Given dω ∈ Lp(Q,Λl), 1 ≤
p < ∞, we can construct the closed l−form ωQ which will be used below by
the rule: ωQ = 1

|Q|

∫
Q
ωdx for l = 0 and ωQ = d(TQ) for the other. By the

definition of the operator T , we easily know ωσQ|Q = ωQ, for any σ > 1. The
details of the above constructions and results can be found in [5].

For our results we need the following lemma.

Lemma 2.1.[5] If ω ∈ D
′
(Q,Λl) and dω ∈ Lp(Q,ΛL+1), then ω − ωQ ∈

W 1
p (Q,Λl) and

‖ω − ωQ‖p,Q ≤ C(n, p)diamQ‖dω‖p,Q
for 1 < p <∞. Moreover,

‖ωQ‖p,Q ≤ C2(n, p)‖ω‖p,Q.

Lemma 2.2.[7]Let Ω ⊂ Rn be any L−domain. The A−harmonic system
A(x, a+du) = b+d∗v with given (a, b) ∈ Lλp(Ω,Λl)× Lλp(Ω,Λl), 1 ≤ λ < λA,
admits at least one solution (u, v) ∈ W 1,λp

T (Ω,Λl−1)×W 1,λq(Ω,Λl+1). This
solution is unique if Ω is bounded.

By the lemma 2.1 and lemma 2.2, we have

Lemma 2.3. If (u, v) is a pair of solution to the p−harmonic type system,
then we have

‖u− uQ‖p,Q ≤ C(n, p)diamQ‖du‖p,Q. (2.1)

We shall use the Caccoippoli estimate and reverse Hölder inequality when
we prove the Hardy-Littlewood inequality.

Lemma 2.4.[8] Let (u, v) be a solution of the p−harmonic type system, σ > 1
is a constant and Q ⊂ σQ ⊂ Ω, then we have a constant C only depending on
K, l, p, n, such that

‖du‖p,Q ≤ CdiamQ−1‖u− c‖p,σQ + C‖a‖p,σQ,
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where c is any closed form (i.e. dc = 0). Also we have a constant C
′

only
depending on K,n, l, q, such that

‖d∗v‖q,Q ≤ C
′
diamQ−1‖v − c′‖q,σQ + C

′‖b‖q,σQ, (2.2)

where c
′

is any co-closed form (i.e. d∗c
′

= 0) and q is the conjugate exponent
of p given by p−1 + q−1 = 1.

Lemma 2.5.[9] If (u, v) is a pair of a solution to the p−harmonic type system,
σ > 1 is any constant then we have a constant C only depending on K, p, n, l,
such that

(
1

|Q|

∫
Q

(|a|+ |u|)sdx)1/s ≤ C(1− σ−1)−tχ/p(χ−1)(
1

|σQ|

∫
σQ

(|a|+ |u|)tdx)1/t

for any 0 < s, t <∞, σ > 1 and all cubes Q with Q ⊂ σQ ⊂ Ω. Also we have
a constant C

′
only depending on K, q, n, l, such that

(
1

|Q|

∫
Q

(|b|+ |v|)sdx)1/s ≤ C
′
(1− σ−1)−tχ/q(χ−1)(

1

|σQ|

∫
σQ

(|b|+ |u|)tdx)1/t,

where q is the conjugate exponent of p and χ is the Poincaré constant.

By lemma 2.5, we can obtain lemma 2.6.

Lemma 2.6. If (u, v) is a pair of a solution to the p−harmonic type system,
σ > 1 is any given constant then we have a constant C, independent of u, v, a, b
and Q, such that

‖u‖s,Q ≤ C|Q|1/s−1/t(‖u‖t,σQ + ‖a‖t,σQ) (2.3)

for any 0 < s, t < ∞ and all cubes Q with Q ⊂ σQ ⊂ Ω. Also we have a
constant C

′
, independent of u and v, such that

‖v‖s,Q ≤ C|Q|1/s−1/t(‖v‖t,σQ + ‖b‖t,σQ) (2.4)

for any 0 < s, t <∞ and all cubes Q with Q ⊂ σQ ⊂ Ω.

Proof. We only prove (2.3) because the proof of (2.4) is similar to (2.3). If
t ≥ 1, then by Minkowski inequality we obtain

‖u‖s,Q ≤ C1|Q|1/s−1/t(‖u‖t,σQ + ‖a‖t,σQ),
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where C1 = C(1− σ−1)−tχ/p(χ−1)σ−n/t and C is the constant in lemma 2.5. If
0 ≤ t < 1, by the elementary inequality

(a+ b)p ≤ ap + bp

for all a, b ≥ 0 and 0 ≤ p < 1, then we get

(

∫
σQ

(|a|+ |u|)tdx)1/t ≤ (

∫
σQ

(|a|t + |u|t)dx)1/t,

and by the elementary inequality

(a+ b)p ≤ 2p(ap + bp)

for all a, b ≥ 0 and p ≥ 0, then we obtain

‖|a|+ |u|‖t,σQ ≤ 21/t(‖u‖t,σQ + ‖a‖t,σQ).

So we have
‖u‖s,Q ≤ C2|Q|1/s−1/t(‖u‖t,σQ + ‖a‖t,σQ),

where C2 = 21/tC1. The lemma 2.6 is proved.

Lemma 2.7. If (u, v) is a pair of a solution to the p−harmonic type system
and q is the conjugate exponent of p, then we have

K−q|a+ du|p ≤ |b+ d∗v|q ≤ Kq|a+ du|p, (2.5)

and
K−p|b+ d∗v|q ≤ |a+ du|p ≤ Kp|b+ d∗v|q. (2.6)

Proof. Let (u, v) be a pair of a solution to the p−harmonic type system. By
3) in definition 1.1, we have

A(x, 0) = 0.

And by 4) in definition 1.1, we obtain

K〈b+ d∗v, a+ du〉 ≥ |a+ du|p.

Thus, we can deduce
|b+ d∗v| ≤ K|a+ du|p−1.
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That is,
|b+ d∗v|q ≤ Kq|a+ du|p.

Using similar computation , we can obtain

|b+ d∗v|q ≥ K−q|a+ du|p.

(2.5) is proved. The proof of (2.6) is similar to (2.5).

Theorem 2.1. Let (u, v) be a pair of a solution to the p−harmonic type
system with (a, b) ∈ Lp(Ω,Λl) × Lq(Ω,Λl) and q be the conjugate exponent of
p. if σ > 1 and 0 < s, t < ∞, then there exists a constant C, independent of
u, v, a, b and Q, such that

‖u− uQ‖s,Q ≤ C|Q|α(‖v − c1‖q/pt,σQ + ‖a‖p,σQ + ‖b‖q/pq,σQ + ‖b‖q/pt,σQ), (2.7)

and

‖v − vQ‖t,Q ≤ C|Q|−pα/q(‖u− c2‖p/qs,σQ + ‖b‖q,σQ + ‖a‖p/qp,σQ + ‖a‖p/qs,σQ) (2.8)

for cubes with Q ⊂ σQ ⊂ Ω, where c1 is any co-closed form, c2 is any closed
form, α = max(1/s − 1/p + 1/n, 1/s + 1/n − q/tp − q/np) for |Q| > 1 and
α = min(1/s− 1/p, 1/s+ 1/n− q/tp− q/np) for the others.

Proof. Let ρ = σ1/3 > 1. We only prove the inequality (2.7) because (2.8) is
similar to (2.7). First by (2.3) in the lemma 2.6, we get

‖u− uQ‖s,Q = ‖u− uσQ‖s,Q ≤ C|Q|1/s−1/p(‖u− uσQ‖p,ρQ + ‖a‖p,ρQ)

= C|Q|1/s−1/p(‖u− uρQ‖p,ρQ + ‖a‖p,ρQ).
(2.9)

Then by the Poincaré inequality (2.1), we obtain

‖u− uρQ‖p,ρQ ≤ C(n, p)diam(ρQ)‖du‖p,ρQ. (2.10)

Combining (2.9) and (2.10) and using Minkowski inequality, we can deduce

‖u− uQ‖s,Q ≤C|Q|1/s−1/p‖a‖p,ρQ + C|Q|1/s−1/p+1/n‖du‖p,ρQ
≤C|Q|1/s−1/p‖a‖p,ρQ + C|Q|1/s−1/p+1/n‖a‖p,ρQ

+ C|Q|1/s−1/p+1/n‖a+ du‖p,ρQ
≤C|Q|β1‖a‖p,σQ + C|Q|1/s−1/p+1/n‖a+ du‖p,ρQ,

(2.11)
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where β = 1/s + 1/n − 1/p when |Q| > 1 and β = 1/s − 1/p for the others
(i.e. β = max(1/s − 1/p, 1/s + 1/n − 1/p) when |Q| ≥ 1 and β = min(1/s −
1/p, 1/s + 1/n − 1/p) for the others). Now using the inequality (2.5) and
Minkowski inequality, (2.11) becomes

‖u− uQ‖s,Q ≤C|Q|β‖a‖p,σQ + C|Q|1/s−1/p+1/n‖b+ d∗v‖q/pq,ρQ
≤C|Q|β‖a‖p,σQ + C|Q|1/s−1/p+1/n‖b‖q/pq,ρQ

+ C|Q|1/s−1/p+1/n‖d∗v‖q/pq,ρQ
≤C|Q|β(‖a‖p,σQ + ‖b‖q/pq,σQ) + C|Q|1/s−1/p+1/n‖d∗v‖q/pq,ρQ.

(2.12)

By the Caccoippoli estimate (2.2) and the elementary inequality

(a+ b)p ≤ 2p(ap + bp)

for all a, b ≥ 0 and p ≥ 0, we have

‖d∗v‖q/pq,ρQ ≤ C1diamρ(Q)−q/p‖v − c1‖q/pq,ρ2Q + C1‖b‖q/pq,ρ2Q
≤ C|Q|−q/np‖v − c1‖q/pq,ρ2Q + C‖b‖q/pq,σQ,

(2.13)

where c1 is a co-closed form (i.e. d∗c1 = 0). Combining (2.12) and (2.13), we
have

‖u− uQ‖s,Q ≤C|Q|β(‖a‖p,σQ + ‖b‖q/pq,σQ)

+ C|Q|1/s−1/p+1/n−q/np‖v − c1‖q/pq,ρ2Q.
(2.14)

And by the inequality (2.4), we can obtain

‖u− uQ‖s,Q ≤C|Q|β(‖a‖p,σQ + ‖b‖q/pq,σQ)

+ C|Q|1/s+1/n−q/np−q/pt(‖v − c1‖q/pt,σQ + ‖b‖q/pt,σQ).
(2.15)

Now let α = max(1/s− 1/p + 1/n, 1/s + 1/n− q/tp− q/np) for |Q| > 1 and
α = min(1/s−1/p, 1/s+1/n−q/tp−q/np) for the others, then (2.15) becomes

‖u− uQ‖s,Q ≤ C|Q|α(‖v − c1‖q/pt,σQ + ‖a‖p,σQ + ‖b‖q/pq,σQ + ‖b‖q/pt,σQ).

The theorem 2.1 is proved.

Remark 2.1. If the a = 0 and b = 0, then theorem 2.1 becomes theorem B
by (2.15).
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