Classes of Analytic Functions of Complex Order Involving a Family of Generalized Differential Operators^{*}

C. Selvaraj[†]

Department of Mathematics, Presidency College, Chennai-600 005, Tamilnadu, India

and

C. Santhosh Moni \ddagger

Department of Mathematics, R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai-601206, Tamilnadu, India

Received February 26, 2009, Accepted June 6, 2009.

Abstract

Using Hadamard product, we define a new class differential operator. By applying this operator, we introduce new subclasses of analytic functions of complex order. Apart from deriving a set of coefficient bounds for each of these function classes. We establish several inclusion relationships involving the (n, δ) -neighborhoods of analytic functions with negative coefficients belonging to these subclasses.

Keywords and Phrases: Analytic functions of complex order, Hadamard product Differential Operators.

^{*2000} Mathematics Subject Classification. Primary 30C45.

[†]E-mail: pamc9439@yahoo.co.in

 $[\]label{eq:corresponding} {}^{\ddagger} Corresponding author. \quad E\text{-mail: csmrmk@yahoo.com}$

1. Introduction, Definitions and Preliminaries

Let $\mathcal{A}_p(n)$ denote the class of all analytic functions of the form

$$f(z) = z^p + \sum_{k=n}^{\infty} a_k z^k \quad (p < n; n, p \in \mathbb{N} = \{1, 2, \dots\})$$
(1.1)

which are analytic and p-valent in the open unit disc $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$. For functions $f \in \mathcal{A}_p(n)$ of the form (1.1) and $g \in \mathcal{A}_p(n)$ given by

 $g(z) = z^p + \sum_{k=n}^{\infty} b_k z^k$ their Hadamard product (or convolution) is given by

$$(f * g)(z) = z^p + \sum_{k=n}^{\infty} a_k b_k z^k.$$
 (1.2)

For a fixed function $g \in \mathcal{A}_p(n)$ defined by

$$g(z) = z^p + \sum_{n=k}^{\infty} b_k z^k \quad (p < n; \, b_k \ge 0; \, n, p \in \mathbb{N} = \{1, 2, \, \dots \})$$
(1.3)

we now define the following operator $D^{\delta}_{\lambda}(f * g)(z) : \mathcal{A}_p(n) \longrightarrow \mathcal{A}_p(n)$ by

$$D^{0}_{\lambda}(f * g)(z) = (f * g)(z),$$

$$D^{1}_{\lambda}(f * g)(z) = (1 - \lambda)(f * g)(z) + \frac{\lambda}{p}z((f * g)(z))'$$
(1.4)

$$D^{\delta}_{\lambda}(f*g)(z) = D^{1}_{\lambda}(D^{\delta-1}_{\lambda}(f*g)(z)).$$
(1.5)

If $f \in \mathcal{A}_p(n)$, then from (1.4) and (1.5) we may easily deduce that

$$D_{\lambda}^{\delta}(f*g)(z) = z^{p} + \sum_{k=n}^{\infty} \left[1 + \frac{\lambda(k-p)}{p}\right]^{\delta} a_{k} b_{k} z^{k}$$
(1.6)

where $\delta \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and $\lambda \ge 0$.

Remark 1.1. It is interesting to note that several integral and differential operator follows as a special case of $D_{\lambda}^{\delta}(f * g)(z)$, here we list few of them.

- 1. When p = 1, n = 2 and $g(z) = z + \sum_{k=2}^{\infty} z^k$, $D_{\lambda}^{\delta}(f * g)(z)$ reduces to an operator introduced recently by F. Al-Oboudi [1].
- 2. Let the coefficients b_k be of the form

$$b_{k} = \frac{(\alpha_{1})_{k-p} \dots (\alpha_{q})_{k-p}}{(\beta_{1})_{k-p} \dots (\beta_{s})_{k-p} (k-p)!}$$
(1.7)

and if $\delta = 0$ then $D_{\lambda}^{\delta}(f * g)(z)$ reduces to the well-known Dziok-Srivastava operator (see for details [3, 4, 5]) which contains such well-known operators as the Hohlov linear operator [6], Carlson-Shaffer linear operator [2] and Ruscheweyh derivative[11].

Apart from these, the operator $D_{\lambda}^{\delta}(f * g)(z)$ generalizes the well-known operators like Sălăgean operator [10], Bernardi-Libera-Livingston operator.

By making use of the operator $D_{\lambda}^{\delta}(f * g)(z)$, we introduce a new class $S_{p}^{\delta}(g; \lambda, n, b, m)$ of functions belonging to the subclasses of $\mathcal{A}_{p}(n)$, which consists of functions f(z) of the form (1.1), satisfying the following inequality:

$$\left| \frac{1}{b} \left(\frac{z D_{\lambda}^{\delta} (f \ast g)^{m+1}(z)}{D_{\lambda}^{\delta+1} (f \ast g)^{m}(z)} - (p - m) \right) \right| < \gamma, \tag{1.8}$$

$$(z \in \mathcal{U}, m, \delta \in \mathbb{N}_0, 0 \le \lambda \le 1, 0 < \gamma \le 1, b \in \mathbb{C} \setminus \{0\}).$$

Further we define $\mathcal{TS}_p^{\delta}(g; \lambda, n, b, m) = \mathcal{S}_p^{\delta}(g; \lambda, n, b, m) \cap T_p(n)$, where $T_p(n)$ is the subclass of $\mathcal{A}_p(n)$ consisting of functions of the form

$$f(z) = z^p - \sum_{k=n}^{\infty} a_k z^k, \qquad a_k \ge 0, \ \forall \ k \ge n$$
(1.9)

was introduced and studied by Silverman.

Finally, for a fixed function

$$g(z) = z - \sum_{k=n}^{\infty} b_k z^k \in T_p(n) \quad (p < n; \ b_k \ge 0, \ \forall k \ge n; \ n, p \in \mathbb{N},$$
(1.10)

let $\mathcal{Q}_p^{\delta}(g,\lambda,n,b,m,\gamma)$ denote the subclass of $T_p n$ consisting of functions f(z) of the form (1.9) which satisfies the following inequality

$$\left|\frac{1}{b} \left(\frac{D_{\lambda}^{\delta}(f \ast g)^{m}(z)}{z^{p-m}}\right) - (p-m)\right| < \gamma$$
(1.11)

$$(z \in \mathcal{U}, m, \delta \in \mathbb{N}_0, 0 \le \lambda \le 1, 0 < \gamma \le 1, b \in \mathbb{C} \setminus \{0\}).$$

The purpose of this present paper is to investigate the various properties and characteristics of the functions belonging to the above defined subclasses $\mathcal{TS}_p^{\delta}(g;\lambda,n,b,m)$ and $\mathcal{Q}_p^{\delta}(g,\lambda,n,b,m,\gamma)$ of p-valent analytic functions in \mathcal{U} . Apart from deriving coefficient inequality for each of this function classes, we establish several inclusion relationships involving (n,δ) -neighborhoods of the functions belonging to these subclasses.

2. Main Results

We begin with the following

Theorem 2.1. (coefficient inequality) $f(z) \in \mathcal{TS}_p^{\delta}(g; \lambda, n, b, m)$ if and only if

$$\sum_{k=n}^{\infty} \binom{k}{m} \left[1 + \frac{\lambda(k-p)}{p} \right]^{\delta} \left\{ (k-m) - \left[1 + \frac{\lambda(k-p)}{p} \right] \left[p - m + \gamma |b| \right] \right\} a_k b_k \le \gamma |b| \binom{p}{m}$$

$$(2.1)$$

Proof. Let $f(z) \in \mathcal{TS}_p^{\delta}(g; \lambda, n, b, m)$. Then in view of the inequality (1.8), we get

$$Re\left(\frac{zD_{\lambda}^{\delta}(f*g)^{m+1}(z) - (p-m)D_{\lambda}^{\delta+1}(f*g)^{m}(z)}{D_{\lambda}^{\delta+1}(f*g)^{m}(z)}\right) > -\gamma|b|.$$
 (2.2)

A simple computation yields

$$Re\left(\frac{\sum_{k=n}^{\infty} \binom{k}{m} \left[1 + \frac{\lambda(k-p)}{p}\right]^{\delta} \left((k-m) - (p-m) \left[1 + \frac{\lambda(k-p)}{p}\right]\right) a_k b_k z^{k-m}}{\binom{p}{m} z^{p-m} - \sum_{k=n}^{\infty} \left[1 + \frac{\lambda(k-p)}{p}\right]^{\delta+1} \binom{k}{m} a_k b_k z^{k-m}}\right) < \gamma \mid b \mid .$$

$$(2.3)$$

Upon choosing the values of z on the positive real axis where $0 \le |z| = r < 1$ and by letting $r \longrightarrow 1^-$, through real values the above inequality leads to the desired assertion (2.1) of Theorem 2.1.

Conversely by applying the hypothesis (2.1) of Theorem 2.1 and letting |z| = 1, we find that

$$\left|\frac{zD_{\lambda}^{\delta}(f*g)^{m+1}(z)}{D_{\lambda}^{\delta+1}(f*g)^{m}(z)} - (p-m)\right| \leq \frac{\gamma \mid b \mid \left\{\binom{p}{m} - \sum_{k=n}^{\infty} \left[1 + \frac{\lambda(k-p)}{p}\right]^{\delta+1}\binom{k}{m}a_{k}b_{k}\right\}}{\binom{p}{m} - \sum_{k=n}^{\infty} \left[1 + \frac{\lambda(k-p)}{p}\right]^{\delta+1}\binom{k}{m}a_{k}b_{k}} = \mid b \mid (2.4)$$

Hence, by the maximum modulus principle, we infer that $f(z) \in \mathcal{TS}_p^{\delta}(g; \lambda, n, b, m)$, which completes the proof of Theorem 2.1.

The following result concerning the class of functions $\mathcal{Q}_p^{\delta}(g,\lambda,n,b,m,\gamma)$ can be proved on the similar lines as given above for the Theorem 2.1.

Theorem 2.2. $f(z) \in \mathcal{Q}_p^{\delta}(g, \lambda, n, b, m, \gamma)$ if and only if

$$\sum_{k=n}^{\infty} \binom{k}{m} \left[1 + \frac{\lambda(k-p)}{p} \right]^{\delta} a_k b_k \le \left[(p-m) + \gamma |b| - \binom{p}{m} \right]$$
(2.5)

In Theorem 2.1, let $m = \delta = 0$, p = 1 and b_k be defined as in 1.8, then we have the following result proved recently by Murugusundaramoorthy et.al.[8].

Corollary 2.3. $f(z) \in \mathcal{TS}(q, s; \lambda, n, b, m, \gamma)$ if and only if

$$\sum_{k=n}^{\infty} \left[\left(1 + \lambda(k-1) \right) \left(\gamma|b| - 1 \right) + k \right] \Gamma_k a_k \le \gamma|b|$$
(2.6)

where $\Gamma_k = \frac{(\alpha_1)_{k-p} \dots (\alpha_q)_{k-p}}{(\beta_1)_{k-p} \dots (\beta_s)_{k-p} (k-p)!}.$

Suitably specializing the parameters δ , λ , γ , p, m, n and for the choice of the fixed function g(z) in Theorem 2.1 yields the coefficient inequalities for various new and known subclasses of analytic functions.

3. Inclusion Properties

Following Murugusundaramoorthy et. al. [8] and B.A.Frasin [7] (also see [9]), we define the $q - \delta$ neighborhood of a function $f \in T_p(n)$ by

$$N_{n\delta}^{q}(f) = \left\{ h \in T_{p}(n) : h(z) = z^{p} - \sum_{k=n}^{\infty} c_{k} z^{k} \text{ and } \sum_{k=n}^{\infty} k^{q+1} \mid a_{k} - c_{k} \mid \leq \delta \right\}.$$
(3.1)

So, for $e(z) = z^p$, we see that

$$N_{n\delta}^{q}(e) = \left\{ h \in T(n) : h(z) = z^{p} - \sum_{k=n}^{\infty} c_{k} z^{k} \text{ and } \sum_{k=n}^{\infty} k^{q+1} \mid c_{k} \mid \leq \delta \right\}.$$
(3.2)

where q is a fixed positive integer. Note that $N_{n\delta}^{o}(f) = N_{n\delta}(f)$, which was defined by Murugusundaramoorthy et.al.[8].

Theorem 3.1. If $b_k \ge b_n$ $(k \ge n)$ and

$$\delta = \frac{n \,\gamma |b| \binom{p}{m}}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} \left\{ (n-m) - \left(1 + \frac{\lambda(n-p)}{p}\right) \left[p - m + \gamma |b|\right] \right\} b_n} \tag{3.3}$$

then $\mathcal{TS}_p^{\delta}(g; \lambda, n, b, m) \subset N_{n\,\delta}^0(f).$

Proof. Let $f(z) \in \mathcal{TS}_p^{\delta}(g; \lambda, n, b, m)$. Then, in view of the assertion (2.1) of Theorem 2.1 and the given condition $b_k \geq b_n$ $(k \geq n)$, we get

$$\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} \left\{ (n-m) - \left(1 + \frac{\lambda(n-p)}{p} \right) \left[p - m + \gamma |b| \right] \right\} b_n \sum_{k=n}^{\infty} a_k$$
$$\leq \sum_{k=n}^{\infty} \binom{k}{m} \left[1 + \frac{\lambda(k-p)}{p} \right]^{\delta} \left\{ (k-m) - \left[1 + \frac{\lambda(k-p)}{p} \right] \left[p - m + \gamma |b| \right] \right\} a_k b_k \leq \gamma |b| \binom{p}{m},$$

which implies that

$$\sum_{k=n}^{\infty} a_k \le \frac{\gamma |b| \binom{p}{m}}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} \left\{ (n-m) - \left(1 + \frac{\lambda(n-p)}{p}\right) \left[p - m + \gamma |b|\right] \right\} b_n}.$$
(3.4)

Applying the assertion (2.1) of Theorem 2.1 again in conjunction (3.4), we obtain

$$\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} b_n \sum_{k=n}^{\infty} k a_k$$

$$\leq \gamma |b| \binom{p}{m} + \left\{ m \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} + \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta+1} \left[p - m + \gamma |b| \right] \right\} b_n \sum_{k=n}^{\infty} a_k$$

$$\leq \gamma |b| \binom{p}{m} + \left\{ m \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} + \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta+1} \left[p - m + \gamma |b| \right] \right\} b_n$$

$$\times \frac{\gamma |b| \binom{p}{m}}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} \left[(n-m) - \left(1 + \frac{\lambda(n-p)}{p} \right) \left[p - m + \gamma |b| \right] \right] b_n}$$

$$= \frac{n \gamma |b| \binom{p}{m}}{\left[(n-m) - \left(1 + \frac{\lambda(n-p)}{p} \right) \left[p - m + \gamma |b| \right] \right]}.$$

Hence,

$$\sum_{k=n}^{\infty} ka_k \leq \frac{n \gamma |b| \binom{p}{m}}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} \left[(n-m) - \left(1 + \frac{\lambda(n-p)}{p}\right) \left[p - m + \gamma |b|\right]\right] b_n}$$

= $\delta (p > |b|),$ (3.5)

which by virtue of (3.2) establishes the inclusion relation of Theorem 3.1.

Theorem 3.2. If $b_k \ge b_n$ $(k \ge n)$ and

$$\delta = \frac{n\left((p-m) + \gamma|b| - \binom{p}{m}\right)}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} b_n}$$
(3.6)

then $\mathcal{Q}_p^{\delta}(g,\lambda,n,b,m,\gamma) \subset N^0_{n\,\delta}(f).$

4. Neighborhood Properties

In this section we determine the neighborhood properties for each of the function classes $S_p^{(\delta,\alpha)}(g;\lambda,n,b,m)$ and $Q_p^{(\delta,\alpha)}(g,\lambda,n,b,m,\gamma)$, which are defined as follows.

A function $f(z) \in T_p(n)$ is said to be in the class $\mathcal{S}_p^{(\delta, \alpha)}(g; \lambda, n, b, m)$ if there exists a function $h(z) \in \mathcal{S}_p^{\delta}(g; \lambda, n, b, m)$ such that

$$\left|\frac{f(z)}{h(z)} - 1\right|
$$(4.1)$$$$

Analogously, a function $f(z) \in T_p(n)$ is said to be in the class $\mathcal{Q}_p^{(\delta,\alpha)}(g,\lambda,n,b,m,\gamma)$ if there exists a function $h(z) \in \mathcal{Q}_p^{\delta}(g,\lambda,n,b,m,\gamma)$ such that inequality (4.1) holds true.

Theorem 4.1. If $g(z) \in S_p^{\delta}(g; \lambda, n, b, m)$ and

$$\alpha = p - \frac{\delta}{n^{q+1}} \frac{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} \left\{ (n-m) - \left[1 + \frac{\lambda(n-p)}{p} \right] (p-m+\gamma \mid b \mid) \right\} b_n}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} \left\{ (n-m) - \left[1 + \frac{\lambda(n-p)}{p} \right] (p-m+\gamma \mid b \mid) \right\} b_n - \gamma \mid b \mid \binom{p}{m}}$$
(4.2)

then

$$N_{n,\delta}^q(h) \subset \mathcal{S}_p^{(\delta,\alpha)}(g;\lambda,n,b,m).$$
(4.3)

Proof. Suppose that $f(z) \in N_{n,\delta}^q(h)$, we then find from (3.1) that

$$\sum_{k=n}^{\infty} k^{q+1} \mid a_k - c_k \mid \leq \delta, \tag{4.4}$$

which readily implies that

$$\sum_{k=n}^{\infty} |a_k - c_k| \le \frac{\delta}{n^{q+1}}, \ (n \in \mathbb{N})$$

$$(4.5)$$

Next, since $h(z) \in \mathcal{S}_p^{\delta}(g; \lambda, n, b, m)$, we have in view of (3.4) that

$$\sum_{k=n}^{\infty} c_k \leq \frac{\gamma \mid b \mid \binom{p}{m}}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} \left\{ (n-m) - \left[1 + \frac{\lambda(n-p)}{p}\right] (p-m+\gamma \mid b \mid) \right\} b_n}$$
(4.6)
So that $\left| \frac{f(z)}{g(z)} - 1 \right|$

$$\leq \frac{\sum_{k=n}^{\infty} |a_{k} - c_{k}|}{1 - \sum_{k=n}^{\infty} c_{k}}$$

$$\leq \frac{\delta}{n^{q+1}} \frac{1}{1 - \gamma |b| \binom{p}{m} / \binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} \left\{ (n-m) - \left[1 + \frac{\lambda(n-p)}{p}\right] (p-m+\gamma |b|) \right\} b_{n}}$$

$$\leq \frac{\delta}{n^{q+1}} \frac{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} \left\{ (n-m) - \left[1 + \frac{\lambda(n-p)}{p}\right] (p-m+\gamma |b|) \right\} b_{n}}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p}\right]^{\delta} \left\{ (n-m) - \left[1 + \frac{\lambda(n-p)}{p}\right] (p-m+\gamma |b|) \right\} b_{n} - \gamma |b| \binom{p}{m}},$$

provided that α is given by (4.3). Thus, by the above definition, $f \in \mathcal{S}_p^{(\delta, \alpha)}(g; \lambda, n, b, m)$ where α is given by (4.3), which proves Theorem 4.1.

Theorem 4.2. If $g(z) \in \mathcal{Q}_p^{\delta}(g, \lambda, n, b, m, \gamma)$ and

$$\alpha = p - \frac{\delta}{n^{q+1}} \frac{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} b_n}{\binom{n}{m} \left[1 + \frac{\lambda(n-p)}{p} \right]^{\delta} b_n - \left((p-m) + \gamma |b| - \binom{p}{m} \right)}$$
(4.7)

then

$$N_{n,\delta}^q(h) \subset \mathcal{Q}_p^{(\delta,\alpha)}(g,\lambda,n,b,m,\gamma).$$
(4.8)

Remark. By specializing the parameters involved, Theorems (4.1) and (4.2) reduces to various results obtained by several authors. For example, Let $p = 1, \delta = 1, m = 0$ and b_k be defined as in (1.7) then Theorems (4.1) and (4.2) reduces to the corresponding results obtained by Murugusundaramoorthy et.al. [8].

Acknowledgements

We thank the referee for his/her useful comments and suggestions on the earlier version of this paper.

References

- F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., (2004), no.25-28, 1429-1436.
- [2] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 no.4 (1984), 737–745.
- [3] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.*, 103(1999), 1-13.
- [4] J. Dziok and H. M. Srivastava, Some sublasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5(2002), 115-125.
- [5] J. Dziok and H. M. Srivastava, Certain sublasses of analytic functions associated with the generalized hypergeometric function, *Integral Trans*forms Spec. Funct., 14(2003), 7-18.
- [6] Yu. E. Hohlov, Operators and operations in the class of univalent functions, *Izv. Vyss. Ucebn. Zaved. Matematika*, 10(1978), 83-89.
- [7] B. A. Frasin, Family of analytic functions of complex order, *Acta Math. Acad. Paedagog. Nyházi.* (N.S.), **22** no.2 (2006), 179-191 (electronic).
- [8] G. Murugusundaramoorthy, T. Rosy and S. Sivasubramanian, On Certain Classes Of Analytic Functions Of Complex Order Defined By Dziok-Srivastava Operator, J. Math. Inequalities, 1 no.4 (2007), 553-562.
- [9] H. O. Güney and G. Ş. Sălăgean, Further properties of β-Pascu convex functions of order α, Int. J. Math. Math. Sci. (2007), Art. ID 34017, 7 pp.
- [10] G. Ş. Sălăgean, Subclasses of univalent functions, in Complex analysis fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes in Math., 1013, Springer, Berlin.
- [11] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.