Classes of Analytic Functions of Complex Order Involving a Family of Generalized Differential Operators*

C. Selvaraj ${ }^{\dagger}$
Department of Mathematics, Presidency College, Chennai-600 005, Tamilnadu, India
and
C. Santhosh Moni ${ }^{\ddagger}$
Department of Mathematics, R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai-601206, Tamilnadu, India

Received February 26, 2009, Accepted June 6, 2009.

Abstract

Using Hadamard product, we define a new class differential operator. By applying this operator, we introduce new subclasses of analytic functions of complex order. Apart from deriving a set of coefficient bounds for each of these function classes. We establish several inclusion relationships involving the (n, δ)-neighborhoods of analytic functions with negative coefficients belonging to these subclasses.

Keywords and Phrases: Analytic functions of complex order, Hadamard product Differential Operators.

[^0]
1. Introduction, Definitions and Preliminaries

Let $\mathcal{A}_{p}(n)$ denote the class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{k} z^{k} \quad(p<n ; n, p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit $\operatorname{disc} \mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$. For functions $f \in \mathcal{A}_{p}(n)$ of the form (1.1) and $g \in \mathcal{A}_{p}(n)$ given by $g(z)=z^{p}+\sum_{k=n}^{\infty} b_{k} z^{k}$ their Hadamard product (or convolution) is given by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=n}^{\infty} a_{k} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

For a fixed function $g \in \mathcal{A}_{p}(n)$ defined by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{n=k}^{\infty} b_{k} z^{k} \quad\left(p<n ; b_{k} \geq 0 ; n, p \in \mathbb{N}=\{1,2, \ldots\}\right) \tag{1.3}
\end{equation*}
$$

we now define the following operator $D_{\lambda}^{\delta}(f * g)(z): \mathcal{A}_{p}(n) \longrightarrow \mathcal{A}_{p}(n)$ by

$$
\begin{gather*}
D_{\lambda}^{0}(f * g)(z)=(f * g)(z), \\
D_{\lambda}^{1}(f * g)(z)=(1-\lambda)(f * g)(z)+\frac{\lambda}{p} z((f * g)(z))^{\prime} \tag{1.4}\\
D_{\lambda}^{\delta}(f * g)(z)=D_{\lambda}^{1}\left(D_{\lambda}^{\delta-1}(f * g)(z)\right) . \tag{1.5}
\end{gather*}
$$

If $f \in \mathcal{A}_{p}(n)$, then from (1.4) and (1.5) we may easily deduce that

$$
\begin{equation*}
D_{\lambda}^{\delta}(f * g)(z)=z^{p}+\sum_{k=n}^{\infty}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta} a_{k} b_{k} z^{k} \tag{1.6}
\end{equation*}
$$

where $\delta \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $\lambda \geq 0$.
Remark 1.1. It is interesting to note that several integral and differential operator follows as a special case of $D_{\lambda}^{\delta}(f * g)(z)$, here we list few of them.

1. When $p=1, n=2$ and $g(z)=z+\sum_{k=2}^{\infty} z^{k}, D_{\lambda}^{\delta}(f * g)(z)$ reduces to an operator introduced recently by F. Al-Oboudi [1].
2. Let the coefficients b_{k} be of the form

$$
\begin{equation*}
b_{k}=\frac{\left(\alpha_{1}\right)_{k-p} \ldots\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \ldots\left(\beta_{s}\right)_{k-p}(k-p)!} \tag{1.7}
\end{equation*}
$$

and if $\delta=0$ then $D_{\lambda}^{\delta}(f * g)(z)$ reduces to the well-known Dziok-Srivastava operator (see for details $[3,4,5]$) which contains such well-known operators as the Hohlov linear operator [6], Carlson-Shaffer linear operator [2] and Ruscheweyh derivative[11] .
Apart from these, the operator $D_{\lambda}^{\delta}(f * g)(z)$ generalizes the well-known operators like Sălăgean operator [10], Bernardi-Libera-Livingston operator.

By making use of the operator $D_{\lambda}^{\delta}(f * g)(z)$, we introduce a new class $\mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$ of functions belonging to the subclasses of $\mathcal{A}_{p}(n)$, which consists of functions $f(z)$ of the form (1.1), satisfying the following inequality:

$$
\begin{gather*}
\left|\frac{1}{b}\left(\frac{z D_{\lambda}^{\delta}(f * g)^{m+1}(z)}{D_{\lambda}^{\delta+1}(f * g)^{m}(z)}-(p-m)\right)\right|<\gamma \tag{1.8}\\
\left(z \in \mathcal{U}, m, \delta \in \mathbb{N}_{0}, 0 \leq \lambda \leq 1,0<\gamma \leq 1, b \in \mathbb{C} \backslash\{0\}\right)
\end{gather*}
$$

Further we define $\mathcal{T} \mathcal{S}_{p}^{\boldsymbol{\delta}}(g ; \lambda, n, b, m)=\mathcal{S}_{p}^{\boldsymbol{\delta}}(g ; \lambda, n, b, m) \cap T_{p}(n)$, where $T_{p}(n)$ is the subclass of $\mathcal{A}_{p}(n)$ consisting of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=n}^{\infty} a_{k} z^{k}, \quad a_{k} \geq 0, \forall k \geq n \tag{1.9}
\end{equation*}
$$

was introduced and studied by Silverman.
Finally, for a fixed function

$$
\begin{equation*}
g(z)=z-\sum_{k=n}^{\infty} b_{k} z^{k} \in T_{p}(n) \quad\left(p<n ; b_{k} \geq 0, \forall k \geq n ; n, p \in \mathbb{N}\right. \tag{1.10}
\end{equation*}
$$

let $\mathcal{Q}_{p}^{\delta}(g, \lambda, n, b, m, \gamma)$ denote the subclass of $T_{p} n$ consisting of functions $f(z)$ of the form (1.9) which satisfies the following inequality

$$
\begin{equation*}
\left|\frac{1}{b}\left(\frac{D_{\lambda}^{\delta}(f * g)^{m}(z)}{z^{p-m}}\right)-(p-m)\right|<\gamma \tag{1.11}
\end{equation*}
$$

$$
\left(z \in \mathcal{U}, m, \delta \in \mathbb{N}_{0}, 0 \leq \lambda \leq 1,0<\gamma \leq 1, b \in \mathbb{C} \backslash\{0\}\right)
$$

The purpose of this present paper is to investigate the various properties and characteristics of the functions belonging to the above defined subclasses $\mathcal{T} \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$ and $\mathcal{Q}_{p}^{\delta}(g, \lambda, n, b, m, \gamma)$ of p -valent analytic functions in \mathcal{U}. Apart from deriving coefficient inequality for each of this function classes, we establish several inclusion relationships involving (n, δ)-neighborhoods of the functions belonging to these subclasses.

2. Main Results

We begin with the following
Theorem 2.1. (coefficient inequality) $f(z) \in \mathcal{T} \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$ if and only if
$\sum_{k=n}^{\infty}\binom{k}{m}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta}\left\{(k-m)-\left[1+\frac{\lambda(k-p)}{p}\right][p-m+\gamma|b|]\right\} a_{k} b_{k} \leq \gamma|b|\binom{p}{m}$

Proof. Let $f(z) \in \mathcal{T} \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$. Then in view of the inequality (1.8), we get

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z D_{\lambda}^{\delta}(f * g)^{m+1}(z)-(p-m) D_{\lambda}^{\delta+1}(f * g)^{m}(z)}{D_{\lambda}^{\delta+1}(f * g)^{m}(z)}\right)>-\gamma|b| . \tag{2.2}
\end{equation*}
$$

A simple computation yields

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\sum_{k=n}^{\infty}\binom{k}{m}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta}\left((k-m)-(p-m)\left[1+\frac{\lambda(k-p)}{p}\right]\right) a_{k} b_{k} z^{k-m}}{\binom{p}{m} z^{p-m}-\sum_{k=n}^{\infty}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta+1}\binom{k}{m} a_{k} b_{k} z^{k-m}}\right)<\gamma|b| . \tag{2.3}
\end{equation*}
$$

Upon choosing the values of z on the positive real axis where $0 \leq|z|=r<1$ and by letting $r \longrightarrow 1^{-}$, through real values the above inequality leads to the desired assertion (2.1) of Theorem 2.1.
Conversely by applying the hypothesis (2.1) of Theorem 2.1 and letting $|z|=1$, we find that
$\left|\frac{z D_{\lambda}^{\delta}(f * g)^{m+1}(z)}{D_{\lambda}^{\delta+1}(f * g)^{m}(z)}-(p-m)\right| \leq \frac{\gamma|b|\left\{\binom{p}{m}-\sum_{k=n}^{\infty}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta+1}\binom{k}{m} a_{k} b_{k}\right\}}{\binom{p}{m}-\sum_{k=n}^{\infty}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta+1}\binom{k}{m} a_{k} b_{k}}=|b|$.

Hence, by the maximum modulus principle, we infer that $f(z) \in \mathcal{T} \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$, which completes the proof of Theorem 2.1.

The following result concerning the class of functions $\mathcal{Q}_{p}^{\delta}(g, \lambda, n, b, m, \gamma)$ can be proved on the similar lines as given above for the Theorem 2.1.
Theorem 2.2. $f(z) \in \mathcal{Q}_{p}^{\delta}(g, \lambda, n, b, m, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty}\binom{k}{m}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta} a_{k} b_{k} \leq\left[(p-m)+\gamma|b|-\binom{p}{m}\right] \tag{2.5}
\end{equation*}
$$

In Theorem 2.1, let $m=\delta=0, p=1$ and b_{k} be defined as in 1.8 , then we have the following result proved recently by Murugusundaramoorthy et.al.[8].
Corollary 2.3. $f(z) \in \mathcal{T} \mathcal{S}(q, s ; \lambda, n, b, m, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty}[(1+\lambda(k-1))(\gamma|b|-1)+k] \Gamma_{k} a_{k} \leq \gamma|b| \tag{2.6}
\end{equation*}
$$

where $\Gamma_{k}=\frac{\left(\alpha_{1}\right)_{k-p} \ldots\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \ldots\left(\beta_{s}\right)_{k-p}(k-p)!}$.
Suitably specializing the parameters $\delta, \lambda, \gamma, p, m, n$ and for the choice of the fixed function $g(z)$ in Theorem 2.1 yields the coefficient inequalities for various new and known subclasses of analytic functions.

3. Inclusion Properties

Following Murugusundaramoorthy et. al. [8] and B.A.Frasin [7] (also see [9]), we define the $q-\delta$ neighborhood of a function $f \in T_{p}(n)$ by

$$
\begin{equation*}
N_{n \delta}^{q}(f)=\left\{h \in T_{p}(n): h(z)=z^{p}-\sum_{k=n}^{\infty} c_{k} z^{k} \quad \text { and } \quad \sum_{k=n}^{\infty} k^{q+1}\left|a_{k}-c_{k}\right| \leq \delta\right\} . \tag{3.1}
\end{equation*}
$$

So, for $e(z)=z^{p}$, we see that

$$
\begin{equation*}
N_{n \delta}^{q}(e)=\left\{h \in T(n): h(z)=z^{p}-\sum_{k=n}^{\infty} c_{k} z^{k} \quad \text { and } \quad \sum_{k=n}^{\infty} k^{q+1}\left|c_{k}\right| \leq \delta\right\} . \tag{3.2}
\end{equation*}
$$

where q is a fixed positive integer. Note that $N_{n \delta}^{o}(f)=N_{n \delta}(f)$, which was defined by Murugusundaramoorthy et.al.[8].

Theorem 3.1. If $b_{k} \geq b_{n}(k \geq n)$ and

$$
\delta=\frac{\left.n \gamma|b| \begin{array}{l}
p \tag{3.3}\\
m
\end{array}\right)}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left(1+\frac{\lambda(n-p)}{p}\right)[p-m+\gamma|b|]\right\} b_{n}}
$$

then $\mathcal{T} \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m) \subset N_{n \delta}^{0}(f)$.
Proof. Let $f(z) \in \mathcal{T} \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$. Then, in view of the assertion (2.1) of Theorem 2.1 and the given condition $b_{k} \geq b_{n}(k \geq n)$, we get

$$
\begin{aligned}
& \binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left(1+\frac{\lambda(n-p)}{p}\right)[p-m+\gamma|b|]\right\} b_{n} \sum_{k=n}^{\infty} a_{k} \\
\leq & \sum_{k=n}^{\infty}\binom{k}{m}\left[1+\frac{\lambda(k-p)}{p}\right]^{\delta}\left\{(k-m)-\left[1+\frac{\lambda(k-p)}{p}\right][p-m+\gamma|b|]\right\} a_{k} b_{k} \leq \gamma|b|\binom{p}{m},
\end{aligned}
$$

which implies that

$$
\sum_{k=n}^{\infty} a_{k} \leq \frac{\left.\gamma|b| \begin{array}{l}
p \tag{3.4}\\
m
\end{array}\right)}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left(1+\frac{\lambda(n-p)}{p}\right)[p-m+\gamma|b|]\right\} b_{n}}
$$

Applying the assertion (2.1) of Theorem 2.1 again in conjunction (3.4), we obtain

$$
\begin{aligned}
& \binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta} b_{n} \sum_{k=n}^{\infty} k a_{k} \\
\leq & \gamma|b|\binom{p}{m}+\left\{m\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}+\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta+1}[p-m+\gamma|b|]\right\} b_{n} \sum_{k=n}^{\infty} a_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \gamma|b|\binom{p}{m}+\left\{m\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}+\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta+1}[p-m+\gamma|b|]\right\} b_{n} \\
& \times \frac{\left.\gamma|b| \begin{array}{c}
p \\
m
\end{array}\right)}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left[(n-m)-\left(1+\frac{\lambda(n-p)}{p}\right)[p-m+\gamma|b|]\right] b_{n}} \\
& =\frac{n \gamma|b|\binom{p}{m}}{\left[(n-m)-\left(1+\frac{\lambda(n-p)}{p}\right)[p-m+\gamma|b|]\right]}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \sum_{k=n}^{\infty} k a_{k} \leq \frac{n \gamma|b|\binom{p}{m}}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left[(n-m)-\left(1+\frac{\lambda(n-p)}{p}\right)[p-m+\gamma|b|]\right] b_{n}} \\
= & \delta(p>|b|), \tag{3.5}
\end{align*}
$$

which by virtue of (3.2) establishes the inclusion relation of Theorem 3.1.
Theorem 3.2. If $b_{k} \geq b_{n}(k \geq n)$ and

$$
\begin{equation*}
\delta=\frac{n\left((p-m)+\gamma|b|-\binom{p}{m}\right)}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta} b_{n}} \tag{3.6}
\end{equation*}
$$

then $\mathcal{Q}_{p}^{\delta}(g, \lambda, n, b, m, \gamma) \subset N_{n \delta}^{0}(f)$.

4. Neighborhood Properties

In this section we determine the neighborhood properties for each of the function classes $\mathcal{S}_{p}^{(\delta, \alpha)}(g ; \lambda, n, b, m)$ and $\mathcal{Q}_{p}^{(\delta, \alpha)}(g, \lambda, n, b, m, \gamma)$, which are defined as follows.

A function $f(z) \in T_{p}(n)$ is said to be in the class $\mathcal{S}_{p}^{(\delta, \alpha)}(g ; \lambda, n, b, m)$ if there exists a function $h(z) \in \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{h(z)}-1\right|<p-\alpha \quad(z \in \mathcal{U} ; 0 \leq \alpha<p) \tag{4.1}
\end{equation*}
$$

Analogously, a function $f(z) \in T_{p}(n)$ is said to be in the class $\mathcal{Q}_{p}^{(\delta, \alpha)}(g, \lambda, n, b, m, \gamma)$ if there exists a function $h(z) \in \mathcal{Q}_{p}^{\delta}(g, \lambda, n, b, m, \gamma)$ such that inequality (4.1) holds true.

Theorem 4.1. If $g(z) \in \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$ and
$\alpha=p-\frac{\delta}{n^{q+1}} \frac{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left[1+\frac{\lambda(n-p)}{p}\right](p-m+\gamma|b|)\right\} b_{n}}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left[1+\frac{\lambda(n-p)}{p}\right](p-m+\gamma|b|)\right\} b_{n}-\gamma|b|\binom{p}{m}}$
then

$$
\begin{equation*}
N_{n, \delta}^{q}(h) \subset \mathcal{S}_{p}^{(\delta, \alpha)}(g ; \lambda, n, b, m) . \tag{4.3}
\end{equation*}
$$

Proof. Suppose that $f(z) \in N_{n, \delta}^{q}(h)$, we then find from (3.1) that

$$
\begin{equation*}
\sum_{k=n}^{\infty} k^{q+1}\left|a_{k}-c_{k}\right| \leq \delta \tag{4.4}
\end{equation*}
$$

which readily implies that

$$
\begin{equation*}
\sum_{k=n}^{\infty}\left|a_{k}-c_{k}\right| \leq \frac{\delta}{n^{q+1}}, \quad(n \in \mathbb{N}) \tag{4.5}
\end{equation*}
$$

Next, since $h(z) \in \mathcal{S}_{p}^{\delta}(g ; \lambda, n, b, m)$, we have in view of (3.4) that

$$
\sum_{k=n}^{\infty} c_{k} \leq \frac{\left.\gamma|b| \begin{array}{c}
p \tag{4.6}\\
m
\end{array}\right)}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left[1+\frac{\lambda(n-p)}{p}\right](p-m+\gamma|b|)\right\} b_{n}}
$$

So that $\left|\frac{f(z)}{g(z)}-1\right|$

$$
\begin{aligned}
& \leq \frac{\sum_{k=n}^{\infty}\left|a_{k}-c_{k}\right|}{1-\sum_{k=n}^{\infty} c_{k}} \\
& \leq \frac{\delta}{n^{q+1}} \frac{1}{1-\gamma|b|\binom{p}{m} /\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left[1+\frac{\lambda(n-p)}{p}\right](p-m+\gamma|b|)\right\} b_{n}} \\
& \leq \frac{\delta}{n^{q+1}} \frac{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left[1+\frac{\lambda(n-p)}{p}\right](p-m+\gamma|b|)\right\} b_{n}}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta}\left\{(n-m)-\left[1+\frac{\lambda(n-p)}{p}\right](p-m+\gamma|b|)\right\} b_{n}-\gamma|b|\binom{p}{m}}
\end{aligned}
$$

provided that α is given by (4.3). Thus, by the above definition, $f \in \mathcal{S}_{p}^{(\delta, \alpha)}(g ; \lambda, n, b, m)$ where α is given by (4.3), which proves Theorem 4.1.

Theorem 4.2. If $g(z) \in \mathcal{Q}_{p}^{\delta}(g, \lambda, n, b, m, \gamma)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta}{n^{q+1}} \frac{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta} b_{n}}{\binom{n}{m}\left[1+\frac{\lambda(n-p)}{p}\right]^{\delta} b_{n}-\left((p-m)+\gamma|b|-\binom{p}{m}\right)} \tag{4.7}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}^{q}(h) \subset \mathcal{Q}_{p}^{(\delta, \alpha)}(g, \lambda, n, b, m, \gamma) \tag{4.8}
\end{equation*}
$$

Remark. By specializing the parameters involved, Theorems (4.1) and (4.2) reduces to various results obtained by several authors. For example, Let $p=1, \delta=1, m=0$ and b_{k} be defined as in (1.7) then Theorems (4.1) and (4.2) reduces to the corresponding results obtained by Murugusundaramoorthy et.al. [8].

Acknowledgements

We thank the referee for his/her useful comments and suggestions on the earlier version of this paper.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., (2004), no.25-28, 1429-1436.
[2] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 no. 4 (1984), 737-745.
[3] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.
[4] J. Dziok and H. M. Srivastava, Some sublasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5(2002), 115-125.
[5] J. Dziok and H. M. Srivastava, Certain sublasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14(2003), 7-18.
[6] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyss. Ucebn. Zaved. Matematika, 10(1978), 83-89.
[7] B. A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22 no. 2 (2006), 179-191 (electronic).
[8] G. Murugusundaramoorthy, T. Rosy and S. Sivasubramanian, On Certain Classes Of Analytic Functions Of Complex Order Defined By DziokSrivastava Operator, J. Math. Inequalities, 1 no. 4 (2007), 553-562.
[9] H. Ö. Güney and G. Ş. Sălăgean, Further properties of β-Pascu convex functions of order α, Int. J. Math. Math. Sci. (2007), Art. ID 34017, 7 pp.
[10] G. Ş. Sălăgean, Subclasses of univalent functions, in Complex analysisfifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
[11] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

[^0]: *2000 Mathematics Subject Classification. Primary 30C45.
 †E-mail: pamc9439@yahoo.co.in
 ${ }^{\ddagger}$ Corresponding author. E-mail: csmrmk@yahoo.com

