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Abstract

In this paper, we point out and analyse six two-step iterative meth-
ods for finding multiple as well as distinct zeros of non-linear equations.
We prove that the methods for multiple zeros as well as for distinct ze-
ros have fourth order convergence. The methods calculate the multiple
as well as distinct zeros with high accuracy. The numerical tests show
their better performance in case of algebraic as well as non-algebraic
equations.
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1. Introduction

Finding the roots of a single variable non-linear equations efficiently, is a very
interesting and old problem in numerical analysis and has many applications
in engineering and other applied sciences.

We consider equation of the form

f(x) = 0, (1.1)

where f(x) is single variable non-linear function. Many one-step iterative
methods for solving non-linear equations for distinct zeros have been developed
using various techniques, see [1− 7]. Recently, Ujevic [10] has suggested two-
step method for solving non-linear equations for distinct zeros.

Motivated by the research going on in this direction, we present and analyze
six two-step iterative methods for finding multiple as well as distinct zeros of
non-linear equations. We prove that the methods for multiple zeros as well as
the methods for distinct zeros have fourth order convergence. The methods
calculate the multiple as well as the distinct zeros with high accuracy. The
numerical tests show their better performance in case of algebraic as well as
non-algebraic equations First , we generalize the method due to Mamta et al.
[7] to the case of multiple zero finding of non-linear equations and combine it
with modified J. Chen and W. Li method for multiple zero finding of non-linear
equations[2, 9] and classical Newton’s method for multiple zeros of non-linear
equations. Our results can be considered as generalization, improvement and
refinement of the previously known results in the literature.

2. Two-step Iterative Methods for Multiple and

Distinct Zeros of Non-linear Equations

We suggest the following generalization to Mamta et al. method to the case
of multiple zero finding of non-linear equations:

Consider the Mamta et al. method[7] :

xn+1 = xn − h(xn),

where

h(xn) =
f(xn)

f ′(xn) + pf(xn)
, (2.1)
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p is chosen here as positive or negative sign so as to make the denominator
largest in magnitude. We observe that

f(xn)

f ′(xn)
=

h(xn)

1− ph(xn)
.

The modified Mamta et al. method for multiple zeros can be written as

xn+1 = xn − α
h(xn)

1− ph(xn)
, (2.2)

where α is the multiplicity of the root and h(xn) is provided by (2.1). The
relation (2.2) can further be written as:

xn+1 = xn

(
1− α h(xn)

xn (1− ph(xn))

)
' xn exp(−α h(xn)

xn (1− ph(xn))
). (2.3)

Combining the method (2.3) with modified Chen Li method for multiple zeros
[9], namely

xn+1 ' xn exp

(
−α f (xn)

xnf
′ (xn)

)
, (2.4)

we have therefore, the following two-step method for finding multiple zeros of
non-linear equations:

zn = xn exp

(
− α

xn

h(xn)

1− ph(xn)

)
,

xn+1 = zn exp

(
−α f (zn)

znf
′ (zn)

)
. (2.5)

We propose the following three two-step algorithms for finding multiple zeros
of non-linear equations:

Algorithm 1 (Chen-Li Mamta Method for Multiple Zeros(CLMM))

Step 1: For initial guess xo, a tolerance ε > 0, and for iterations n, set
k = 0.

Step 2: Calculate

zk = xk exp

(
−α f (xk)

x
k
f ′ (xk)

)
,
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xk+1 = zk exp

(
− α
zk

h(zk)

1− ph(zk)

)
, (2.6)

where

h(zk) =
f(zk)

f ′(zk) + pf(zk)
.

Step 3: If |xk+1 − xk| < ε or k > n then stop.
Step 4: Set k −→ k + 1 and go to Step 2.

Algorithm 2( Mamta Chen-Li Method for Multiple Zeros(MCLM))

Step 1: For initial guess xo, a tolerance ε > 0, and for iterations n, set
k = 0.

Step 2: Calculate

zk = xk exp

(
− α

xk

h(xk)

1− ph(xk)

)
,

where

h(xk) =
f(xk)

f ′(xk) + pf(xk)
.

xk+1 = zk exp

(
−α f (zk)

z
k
f ′ (zk)

)
. (2.7)

Step 3: If |xk+1 − xk| < ε or k > n then stop.
Step 4: Set k −→ k + 1 and go to Step 2.

Algorithm 3(Modified Mamta Newton Method for Multiple Ze-
ros(MMNM))

Step 1: For initial guess xo, a tolerance ε > 0, and for iterations n, set
k = 0.

Step 2: Calculate

zk = xk exp

(
− α

xk

h(xk)

1− ph(xk)

)
,

where

h(xk) =
f(xk)

f ′(xk) + pf(xk)

xk+1 = zk − α
f (zk)

f ′ (zk)
. (2.8)
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Step 3: If |xk+1 − xk| < ε or k > n then stop.
Step 4: Set k −→ k + 1 and go to Step 2.

Taking α = 1, gives us the following three two-step algorithms for finding
distinct zeros of non-linear equations:

Algorithm 4 (Chen-Li Mamta Method for Distinct Zeros(CLMD))

Step 1: For initial guess xo, a tolerance ε > 0, and for iterations n, set
k = 0.

Step 2: Calculate

zk = xk exp

(
− f (xk)

x
k
f ′ (xk)

)
, (2.9)

xk+1 = zk exp

(
− 1

zk

h(zk)

1− ph(zk)

)
Step 3: If |xk+1 − xk| < ε or k > n then stop.
Step 4: Set k −→ k + 1 and go to Step 2.

Algorithm 5( Mamta Chen-Li Method for Distinct Zeros(MCLD))

Step 1: For initial guess xo, a tolerance ε > 0, and for iterations n, set
k = 0.

Step 2: Calculate

zk = xk exp

(
− 1

xk

h(xk)

1− ph(xk)

)
,

xk+1 = zk exp

(
− f (zk)

z
k
f ′ (zk)

)
. (2.10)

Step 3: If |xk+1 − xk| < ε or k > n then stop.
Step 4: Set k −→ k + 1 and go to Step 2.

Algorithm 6(Modified Mamta Newton Method for Distinct Zeros
(MMND)

Step 1: For initial guess xo, a tolerance ε > 0, and for iterations n, set
k = 0.

Step 2: Calculate
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zk = xk exp

(
− 1

xk

h(xk)

1− ph(xk)

)
,

xk+1 = zk −
f (zk)

f ′ (zk)
. (2.11)

Step 3: If |xk+1 − xk| < ε or k > n then stop.
Step 4: Set k −→ k + 1 and go to Step 2.

3. Convergence Analysis

In this section, we prove that algorithms 1, 2 and 3 as well as algorithms 4, 5
and 6 have convergence order four.

Theorem 1. Let ω be the root of sufficiently differentiable function f : (a, b) ⊆
R → R with multiplicity α. If x0 is sufficiently close to ω, then the two-step
method defined by Algorithm 1 has fourth order convergence. The error equa-
tion in this case is given by:

en+1 =
1

8α4ω3
(α4 + 6α3ωc2 + 12α2ω2c22 + 8αω3c32 − 8pαω3c22

−8pα2ω2c2 + 8pω3c22 + 8pαω2c2 − 2pα3ω)e4n +O
(
e5n
)
,

where en = xn − ω and cj = f (α+j−1)(ω)

(α+1)(α+2)···(α+j−1)f (α)(ω) , j = 2, 3, · · ·
Proof. The two-step method is given by

zn = xn exp

(
−α f (xn)

xnf
′ (xn)

)
, (3.1)

xn+1 = zn exp

(
− α
zn

h(zn)

1− ph(zn)

)
, (3.2)

where

h(zk) =
f(zn)

f ′(zn) + pf(zn)
.

Let ω be the root of multiplicity α, i.e. f(ω) = f ′(ω) = f ′′(ω) = · · · =
f (α−1)(ω) = 0 and f (α)(ω) 6= 0.
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By Taylor expansion of f(xn) about ω we get

f(xn) =
f (α)(ω)

α!
eαn +

f (α+1)(ω)

(α + 1)!
eα+1
n +

f (α+2)(ω)

(α + 2)!
eα+2
n +O(eα+3

n ) (3.3)

=
f (α)(ω)

α!
eαn

[
1 + c2en + c3e

2
n + c4e

3
n +O(e4n)

]
,

where en = xn − ω and cj = f (α+j−1)(ω)

(α+1)(α+2)···(α+j−1)f (α)(ω) , j = 2, 3, · · · .
Similarly, we obtain

f ′(xn) =
f (α)(ω)

(α− 1)!
eα−1n

[
1 + c2

α + 1

α
en + c3

α + 2

α
e2n +O(e3n)

]
. (3.4)

From(3.3) and (3.4), we get

f(xn)

f ′(xn)
=

1

α

[
en + c2e

2
n + c3e

3
n + +c4e

4
n +O(e5n)

]
[
1 + c2

α + 1

α
en + c3

α + 2

α
e2n +O(e3n)

]−1
=

en
α
− c2
α2
e2n +

(
−2

c3
α2

+
c22
α2

+
c22
α3

)
e3n +O(e4n), (3.5)

and thus we have

−α f(xn)

xnf ′(xn)
=

en
α

+
c2
α2
e2n −

1

α3
(αc22 + c22 − 2αc3)e

3
n +

1

α4
(3α2c2c3

+4αc2c3 − 3α2c4 − α2c32 − 2αc32 − c32)e4n +O
(
e5n
)
, (3.6)

implies

zn = xn exp

(
−α f(xn)

xnf ′(xn)

)
= ω +

1

2αω
(2c2ω + α) e2n −

1

3ω2α2
(−3αω2c22 − 3ω2c22 + 6αω2c3

−3αωc2 − 6α2)e3n +
1

8ω3α3
(8α2ω3c32 + 16αω3c32 − 24α2c2c3ω

3

+8ω3c32 + 8α2ω2c22 − 32αω3c2c3 + 24α2ω3c4 + 12αω2c22
−16α2ω2c3 + 12α2ωc2 + 7α3)e4n +O

(
e5n
)
. (3.7)
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Now by Taylor expansion of f(zn) about ω we get

f(zn) =
f (α)(ω)

α!
(zn − ω)α +

f (α+1)(ω)

(α + 1)!
(zn − ω)α+1

+
f (α+2)(ω)

(α + 2)!
(zn − ω)α+2 +O((zn − ω)α+3)

=
f (α)(ω)

α!
(zn − ω)α[1 + c2(zn − ω) + c3(zn − ω)2 +

c4(zn − ω)3 +O((zn − ω)4)]. (3.8)

Similarly,

f ′(zn) =
f (α)(ω)

(α− 1)!
(zn − ω)α−1[1 + c2

α + 1

α
(zn − ω)

+c3
α + 2

α
(zn − ω)2 +O((zn − ω)3)]. (3.9)

¿From (3.8) and (3.9), we have

h (zn) =
f(zn)

f ′(zn) + pf(zn)

=
1

2α2ω
(α + 2ωc2)e

2
n +

1

3α3ω2
(−3αωc2 + 6αω2c3 − 2α2 − 3αω2c22

−3ω2c22)e
3
n +

1

8α5ω3
(24c4α

3ω3 − 32α2c2c3 + 8α3ω3c32 − 8pω3c22

+10α3ωc2 + 7α4 − 24α3ω3c2c3 + 4α2ω2c22 − 16α3ω2c3

+16α2ω3c32 − 2pα2ω − 8pc2αω
2)e4n +O

(
e5n
)
. (3.10)

Now, we have

h (zn)

1− ph (zn)
=

1

2α2ω
(2ωc2 + α)e2n +

1

3α3ω2
(−3αω2c22 + 6αω2c3 − 3ω2c22

−3αω2c2 − 2α2)e3n +
1

8α5ω3
(8α3ω3c32 − 24α3ω3c3c2

+16α2ω3c32 + 8α3ω2c22 + 24α3ω3c4 − 16α3ω2c3 + 4α2ω2c22
+10α3ωc2 + 7α4 − 8c22pω

3 + 2pα3ω − 2α2ω3c3c2 + 8pc2α
2ω4

+8pαω3c22 − 8pαω2c2 − 2pα2ω)e4n +O(e5n). (3.11)
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Finally, by using (3.7) and (3.11) we have,

xn+1 = zn exp

(
− α
zn

h (zn)

1− ph (zn)

)
= ω +

1

8α4ω3
(α4 + 6α3ωc2 + 12α2ω2c22 + 8αω3c32 − 8pαω3c22

−8pα2ω2c2 + 8pω3c22 + 8pαω2c2 − 2pα3ω)e4n +O
(
e5n
)
.

that is,

en+1 =
1

8α4ω3
(α4 + 6α3ωc2 + 12α2ω2c22 + 8αω3c32 − 8pαω3c22 − 8pα2ω2c2

+8pω3c22 + 8pαω2c2 − 2pα3ω)e4n +O
(
e5n
)
,

showing that the algorithm has fourth order convergence.

Remark 2. Similarly, convergence order four of the second and third al-
gorithms can also be determined.

Remark 3. Note that in case α = 1,we have fourth order two-step method for
finding distinct zeros of non-linear equations , given in the form of algorithm
4. Similar proofs follow for algorithms 5 and 6 to show that they also have
fourth order convergence.

4. Numerical Tests

Here, we give some numerical examples to test and illustrate the performance
of our new six two-step methods for finding multiple zeros as well as distinct
zeros of non-linear equations. We name the classical one-step Newton method
for multiple zeros as NMM.We consider here ε = 1.0E−64 as given tolerance;
n, the maximum number of iterations to be performed and |xi+1 − xi| <∈ as
stopping criterion. The computations are performed using Maple 10.0.

The following examples are used for numerical testing:
Ex.1 : f1 = (x− 1)40 (x− 2)30 (x− 3)20 (x− 4)10 [11]
Ex.2 : f2 = [x − (0.3 + 0.6i)]100[x − (0.1 + 0.7i)]200[x − (0.7 + 0.5)]300[x −

(0.3 + 0.4i)]10 [11]
Ex.3 : f3 = (x− 1) (ex−1 − 1) [8]
Ex.4 : f4 = f (x) = ln (x) [2]
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Ex.5 : f5 = f (x) = arctan (x) [2]

Ex 1: Initial point Exact root Number of Iterations
x0 xn MCLM CLMM MMNM NMM
0.6 1 3 3 3 7
2.5 2 4 4 4 8
3.5 3 4 4 4 8
4.4 4 5 5 5 10

Table 4.1

Ex 2: Initial point Exact root Number of Iterations
x0 xn MCLM CLMM MMNM NMM

0.301 + 0.601i 0.3 + 0.6i 3 3 3 6
0.100 + 0.702i 0.1 + 0.7i 3 3 3 6
0.702 + 0.498i 0.7 + 0.5i 3 3 3 6
0.289 + 0.401i 0.3 + 0.4i 3 3 3 6

Table 4.2

Ex 3: Initial point Exact root Number of Iterations
x0 xn MCLM CLMM MMNM NMM
1.5 1.0 4 4 3* 7

*Maximam Accuracy 34 digits Table 4.3

We have tested our three methods , namely MCLM, CLMM, and MMNM
for determining the multiple zeros of algebraic as well as non-algebraic equa-
tions on a sufficient number of examples to check their robustness and effi-
ciency. We mention here, however, three examples. which are taken from
[1,8,11]. Numerical results are provided in Tables 4.1 to 4.3.We compare our
methods among themselves and also with one-step Newton method for mul-
tiple zeros. From Table 4.1, we, observe that, in general, the ill conditioned
roots 1,2,3 and 4 of polynomial of degree 100 are calculated in 3 to 5 iter-
ations with 64 digits accuracy by our proposed methods, whereas, Newton’s
method takes double the number of iterations to reach the same accuracy.
Table 4.2 describes the result for polynomial of degree 1000 with complex co-
efficients and complex roots with huge multiplicities. We obtained the roots
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on third iteration getting 64 digits accuracy by our methods,whereas New-
ton’s method takes double the number of iterations to reach the same accuracy
Table 4.3 gives the numerical results for multiple zeros of non-algebraic equa-
tions. In three to 4 iterations, we obtained the roots correct up to 64 digits
accuracy,whereas, Newton’s method takes double the number of iterations to
reach the same accuracy.

Ex 4:
Initial point Exact root Number of Iterations

x0 xn MCLD CLMD MMND NM Formula 9
6 1 1 1 1 D 7
4 1 1 1 1 D 4
2 1 1 1 1 8 5

6.3 1 1∗ 1∗ 1∗∗ D D
∗ Maximam accuracy 58 digits and ∗∗ Maximam accuracy 61 digits

Table 4.4

Ex5:
Initial point Exact root Number of Iterations

x0 xn MCLD CLMD MMND NM Formula 9
2 1 4 4 4 6 7

1.8 1 4 4 4 6 6
1.4 1 4 3 4 5 5
2.4 1 4 4 4 D D

Table 4.5

Similarly, we compare our methods, namely MCLD, CLMD and MMND
with the one-step methods, namely the best method(Formula(9))of Chen, and
Newton method [2] for determining distinct zeros of non-linear equations. The
numerical results are provided in Table 4.4. to 4.5 We observe that our pro-
posed methods provide highly accurate results in less number of iterations,
where as the method of Chen and Newton method diverge at some points as
well.



332 Nazir Ahmad Mir, Farooq Ahmad, Muhammad Raza, and Tahira Nawaz

5. Conclusion

We have established six new two-step iterative methods of order four for finding
multiple and distinct zeros of algebraic as well as non-algebraic equations. In
view of the numerical tests, it follows that our methods for multiple zeros are
very effective in determining the highly multiple ill-conditioned zeros of real as
well as complex polynomial equations with high accuracy. These are also very
effective and efficient in determining multiple zeros of non-algebraic equations,
which shows the robustness of the methods. Similarly our methods for distinct
zeros provide highly accurate results in less number of iterations as compared
to some well known existing methods.
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