Paley-Wiener Theorem for the q^{2}-Fourier-Rubin Transform*

Ahmed Fitouhi ${ }^{\dagger}$
Faculté des Sciences de Tunis, 1060 Tunis, Tunisia
and
Amel Safraoui ${ }^{\ddagger}$ Ecole Nationale d'Ingénieurs de Tunis, 1060 Tunis, Tunisia

Received Feburary 10, 2009, Accepted June 6, 2009.

Abstract

In this paper we deal with the q-translation related with the q^{2} derivative and we show that it can be expressed as a series of Taylor's type and proceeding as in $[6,7]$ and we caracterize the correspondent Paley-Wiener space.

[^0]
1. Introduction

R.L.Rubin in $[4,5]$ introduced a q^{2}-derivative for which he established a constructive q^{2}-Fourier transform. The aim of this is to complete the q-Fourier analysis elaborated by the previous authors in studying the q-analogues of some basic theorems with the same technic that those used in [6, 7]. More precisely we state some new properties of the q^{2}-Fourier Rubin transform and show that its associated q^{2}-translation. We prove that if f run in the q - analogue of the Scharwtz space then its q-translation can be expand in series involving the powers of the q-Rubin derivative of f. This last result plays a central role for the study of the related q-Paley-Wiener space and the afferent theorem.

2. Notations and Preliminaries

For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions used in this paper. For this purpose, we fix $q \in] 0,1[$ and we refer to the book by G. Gasper and M. Rahman [1], for the definitions, notations and properties of the q-shifted factorials and the q-hypergeometric functions.
Note
$\mathbb{R}_{q}=\left\{ \pm q^{n} \quad: \quad n \in \mathbb{Z}\right\}, \widetilde{\mathbb{R}}_{q}=\left\{ \pm q^{n} \quad: \quad n \in \mathbb{Z}\right\} \cup\{0\}$.
For $a \in \mathbb{C}$, the q-shifted factorials are defined by

$$
\begin{equation*}
(a ; q)_{0}=1 ; \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2, \ldots ; \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \tag{1}
\end{equation*}
$$

We also denote

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad x \in \mathbb{C} ; \quad[n]_{q}!=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

The q^{2}-analogue differential operator is (see $[4,5]$)

$$
\partial_{q}(f)(z)=\left\{\begin{array}{cc}
\frac{f\left(q^{-1} z\right)+f\left(-q^{-1} z\right)-f(q z)+f(-q z)-2 f(-z)}{2(1-q) z} & \text { if } z \neq 0 \tag{3}\\
\lim _{x \rightarrow 0} \partial_{q}(f)(x) \quad\left(\text { in } \mathbb{R}_{q}\right) & \text { if } z=0
\end{array}\right.
$$

Remark that if f is differentiable at z, then $\lim _{q \rightarrow 1} \partial_{q}(f)(z)=f^{\prime}(z)$.
A repeated application of the q^{2}-analogue differential operator is denoted by:

$$
\partial_{q}^{0} f=f, \quad \partial_{q}^{n+1} f=\partial_{q}\left(\partial_{q}^{n} f\right) .
$$

The following lemma lists some useful computational properties of ∂_{q}.

Lemma 1.

1) For all function f on $\mathbb{R}_{q}, \partial_{q} f(z)=\frac{f_{e}\left(q^{-1} z\right)-f_{e}(z)}{(1-q) z}+\frac{f_{o}(z)-f_{o}(q z)}{(1-q) z}$.
2) For two functions f and g, we have

- if f is even and g is odd then
$\partial_{q}(f g)(z)=q g(z) \partial_{q}(f)(q z)+f(q z) \partial_{q}(g)(z)=f(z) \partial_{q}(g)(z)+q g(q z) \partial_{q}(f)(q z) ;$
- if f and g are even then

$$
\partial_{q}(f g)(z)=g\left(q^{-1} z\right) \partial_{q}(f)(z)+f(z) \partial_{q}(g)(z)
$$

- if f and g are odd then

$$
\partial_{q}(f g)(z)=q^{-1} g\left(q^{-1} z\right) \partial_{q}\left(q^{-1} f\right)(z)+q^{-1} f(z) \partial_{q}(g)\left(q^{-1} z\right)
$$

where, for a function f defined on \mathbb{R}_{q}, f_{e} and f_{o} are, respectively, its even and odd parts.

The q-trigonometric functions q-cosine and q-sine are defined by (see $[4,5]$):

$$
\begin{equation*}
\cos \left(x ; q^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n}}{[2 n]_{q}!} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \left(x ; q^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n+1}}{[2 n+1]_{q}!} . \tag{5}
\end{equation*}
$$

These functions induce a ∂_{q}-adapted q^{2}-analogue exponential function as

$$
\begin{equation*}
e\left(z ; q^{2}\right)=\cos \left(-i z ; q^{2}\right)+i \sin \left(-i z ; q^{2}\right) \tag{6}
\end{equation*}
$$

Remark that $e\left(z ; q^{2}\right)$ is absolutely convergent for all z in the complex plane since both of its component functions are. Moreover, $\lim _{q \rightarrow 1^{-}} e\left(z ; q^{2}\right)=e^{z}$ (exponential function) pointwise and uniformly on compacts.
Using the same technique as in [4], one can prove that for all $x \in \mathbb{R}_{q}$, we have

$$
\left|\cos \left(x ; q^{2}\right)\right| \leq \frac{1}{(q ; q)_{\infty}} \quad \text { and } \quad\left|\sin \left(x ; q^{2}\right)\right| \leq \frac{1}{(q ; q)_{\infty}}
$$

so,

$$
\begin{equation*}
\forall x \in \mathbb{R}_{q}, \quad\left|e\left(-i x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}} \tag{7}
\end{equation*}
$$

The q-Jackson integrals are defined by (see [3])
$\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} q^{n} f\left(a q^{n}\right), \quad \int_{a}^{b} f(x) d_{q} x=(1-q) \sum_{n=0}^{\infty} q^{n}\left[b f\left(b q^{n}\right)-a f\left(a q^{n}\right)\right]$,
$\int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(q^{n}\right), \quad \int_{-\infty}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} q^{n}\left[f\left(q^{n}\right)+f\left(-q^{n}\right)\right]$,
provided the sums converge absolutely.
Using this q-integrals, we note for $p>0$,

- $L_{q}^{p}\left(\mathbb{R}_{q}\right)=\left\{f:\|f\|_{p, q}=\left(\int_{-\infty}^{\infty}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$.
- $\quad L_{q}^{p}([-a, a])=\left\{f:\|f\|_{p, q}=\left(\int_{-a}^{a}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}<\infty\right\}$.
- $L_{q}^{\infty}\left(\mathbb{R}_{q}\right)=\left\{f:\|f\|_{\infty, q}=\sup _{x \in \mathbb{R}_{q}}|f(x)|<\infty\right\}$.

By the use of the q^{2}-analogue differential operator ∂_{q}, we note

- $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ the space of infinitely q-differentiable and fast decreasing functions and all its q-derivatives on \mathbb{R}_{q} i.e.

$$
\forall n, m \in \mathbb{N}, \quad P_{n, m, q}(f)=\sup _{x \in \mathbb{R}_{q} ; 0 \leq k \leq n}\left|(1+|x|)^{m} \partial_{q}^{k} f(x)\right|<+\infty
$$

$\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ is equipped with the induced topology defined by the semi-norms $P_{n, m, q}$. - $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ the subspace of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ composed of functions with compact support in \mathbb{R}_{q} and for $A \subset \mathbb{R}, \mathcal{D}_{q}(A)$ is the subspace of $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ constituted of functions
with supports in A.
The following result can be verified by direct computation.

Lemma 2.

1) If $\int_{-\infty}^{\infty} f(t) d_{q} t$ exists, then
for all $a \in \mathbb{R}_{q}, \int_{-\infty}^{\infty} f(a t) d_{q} t=|a|^{-1} \int_{-\infty}^{\infty} f(t) d_{q} t$;
2) For $a>0$, if $\int_{-a}^{a}\left(\partial_{q} f\right)(x) g(x) d_{q} x$ exists, then

$$
\begin{equation*}
\int_{-a}^{a}\left(\partial_{q} f\right)(x) g(x) d_{q} x=2\left[f_{e}\left(q^{-1} a\right) g_{o}(a)+f_{o}(a) g_{e}\left(q^{-1} a\right)\right]-\int_{-a}^{a} f(x)\left(\partial_{q} g\right)(x) d_{q} x . \tag{8}
\end{equation*}
$$

3) If $\int_{-\infty}^{\infty}\left(\partial_{q} f\right)(x) g(x) d_{q} x$ exists, then

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\partial_{q} f\right)(x) g(x) d_{q} x=-\int_{-\infty}^{\infty} f(x)\left(\partial_{q} g\right)(x) d_{q} x \tag{9}
\end{equation*}
$$

3. The q^{2}-analogue Fourier Transform and the q-translation Operator

In [5], R. L. Rubin defined the q^{2}-analogue Fourier transform as

$$
\begin{equation*}
\widehat{f}\left(x ; q^{2}\right)=\mathcal{F}_{q}(f)(x)=K \int_{-\infty}^{\infty} f(t) e\left(-i t x ; q^{2}\right) d_{q} t \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{(1+q)^{\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right)} \tag{11}
\end{equation*}
$$

and

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}
$$

be the q-Gamma function.
Letting $q \uparrow 1$ subject to the condition

$$
\begin{equation*}
\frac{\log (1-q)}{\log (q)} \in 2 \mathbb{Z} \tag{12}
\end{equation*}
$$

gives, at least formally, the classical Fourier transform (see [4] and [5]). In the remainder of this paper, we assume that the condition (12) holds.

It was shown in ([4] and [5]) that the q^{2}-analogue Fourier transform \mathcal{F}_{q} verifies the following properties:

1) If $f(u), \quad u f(u) \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, then

$$
\begin{equation*}
\partial_{q}\left(\mathcal{F}_{q}(f)\right)(x)=\mathcal{F}_{q}(-i u f(u))(x) \tag{13}
\end{equation*}
$$

2) If $f, \quad \partial_{q} f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, then

$$
\begin{equation*}
\mathcal{F}_{q}\left(\partial_{q} f\right)(x)=i x \mathcal{F}_{q}(f)(x) \tag{14}
\end{equation*}
$$

We have the following theorem.
Theorem 1. \mathcal{F}_{q} is an isomorphism from $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)\left(\operatorname{resp} L_{q}^{2}\left(\mathbb{R}_{q}\right)\right)$ onto itself.
For $f \in L_{q}^{2}\left(\mathbb{R}_{q}\right)$,

$$
\begin{equation*}
\left\|\mathcal{F}_{q}(f)\right\|_{2, q}=\|f\|_{2, q} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall t \in \mathbb{R}_{q}, \quad f(t)=K \int_{-\infty}^{\infty} \mathcal{F}_{q}(f)(x) e\left(i t x ; q^{2}\right) d_{q} x \tag{16}
\end{equation*}
$$

Let us state the following result
Theorem 2. For $f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, we have $\mathcal{F}_{q}(f) \in L_{q}^{\infty}\left(\mathbb{R}_{q}\right)$ and

$$
\begin{gather*}
\left\|\mathcal{F}_{q}(f)\right\|_{\infty, q} \leq \frac{2 K}{(q ; q)_{\infty}}\|f\|_{1, q}, \tag{17}\\
\lim _{\substack{|x| \rightarrow+\infty \\
x \in \mathbb{R}_{q}}} \mathcal{F}_{q}(f)(x)=0, \tag{18}\\
\lim _{\substack{|x| \rightarrow 0 \\
x \in \widetilde{\mathbb{R}}_{q}}} \mathcal{F}_{q}(f)(x)=\mathcal{F}_{q}(f)(0) . \tag{19}
\end{gather*}
$$

Proof. Using the relation (7), we have for $f \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$ and $x \in \mathbb{R}_{q}$,

$$
\left|f(t) \| e\left(-i t x ; q^{2}\right)\right| \leq \frac{2}{(q ; q)_{\infty}}|f(t)|, \quad \forall t \in \mathbb{R}_{q}
$$

Then by q-integration, we obtain the inequality (17) and by the Lebesgue theorem we obtain the two limits.

The q-translation operator $T_{q, x}, \quad x \in \widetilde{\mathbb{R}}_{q}$ is defined (see [4]) on $L_{q}^{1}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{gather*}
T_{q, x}(f)(y)=K \int_{-\infty}^{\infty} \mathcal{F}_{q}(f)(t) e\left(i t x ; q^{2}\right) e\left(i t y ; q^{2}\right) d_{q} t, y \in \mathbb{R}_{q} \tag{20}\\
T_{q, 0}(f)(y)=f(y) \tag{21}
\end{gather*}
$$

In the following result, we will give some of its properties.
Proposition 1. For $f, g \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, we have
i) For all $x, y \in \mathbb{R}_{q}$,

$$
T_{q, x}(f)(y)=T_{q, y}(f)(x)
$$

ii) For all $x \in \widetilde{\mathbb{R}}_{q}$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} T_{q, x}(f)(-y) g(y) d_{q} y=\int_{-\infty}^{\infty} f(y) T_{q, x}(g)(-y) d_{q} y \tag{22}
\end{equation*}
$$

iii) For all $x, t \in \mathbb{R}_{q}, \quad y \in \widetilde{\mathbb{R}}_{q}$

$$
\begin{equation*}
T_{q, y}\left(e\left(i t . ; q^{2}\right)\right)(x)=e\left(i t x ; q^{2}\right) e\left(i t y ; q^{2}\right) \tag{23}
\end{equation*}
$$

iv) For all $x \in \widetilde{\mathbb{R}}_{q}$

$$
\begin{equation*}
\partial_{q}\left(T_{q, x} f\right)=T_{q, x}\left(\partial_{q} f\right) \tag{24}
\end{equation*}
$$

Proof. i) The definition of $T_{q, x} f$ gives the result.
ii) Let $f, g \in L_{q}^{1}\left(\mathbb{R}_{q}\right)$, we have $\forall t, x, y \in \mathbb{R}_{q}$
$\left|\mathcal{F}_{q}(f)(t) e\left(i t x ; q^{2}\right) e\left(-i t y ; q^{2}\right) g(y)\right| \leq \frac{2}{(q, q)_{\infty}}\left\|\mathcal{F}_{q}(f)\right\|_{\infty, q}\left|e\left(i t x ; q^{2}\right)\right||g(y)|$,
since $e\left(i x . ; q^{2}\right)$ and g are in $L_{q}^{1}\left(\mathbb{R}_{q}\right)$ so, by the Fubini's theorem, we obtain

$$
\begin{aligned}
\int_{-\infty}^{\infty} T_{q, x}(f)(-y) g(y) d_{q} y & =K \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} \mathcal{F}_{q}(f)(t) e\left(i t x ; q^{2}\right) e\left(-i t y ; q^{2}\right) d_{q} t\right] g(y) d_{q} y \\
& =K \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} e\left(-i t y ; q^{2}\right) g(y) d_{q} y\right] \mathcal{F}_{q}(f)(t) e\left(i t x ; q^{2}\right) d_{q} t \\
& =\int_{-\infty}^{\infty} \mathcal{F}_{q}(g)(t) \mathcal{F}_{q}(f)(t) e\left(i t x ; q^{2}\right) d_{q} t \\
& =K \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(y) e\left(-i t y ; q^{2}\right) d_{q} y\right] \mathcal{F}_{q}(g)(t) e\left(i t x ; q^{2}\right) d_{q} t \\
& =\int_{-\infty}^{\infty} f(y) T_{q, x}(g)(-y) d_{q} y .
\end{aligned}
$$

iii) Using [[4], Theorem 3, e)] and [[4], property 2, c)], one can prove the following orthogonality relation:

$$
\int_{-\infty}^{\infty} e\left(-i \lambda x ; q^{2}\right) e\left(i \lambda y ; q^{2}\right) d_{q} \lambda=\frac{1}{K^{2}(1-q)|x y|^{1 / 2}} \delta_{x, y}, \quad x, y \in \mathbb{R}_{q}
$$

which together with the properties of the q-Jackson integral give the result. iv) The result follows from the relation (14) and the properties of ∂_{q}.

Proposition 2. (see [4]) Let $f \in L_{q}^{2}\left(\mathbb{R}_{q}\right)$ then
i) $T_{q, x} f \in L_{q}^{2}\left(\mathbb{R}_{q}\right)$ and

$$
\begin{equation*}
\left\|T_{q, x} f\right\|_{q, 2} \leq \frac{2}{(q ; q)_{\infty}}\|f\|_{q, 2}, \quad x \in \widetilde{\mathbb{R}}_{q} \tag{25}
\end{equation*}
$$

ii) For all $x \in \widetilde{\mathbb{R}}_{q}, \quad \lambda \in \mathbb{R}_{q}$,

$$
\begin{equation*}
\mathcal{F}_{q}\left(T_{q, x} f\right)(\lambda)=e\left(i \lambda x ; q^{2}\right) \mathcal{F}_{q}(f)(\lambda) \tag{26}
\end{equation*}
$$

The following result gives a Taylor formula for the q-translation operator $T_{q, .}$.

Proposition 3. Let $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ satisfying:

$$
\exists C>0, \quad \exists R>0 \quad \text { such that } \quad \forall n \in \mathbb{N},\left\|\partial_{q}^{n} f\right\|_{1, q} \leq C R^{n}
$$

Then,

$$
\begin{equation*}
\forall x, y \in \mathbb{R}_{q}, \quad T_{q, y}(f)(x)=\sum_{n=0}^{+\infty} a_{n, q} \partial_{q}^{n}(f)(y) x^{n}=\sum_{n=0}^{+\infty} a_{n, q} \partial_{q}^{n}(f)(x) y^{n} \tag{27}
\end{equation*}
$$

where

$$
\left\{\begin{align*}
a_{2 n, q} & =\frac{q^{n(n+1)}}{[2 n]_{q}!} \tag{28}\\
a_{2 n+1, q} & =\frac{q^{n(n+1)}}{[2 n+1]_{q}!}
\end{align*}\right.
$$

Proof. Let $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, satisfying the condition of the proposition and fix $x, y \in \mathbb{R}_{q}$. On the one hand, from (6),(5) and (4), we have

$$
e\left(i \lambda x ; q^{2}\right)=\sum_{n=0}^{+\infty} a_{n, q}(i \lambda x)^{n} .
$$

On the other hand, from the Plancheral theorem, we have

$$
\sum_{n=0}^{+\infty} a_{n, q} \partial_{q}^{n}(f)(y) x^{n}=K \sum_{n=0}^{+\infty} a_{n, q} x^{n} \int_{-\infty}^{\infty} \mathcal{F}_{q}\left(\partial_{q}^{n} f\right)(\lambda) e\left(i \lambda x ; q^{2}\right) d_{q} \lambda
$$

Now, using the fact that the function $\quad \lambda \longmapsto e\left(i \lambda y ; q^{2}\right) \quad$ is in $L_{q}^{1}\left(\mathbb{R}_{q}\right) \quad$ and for all $n \in \mathbb{N}$,

$$
\left\|\mathcal{F}_{q}\left(\partial_{q}^{n} f\right)\right\|_{\infty, q} \leq \frac{2 K}{(q ; q)_{\infty}}\left\|\partial_{q}^{n} f\right\|_{1, q} \leq \frac{2 K C}{(q ; q)_{\infty}} R^{n}
$$

we deduce that

$$
\sum_{n \geq 0} \int_{-\infty}^{\infty}\left|a_{n, q} \mathcal{F}_{q}\left(\partial_{q}^{n} f\right)(\lambda) e\left(i \lambda y ; q^{2}\right) x^{n}\right| d_{q} \lambda
$$

converges. Then, the Fubini's theorem implies that we can exchange the order of the sum and the q-integral signs, and we obtain

$$
\begin{aligned}
\sum_{n=0}^{+\infty} a_{n, q} \partial_{q}^{n}(f)(y) x^{n} & =K \int_{-\infty}^{\infty} \sum_{n=0}^{+\infty} a_{n, q} \mathcal{F}_{q}\left(\partial_{q}^{n} f\right)(\lambda) e\left(i \lambda y ; q^{2}\right) x^{n} d_{q} \lambda \\
& =K \int_{-\infty}^{\infty}\left(\sum_{n=0}^{+\infty} a_{n, q}(i \lambda x)^{n}\right) \mathcal{F}_{q}(f)(\lambda) e\left(i \lambda y ; q^{2}\right) d_{q} \lambda \\
& =T_{q, y}(f)(x)
\end{aligned}
$$

As an immediate consequence of the previous proposition, we have the following result.
Corollary 1. Let $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ satisfying:

$$
\exists C>0, \quad \exists R>0 \quad \text { such that } \quad \forall n \in \mathbb{N},\left\|\partial_{q}^{n} f\right\|_{1, q} \leq C R^{n} .
$$

Then, for all $x \in \mathbb{R}_{q}$, the function $z \mapsto T_{q, z}(f)(x)$ is entire on \mathbb{C} and for all $z \in \mathbb{C}$,

$$
T_{q, z}(f)(x)=\sum_{n=0}^{+\infty} a_{n, q} \partial_{q}^{n}(f)(x) z^{n}
$$

4. Paley-Wiener Theorem

In this section, for $a \in \mathbb{R}_{q,+}$, we introduce the q-Fourier Paley-Wiener space $P W_{q, a}$ as

$$
P W_{q, a}=\left\{f(x)=K \int_{-a}^{a} u(t) e\left(i t x ; q^{2}\right) d_{q} t, \quad u \in \mathcal{D}_{q}([-a, a])\right\} .
$$

Following the classical theory, an element of $P W_{q, a}$ will be called q-Fourier bandlimited signal. We begin by the following easily proved result.

Proposition 4.

1) The q^{2}-analogue Fourier transform \mathcal{F}_{q} is an isomorphism from $P W_{q, a}$ onto $\mathcal{D}_{q}([-a, a])$.
2) Every element of the q-Fourier Paley-Wiener space $P W_{q, a}$ is the restriction on \mathbb{R}_{q} of an entire function on \mathbb{C} of exponential type.

Proof. 1) follows from the definition of $P W_{q, a}$ and the Plancherel theorem.
2) Let $f \in P W_{q, a}$, then there exists $u \in \mathcal{D}_{q}([-a, a])$ such that for all $x \in \mathbb{R}_{q}$,

$$
f(x)=K \int_{-a}^{a} u(t) e\left(i t x ; q^{2}\right) d_{q} t .
$$

Since for all $t \in \mathbb{R}_{q} \cap[-a, a]$, the function $z \mapsto e\left(i t z ; q^{2}\right)$ is entire on \mathbb{C} and satisfies for all $R>0$ and all $z \in \mathbb{C}$ such that $|z|<R$,

$$
\left|u(t) e\left(i t z ; q^{2}\right)\right| \leq\|u\|_{\infty, q} e\left(|t z| ; q^{2}\right) \leq\|u\|_{\infty, q} e\left(a R ; q^{2}\right) .
$$

Then, $z \mapsto \int_{-a}^{a} u(t) e\left(i t z ; q^{2}\right) d_{q} t$ is entire on \mathbb{C} and f is extendable to an entire function on \mathbb{C}.
On the other hand, making a proof as in [[2], Proposition 2], one can show that for all $z \in \mathbb{C}$, and all $t \in \mathbb{R}_{q} \cap[-a, a]$,

$$
\left|e\left(i t z ; q^{2}\right)\right| \leq 2 e^{(1+\sqrt{q}) a|z|}
$$

So, for all $z \in \mathbb{C}$,

$$
|f(z)| \leq 2 K\|u\|_{\infty, q} \quad e^{(1+\sqrt{q}) a|z|}
$$

which proves that f is extendable on \mathbb{C} to an entire function of exponential type.

Remark. Since $\mathcal{D}_{q}([-a, a]) \subset \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, then the Plancherel theorem and the previous proposition assert that $P W_{q, a}$ is a non trivial subspace of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$.

In what follows, we will give some characterizations of the q-Fourier PaleyWiener space $P W_{q, a}$.

Theorem 3. The q-Fourier Paley-Wiener space $P W_{q, a}$ is the subspace of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ constituted of functions satisfying:

$$
\begin{equation*}
\exists n>1, \quad \exists c_{n}>0, \text { such that, } \forall x \in \mathbb{R}_{q}, \forall k \in \mathbb{N}, \quad\left|\partial_{q}^{k} f(x)\right| \leq \frac{c_{n}}{1+|x|^{n}} a^{k} \tag{29}
\end{equation*}
$$

Proof. Let $f \in P W_{q, a}$, then there exists $u \in \mathcal{D}_{q}([-a, a])$, such that for all $x \in \mathbb{R}_{q}$,

$$
f(x)=K \int_{-a}^{a} u(t) e\left(i t x ; q^{2}\right) d_{q} t
$$

So, for all $k, n \in \mathbb{N}$, we have

$$
\partial_{q}^{k} f(x)=K(i)^{k} \int_{-a}^{a} u(t) t^{k} e\left(i t x ; q^{2}\right) d_{q} t
$$

By using (13) and (9), we get for all $x \in \mathbb{R}_{q}$,

$$
\begin{aligned}
x^{n} \partial_{q}^{k} f(x) & =K(i)^{k-n} \int_{-a}^{a} u(t) t^{k}\left[\partial_{q}^{n} e\left(i t x ; q^{2}\right)\right] d_{q} t \\
& =K(i)^{k-n} \int_{-\infty}^{\infty} u(t) t^{k}\left[\partial_{q}^{n} e\left(i t x ; q^{2}\right)\right] d_{q} t \\
& =K(i)^{k+n} \int_{-\infty}^{\infty} \partial_{q}^{n}\left[u(t) t^{k}\right] e\left(i t x ; q^{2}\right) d_{q} t
\end{aligned}
$$

Since $u \in \mathcal{D}_{q}([-a, a])$, we have for all $k \in \mathbb{N}, t \mapsto u(t) t^{k} \in \mathcal{D}_{q}([-a, a])$. Then, the fact that $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$ is invariant by ∂_{q} implies that $t \mapsto \partial_{q}^{n}\left[u(t) t^{k}\right]$ belongs to $\mathcal{D}_{q}\left(\mathbb{R}_{q}\right)$, for all $k, n \in \mathbb{N}$.
So, for $k<n$, using the relation (7), we obtain for all $x \in \mathbb{R}_{q}$,

$$
\begin{equation*}
|x|^{n}\left|\partial_{q}^{k} f(x)\right| \leq \frac{2 K}{(q ; q)_{\infty}} \int_{-\infty}^{\infty}\left|\partial_{q}^{n}\left[u(t) t^{k}\right]\right| d_{q} t=\widetilde{c}_{n, k}=\left(\widetilde{c}_{n, k} a^{-k}\right) a^{k} \tag{30}
\end{equation*}
$$

On the other hand, by the definition of the operator ∂_{q}, one can prove, by induction, that for all $n \in \mathbb{N}$, there exists a sequence $\left(s_{m}(\epsilon, n, q)\right)_{-n \leq m \leq n, \epsilon= \pm 1}$ of real numbers such that for all function g,

$$
\partial_{q}^{n}[g(t)]=\frac{1}{t^{n}} \sum_{m=-n, \epsilon= \pm 1}^{n} s_{m}(\epsilon, n, q) \cdot g\left(\epsilon q^{m} t\right)
$$

So, for all $k, n \in \mathbb{N}$, we have

$$
\partial_{q}^{n}\left[u(t) t^{k}\right]=\frac{1}{t^{n}} \sum_{m=-n, \epsilon= \pm 1}^{n} s_{m}(\epsilon, n, q)\left[u\left(\epsilon q^{m} t\right)\left(\epsilon q^{m} t\right)^{k}\right]
$$

Since the function $t \mapsto\left[u\left(\epsilon q^{m} t\right)\left(\epsilon q^{m} t\right)^{k}\right], \quad-n \leq m \leq n$, has compact support in $\left[-q^{-|m|} a, q^{-|m|} a\right]$, then for $k \geq n$, we have

$$
\begin{aligned}
\left|\frac{1}{t^{n}} \sum_{m=-n, \epsilon= \pm 1}^{n} s_{m}(\epsilon, n, q)\left[u\left(\epsilon q^{m} t\right)\left(\epsilon q^{m} t\right)^{k}\right]\right| & \leq\|u\|_{\infty, q} \sum_{m=-n, \epsilon= \pm 1}^{n}\left|s_{m}(\epsilon, n, q)\right| q^{m k}|t|^{k-n} \\
& \leq\|u\|_{\infty, q} \sum_{m=-n, \epsilon= \pm 1}^{n}\left|s_{m}(\epsilon, n, q)\right| q^{m k}\left(q^{-m} a\right)^{k-n} \\
& \leq\left(\|u\|_{\infty, q} \sum_{m=-n, \epsilon= \pm 1}^{n}\left|s_{m}(\epsilon, n, q)\right| q^{m n}\right) a^{k-n} \\
& =C_{n} a^{k-n}
\end{aligned}
$$

Hence, for $k \geq n$,

$$
\begin{aligned}
\left|x^{n} \partial_{q}^{k} f(x)\right| & =\left|K(-i)^{k+n} \int_{-\infty}^{\infty} \partial_{q}^{n}\left[u(t) t^{k}\right] e\left(-i t x ; q^{2}\right) d_{q} t\right| \\
& \leq\left(\frac{4 K}{(q ; q)_{\infty}} C_{n} a^{-n+1} q^{-n}\right) a^{k} .
\end{aligned}
$$

Finally, by taking

$$
\widetilde{c}_{n}=\max \left\{\sup _{0 \leq i \leq n} \widetilde{c}_{n, i}, \frac{2 K}{(q ; q)_{\infty}} C_{n} a^{-n} \int_{-q^{-n} a}^{q^{-n} a} d_{q} t\right\}
$$

we get for all $n, k \in \mathbb{N}$ and all $x \in \mathbb{R}_{q}$,

$$
\left|x^{n} \partial_{q}^{k} f(x)\right| \leq \widetilde{c}_{n} a^{k}
$$

Thus, for all $n, k \in \mathbb{N}$ and all $x \in \mathbb{R}_{q}$,

$$
\left(1+|x|^{n}\right)\left|\partial_{q}^{k} f(x)\right| \leq c_{n} a^{k}
$$

with $c_{n}=\widetilde{c}_{0}+\widetilde{c}_{n}$.
Conversely, suppose that f satisfies (29), put $u=\mathcal{F}_{q}(f)$ and fix $x \in \mathbb{R}_{q}$, such that $|x|>a$.
We have, by the use of the relations (14) and (7), for all $k \in \mathbb{N}$,

$$
\mathcal{F}_{q}\left(\partial_{q}^{k} f\right)(x)=(i)^{k} x^{k} \mathcal{F}_{q}(f)(x)=(i x)^{k} u(x)
$$

and

$$
\begin{aligned}
\left|\mathcal{F}_{q}\left(\partial_{q}^{k} f\right)(x)\right| & \leq K \int_{0}^{\infty}\left|\partial_{q}^{k} f(t) \| e\left(-i t x ; q^{2}\right)\right| d_{q} t \\
& \leq \frac{2 K}{(q ; q)_{\infty}} a^{k} \int_{-\infty}^{\infty} \frac{1}{1+|t|^{n}} d_{q} t
\end{aligned}
$$

Then for all $k \in \mathbb{N}$,

$$
|u(x)| \leq\left[\frac{2 K}{(q ; q)_{\infty}} \int_{-\infty}^{\infty} \frac{1}{1+|t|^{n}} d_{q} t\right]\left(\frac{a}{|x|}\right)^{k}
$$

As $|x|>a$, we obtain by letting k to $+\infty, u(x)=0$. This proves that $u \in \mathcal{D}_{q}([-a, a])$ and $f=\left(\mathcal{F}_{q}\right)^{-1}(u) \in P W_{q, a}$.

Theorem 4. The q-Fourier Paley-Wiener space $P W_{q, a}$ is the subspace of $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$ constituted of functions satisfying

$$
z \mapsto T_{q, z} f(x)
$$

is entire on \mathbb{C} for all $x \in \mathbb{R}_{q}$, and for some $n>1$ there exists $c_{n}>0$, such that

$$
\left|T_{q, z} f(x)\right| \leq \frac{c_{n}}{1+|x|^{n}} e\left(a|z| ; q^{2}\right), \quad \forall x \in \mathbb{R}_{q}, \quad \forall z \in \mathbb{C}
$$

Proof. Let $f \in P W_{q, a}$. Then, there exists $u \in \mathcal{D}_{q}([-a, a])$, such that $f=$ $\left(\mathcal{F}_{q}\right)^{-1}(u)$. So, by the relations (13) and (16), we have for all $n \in \mathbb{N}$ and all
$x \in \mathbb{R}_{q}$,

$$
\begin{aligned}
\left\|\partial_{q}^{n} f\right\|_{1, q} & =\int_{-\infty}^{+\infty}\left|\partial_{q}^{n}(f)(x)\right| d_{q} x \\
& \leq K \int_{-\infty}^{+\infty}\left[\int_{-a}^{a}\left|t^{n} u(t) e\left(i t x ; q^{2}\right)\right| d_{q} t\right] d_{q} x \\
& \leq K\|u\|_{\infty, q} \int_{-\infty}^{+\infty}\left[\int_{-a}^{a}\left|t^{n}\right|\left|e\left(i t x ; q^{2}\right)\right| d_{q} t\right] d_{q} x \\
& \leq K\|u\|_{\infty, q} \int_{-a}^{a}\left|t^{n}\right|\left[\int_{-\infty}^{+\infty}\left|e\left(i t x ; q^{2}\right)\right| d_{q} x\right] d_{q} t \\
& \leq K\|u\|_{\infty, q}\left\|e\left(i . ; q^{2}\right)\right\|_{1, q} \int_{-a}^{a}\left|t^{n-1}\right| d_{q} t, \quad \forall n \geq 1 \\
& \leq 2 K\|u\|_{\infty, q}\left\|e\left(i . ; q^{2}\right)\right\|_{1, q} a^{n}, \quad \forall n \geq 1,
\end{aligned}
$$

and for $n=0$, we have $\quad\left\|\partial_{q}^{0} f\right\|_{1, q}=\|f\|_{1, q}$.
Hence, Corollary 1 implies that for all $x \in \mathbb{R}_{q}$ the function $z \mapsto T_{q, z} f(x)$ is entire on \mathbb{C} and for all $z \in \mathbb{C}$,

$$
\begin{aligned}
\left|T_{q, z} f(x)\right| & =\left|\sum_{k=0}^{+\infty} a_{k, q} \partial_{q}^{k}(f)(x) z^{k}\right| \\
& \leq \sum_{k=0}^{+\infty} a_{k, q}\left|\partial_{q}^{k}(f)(x)\right||z|^{k}
\end{aligned}
$$

Since $f \in P W_{q, a}$, then from Theorem 2, one can see that there exist $n>1$ and $c_{n}>0$, such that

$$
\forall x \in \mathbb{R}_{q}, \forall k \in \mathbb{N}, \quad\left|\partial_{q}^{k} f(x)\right| \leq \frac{c_{n}}{1+|x|^{n}} a^{k}
$$

So, for all $x \in \mathbb{R}_{q}$ and all $z \in \mathbb{C}$,

$$
\begin{aligned}
\left|T_{q, z} f(x)\right| & \leq \frac{c_{n}}{1+|x|^{n}} \sum_{k=0}^{+\infty} a_{k, q}|a z|^{k} \\
& =\frac{c_{n}}{1+|x|^{n}} e\left(a|z| ; q^{2}\right)
\end{aligned}
$$

Conversely, suppose that $f \in \mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, satisfying for all $y \in \mathbb{R}_{q}, z \mapsto T_{q, z} f(y)$ is entire on \mathbb{C} and there exist $n>1$ and $c_{n}>0$, such that

$$
\left|T_{q, z} f(y)\right| \leq \frac{c_{n}}{1+|y|^{n}} e\left(a|z| ; q^{2}\right), \quad \forall y \in \mathbb{R}_{q}, \forall z \in \mathbb{C}
$$

Let $b \in \mathbb{R}_{q}$ such that $|b|>a$. Using the fact that

$$
\left|\partial_{q}^{k} e\left(i t . \quad ; q^{2}\right)\right| \leq \frac{2|t|^{k}}{(q ; q)_{\infty}}, \quad \forall k \in \mathbb{N}
$$

we can see that the two functions $y \mapsto \int_{0}^{|b|} e\left(i t y ; q^{2}\right) d_{q} t$ and $y \mapsto \int_{0}^{|b|} e\left(-i t y ; q^{2}\right) d_{q} t$ are in $\mathcal{S}_{q}\left(\mathbb{R}_{q}\right)$, and from the product formula, we can show that for all $x \in \mathbb{R}_{q}$,

$$
\begin{equation*}
T_{q, x}\left[y \mapsto \int_{0}^{|b|} e\left(i t y ; q^{2}\right) d_{q} t\right]=\int_{0}^{|b|} e\left(i t x ; q^{2}\right) e\left(i t y ; q^{2}\right) d_{q} t \tag{31}
\end{equation*}
$$

On the one hand, since for all $y \in \mathbb{R}_{q}, z \mapsto T_{q, z} f(y)$ is entire on \mathbb{C}, then for all $R>0$ and all $z \in \mathbb{C}$ such that $|z| \leq R$, we have

$$
\left|T_{q, z} f(y)\left[\int_{0}^{|b|} e\left(i t y ; q^{2}\right) d_{q} t\right]\right| \leq \frac{4|b|}{(q ; q)_{\infty}} \frac{c_{n}}{1+|y|^{n}} e\left(a|z| ; q^{2}\right) \leq \frac{4|b|}{(q ; q)_{\infty}} \frac{c_{n}}{1+|y|^{n}} e\left(a R ; q^{2}\right) .
$$

Thus, the functions

$$
\left.\varphi_{ \pm}: z \mapsto K \int_{-\infty}^{\infty} T_{q, z} f(y)\left[\int_{0}^{|b|} e\left(\pm i t y ; q^{2}\right)\right) d_{q} t\right] d_{q} y
$$

are entire on \mathbb{C} and we have, for all $z \in \mathbb{C}$,

$$
\begin{equation*}
\left|\varphi_{ \pm}(z)\right| \leq C e\left(a|z| ; q^{2}\right) \tag{32}
\end{equation*}
$$

with

$$
C=\frac{2|b| K}{(q ; q)_{\infty}} \int_{-\infty}^{\infty} \frac{c_{n}}{1+|y|^{n}} d_{q} y .
$$

On the other hand, from the relations (22) and (31), one can write for all $x \in \widetilde{\mathbb{R}}_{q}$,

$$
\begin{aligned}
\varphi_{ \pm}(x) & =K \int_{-\infty}^{\infty} T_{q, x} f(y)\left[\int_{0}^{|b|} e\left(\pm i t y ; q^{2}\right) d_{q} t\right] d_{q} y \\
& =K \int_{-\infty}^{\infty} T_{q, x} f(-y)\left[\int_{0}^{|b|} e\left(\pm i t y ; q^{2}\right) d_{q} t\right] d_{q} y \\
& =K \int_{-\infty}^{\infty} f(y) T_{q, x}\left[\int_{0}^{|b|} e\left(\pm i t y ; q^{2}\right) d_{q} t\right] d_{q} y \\
& =K \int_{-\infty}^{\infty} f(y)\left[\int_{0}^{|b|} e\left(\pm i t y ; q^{2}\right) e\left(\pm i t x ; q^{2}\right) d_{q} t\right] d_{q} y \\
& =K \int_{0}^{|b|}\left[\int_{-\infty}^{\infty} f(y) e\left(\pm i t y ; q^{2}\right) d_{q} y\right] e\left(\pm i t x ; q^{2}\right) d_{q} t \\
& =\int_{0}^{|b|} \mathcal{F}_{q}(f)(\mp t) e\left(\pm i t x ; q^{2}\right) d_{q} t .
\end{aligned}
$$

The interchange of the two q-integrals is legitimated by the fact that for all $x \in \widetilde{\mathbb{R}}_{q}$, all $y \in \mathbb{R}_{q}$ and all $t \in \mathbb{R}_{q}$ such that $0 \leq t \leq|b|$, we have

$$
\left|f(y) e\left(\pm i t y ; q^{2}\right) e\left(\pm i t x ; q^{2}\right)\right| \leq \frac{16 c_{n}}{(q ; q)_{\infty}^{2}} \frac{1}{1+|y|^{n}} \quad \text { and } \quad n>1
$$

It is not hard to prove that, the function $z \mapsto \int_{0}^{|b|} \mathcal{F}_{q}(f)(\mp t) e\left(\pm i t z ; q^{2}\right) d_{q} t$ is entire on \mathbb{C}, since for all $0<t \leq|b|, z \mapsto e\left(i t z ; q^{2}\right)$ is entire on \mathbb{C}, for all $R>0$ and all $z \in \mathbb{C}$ such that $|z|<R$,

$$
\left|\mathcal{F}_{q}(f)(\mp t) e\left(\pm i t z ; q^{2}\right)\right| \leq\left\|\mathcal{F}_{q}(f)\right\|_{\infty, q} e\left(|b| R ; q^{2}\right)
$$

So, since 0 is a limit point of $\widetilde{\mathbb{R}}_{q}$, the analytic theorem shows that for all $z \in \mathbb{C}$,

$$
\varphi_{ \pm}(z)=\int_{0}^{|b|} \mathcal{F}_{q}(f)(\mp t) e\left(\pm i t z ; q^{2}\right) d_{q} t
$$

Hence, from the inequality (32), we obtain, since $a, b \in \mathbb{R}_{q}$ and $|b|>a$,

$$
\left|\int_{0}^{|b|} \mathcal{F}_{q}(f)(\mp t) e\left(\pm i t z ; q^{2}\right) d_{q} t\right| \leq C e\left(a|z| ; q^{2}\right) \leq C e\left(q b|z| ; q^{2}\right), \quad \forall z \in \mathbb{C}
$$

This inequality together with the definition of the q-Jackson integral lead to, for all $z \in \mathbb{C}$,

$$
\begin{aligned}
(1-q)|b|\left|\mathcal{F}_{q}(f)(\mp|b|) e\left(\pm i z|b| ; q^{2}\right)\right| & -\left|(1-q) \sum_{k=1}^{\infty} \mathcal{F}_{q}(f)\left(\mp|b| q^{k}\right) e\left(\pm i z|b| q^{k} ; q^{2}\right)\right| b q^{k}| | \\
& \leq C e\left(q|b||z| ; q^{2}\right) .
\end{aligned}
$$

Moreover, $\mathcal{F}_{q}(f)$ is bounded on \mathbb{R}_{q}, then using the fact that for all $z \in \mathbb{C}$ and all positive integer k,

$$
\left|e\left(\pm i z|b| q^{k} ; q^{2}\right)\right| \leq e\left(q|b||z| ; q^{2}\right)
$$

we get

$$
\left|\mathcal{F}_{q}(f)(b)\right| \leq \widetilde{C} \frac{e\left(q|b||z| ; q^{2}\right)}{\left|e\left(\pm i z|b| ; q^{2}\right)\right|}
$$

A replacement of z by $i x$ or $-i x$ gives

$$
\left|\mathcal{F}_{q}(f)(b)\right| \leq \widetilde{C} \frac{e\left(q|b| x ; q^{2}\right)}{\left|e\left(|b| x ; q^{2}\right)\right|}, \quad \forall x \in \mathbb{R}_{q,+}
$$

But,

$$
\begin{aligned}
x^{-2}\left[e\left(|b| x ; q^{2}\right)-1-|b| x\right] & =\sum_{k=2}^{\infty} a_{k, q}(x|b|)^{(k-2)} \\
& =\sum_{k=1}^{\infty} a_{2 k, q}(x|b|)^{(2 k-2)}+\sum_{k=1}^{\infty} a_{2 k+1, q}(x|b|)^{(2 k-1)} \\
& =\sum_{k=0}^{\infty} \frac{q^{(k+1)(k+2)}}{[2 k+2]_{q}!}(x|b|)^{2 k}+\sum_{k=0}^{\infty} \frac{q^{(k+1)(k+2)}}{[2 k+3]_{q}!}(x|b|)^{(2 k+1)} \\
& \geq e\left(q|b| x ; q^{2}\right)
\end{aligned}
$$

and

$$
\lim _{x \rightarrow \infty} e\left(|b| x ; q^{2}\right)=\infty
$$

then

$$
\lim _{x \rightarrow \infty} \frac{e\left(|b| x ; q^{2}\right)-1-|b| x}{e\left(|b| x ; q^{2}\right)}=1 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{e\left(q|b| x ; q^{2}\right)}{e\left(|b| x ; q^{2}\right)}=0 .
$$

Thus

$$
u(b)=\mathcal{F}_{q}(f)(\pm|b|)=0 .
$$

This proves that $u=\mathcal{F}_{q}(f) \in \mathcal{D}_{q}([-a, a])$ and as consequence $f \in P W_{q, a}$.

References

[1] G. Gasper and M. Rahmen, Basic Hypergeometric Series,Encyclopedia of Mathematics and its application, Vol 35, Cambridge Univ. Press, Cambridge, UK, 1990.
[2] A. Fitouhi, N. Bettaibi, and R. H. Bettaieb, On Hardy's inequality for symmetric integral transforms and analogous, App. Math. Comput., 198(2008), 346354.
[3] F. H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics, 41(1910), 193-203.
[4] Richard L. Rubin, A q^{2}-Analogue Operator for q^{2}-analogue Fourier Analysis, J. Math. Anal. App., 212(1997), 571-582.
[5] Richard L. Rubin, Duhamel Solutions of non-Homogenous q^{2}-Analogue Wave Equations, Proc. of Amer. Math. Soc., 135 no.3(2007), 777-785.
[6] Ahmed fitouhi and Lazhar Dhaoudi, On a q-Paley-Wiener theorem, J. Math. Anal.Appl., 294(2004), 17-23.
[7] Lazhar Dhaouadi, Wafa Binous and Ahmmed Fitouhi, Paley-Wiener theorem for the q-Bessel transform and associated q-sampling formula Expo. Math. (2008), doi:10.1016/j.exmath.2008.07.002

[^0]: *2000 Mathematics Subject Classification.
 ${ }^{\dagger}$ Corresponding author. E-mail: Ahmed.Fitouhi@fst.rnu.tn
 ${ }^{\ddagger}$ E-mail: amelsafraoui@yahoo.fr

