
Paley-Wiener Theorem for the

q2-Fourier-Rubin Transform∗

Ahmed Fitouhi†
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1. Introduction

R.L.Rubin in [4, 5] introduced a q2-derivative for which he established a con-
structive q2-Fourier transform. The aim of this is to complete the q-Fourier
analysis elaborated by the previous authors in studying the q-analogues of
some basic theorems with the same technic that those used in [6, 7]. More
precisely we state some new properties of the q2-Fourier Rubin transform and
show that its associated q2-translation. We prove that if f run in the q- ana-
logue of the Scharwtz space then its q-translation can be expand in series
involving the powers of the q-Rubin derivative of f . This last result plays a
central role for the study of the related q-Paley-Wiener space and the afferent
theorem.

2. Notations and Preliminaries

For the convenience of the reader, we provide in this section a summary of the
mathematical notations and definitions used in this paper. For this purpose,
we fix q ∈]0, 1[ and we refer to the book by G. Gasper and M. Rahman [1],
for the definitions, notations and properties of the q-shifted factorials and the
q-hypergeometric functions.
Note
Rq = {±qn : n ∈ Z}, R̃q = {±qn : n ∈ Z} ∪ {0}.
For a ∈ C, the q-shifted factorials are defined by

(a; q)0 = 1; (a; q)n =
n−1∏
k=0

(1− aqk), n = 1, 2, . . . ; (a; q)∞ =
∞∏
k=0

(1− aqk).

(1)
We also denote

[x]q =
1− qx

1− q
, x ∈ C ; [n]q! =

(q; q)n
(1− q)n

, n ∈ N. (2)

The q2-analogue differential operator is ( see [4, 5])

∂q(f)(z) =


f (q−1z) + f (−q−1z)− f (qz) + f (−qz)− 2f(−z)

2(1− q)z
if z 6= 0

lim
x→0

∂q(f)(x) (in Rq) if z = 0.

(3)
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Remark that if f is differentiable at z, then lim
q→1

∂q(f)(z) = f ′(z).

A repeated application of the q2-analogue differential operator is denoted by:

∂0qf = f, ∂n+1
q f = ∂q(∂

n
q f).

The following lemma lists some useful computational properties of ∂q.

Lemma 1.

1) For all function f on Rq, ∂qf(z) =
fe(q

−1z)− fe(z)

(1− q)z
+
fo(z)− fo(qz)

(1− q)z
.

2) For two functions f and g, we have
� if f is even and g is odd then

∂q(fg)(z) = qg(z)∂q(f)(qz) + f(qz)∂q(g)(z) = f(z)∂q(g)(z) + qg(qz)∂q(f)(qz);

� if f and g are even then

∂q(fg)(z) = g(q−1z)∂q(f)(z) + f(z)∂q(g)(z).

� if f and g are odd then

∂q(fg)(z) = q−1g(q−1z)∂q(q
−1f)(z) + q−1f(z)∂q(g)(q−1z),

where, for a function f defined on Rq, fe and fo are, respectively, its even and
odd parts.

The q-trigonometric functions q-cosine and q-sine are defined by ( see [4, 5]):

cos(x; q2) =
∞∑
n=0

(−1)nqn(n+1) x
2n

[2n]q!
(4)

and

sin(x; q2) =
∞∑
n=0

(−1)nqn(n+1) x2n+1

[2n+ 1]q!
. (5)

These functions induce a ∂q-adapted q2-analogue exponential function as

e(z; q2) = cos(−iz; q2) + i sin(−iz; q2). (6)
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Remark that e(z; q2) is absolutely convergent for all z in the complex plane
since both of its component functions are. Moreover, lim

q→1−
e(z; q2) = ez (expo-

nential function) pointwise and uniformly on compacts.
Using the same technique as in [4], one can prove that for all x ∈ Rq, we have

| cos(x; q2)| ≤ 1

(q; q)∞
and | sin(x; q2)| ≤ 1

(q; q)∞
,

so,

∀x ∈ Rq, |e(−ix; q2)| ≤ 2

(q; q)∞
. (7)

The q-Jackson integrals are defined by (see [3])∫ a

0
f(x)dqx = (1−q)a

∞∑
n=0

qnf(aqn),

∫ b

a
f(x)dqx = (1−q)

∞∑
n=0

qn [bf(bqn)− af(aqn)] ,

∫ ∞
0

f(x)dqx = (1−q)
∞∑

n=−∞

qnf(qn),

∫ ∞
−∞

f(x)dqx = (1−q)
∞∑

n=−∞

qn [f(qn) + f(−qn)] ,

provided the sums converge absolutely.
Using this q-integrals, we note for p > 0,

• Lpq(Rq) =

{
f : ‖f‖p,q =

(∫ ∞
−∞
|f(x)|pdqx

) 1
p

<∞

}
.

• Lpq([−a, a]) =

{
f : ‖f‖p,q =

(∫ a

−a
|f(x)|pdqx

) 1
p

<∞

}
.

• L∞q (Rq) =

{
f : ‖f‖∞,q = sup

x∈Rq

|f(x)| <∞

}
.

By the use of the q2-analogue differential operator ∂q, we note
• Sq(Rq) the space of infinitely q-differentiable and fast decreasing functions
and all its q-derivatives on Rq i.e.

∀n,m ∈ N, Pn,m,q(f) = sup
x∈Rq ;0≤k≤n

| (1 + |x|)m∂kq f(x) |< +∞.

Sq(Rq) is equipped with the induced topology defined by the semi-norms Pn,m,q.
• Dq(Rq) the subspace of Sq(Rq) composed of functions with compact support
in Rq and for A ⊂ R, Dq(A) is the subspace of Dq(Rq) constituted of functions
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with supports in A.

The following result can be verified by direct computation.

Lemma 2.

1) If

∫ ∞
−∞

f(t)dqt exists, then

for all a ∈ Rq,

∫ ∞
−∞

f(at)dqt = |a|−1
∫ ∞
−∞

f(t)dqt;

2) For a > 0, if

∫ a

−a
(∂qf)(x)g(x)dqx exists, then∫ a

−a
(∂qf)(x)g(x)dqx = 2

[
fe(q

−1a)go(a) + fo(a)ge(q
−1a)

]
−
∫ a

−a
f(x)(∂qg)(x)dqx.

(8)

3) If

∫ ∞
−∞

(∂qf)(x)g(x)dqx exists, then∫ ∞
−∞

(∂qf)(x)g(x)dqx = −
∫ ∞
−∞

f(x)(∂qg)(x)dqx. (9)

3. The q2-analogue Fourier Transform and the

q-translation Operator

In [5], R. L. Rubin defined the q2-analogue Fourier transform as

f̂(x; q2) = Fq(f)(x) = K

∫ ∞
−∞

f(t)e(−itx; q2)dqt, (10)

where

K =
(1 + q)

1
2

2Γq2
(
1
2

) (11)

and

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x

be the q-Gamma function.
Letting q ↑ 1 subject to the condition

Log(1− q)
Log(q)

∈ 2Z, (12)
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gives, at least formally, the classical Fourier transform (see [4] and [5]). In the
remainder of this paper, we assume that the condition (12) holds.

It was shown in ([4] and [5]) that the q2-analogue Fourier transform Fq
verifies the following properties:
1) If f(u), uf(u) ∈ L1

q(Rq), then

∂q (Fq(f) ) (x) = Fq(−iuf(u))(x). (13)

2) If f, ∂qf ∈ L1
q(Rq), then

Fq(∂qf)(x) = ixFq(f) (x). (14)

We have the following theorem.

Theorem 1. Fq is an isomorphism from Sq(Rq) (resp L2
q(Rq)) onto itself.

For f ∈ L2
q(Rq),

‖Fq(f)‖2,q = ‖f‖2,q (15)

and

∀t ∈ Rq, f(t) = K

∫ ∞
−∞
Fq(f)(x)e(itx; q2)dqx. (16)

Let us state the following result

Theorem 2. For f ∈ L1
q(Rq), we have Fq(f) ∈ L∞q (Rq) and

‖Fq(f)‖∞,q ≤
2K

(q; q)∞
‖f‖1,q, (17)

lim
|x|→+∞
x∈Rq

Fq(f)(x) = 0, (18)

lim
|x|→0

x∈R̃q

Fq(f)(x) = Fq(f)(0). (19)

Proof. Using the relation (7), we have for f ∈ L1
q(Rq) and x ∈ Rq,

|f(t)||e(−itx; q2)| ≤ 2

(q; q)∞
|f(t)|, ∀t ∈ Rq.

Then by q-integration, we obtain the inequality (17) and by the Lebesgue the-
orem we obtain the two limits. �
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The q-translation operator Tq,x, x ∈ R̃q is defined (see [4]) on L1
q(Rq) by

Tq,x(f)(y) = K

∫ ∞
−∞
Fq(f)(t)e(itx; q2)e(ity; q2)dqt, y ∈ Rq, (20)

Tq,0(f)(y) = f(y). (21)

In the following result, we will give some of its properties.

Proposition 1. For f, g ∈ L1
q(Rq), we have

i) For all x, y ∈ Rq,
Tq,x(f)(y) = Tq,y(f)(x).

ii) For all x ∈ R̃q,∫ ∞
−∞

Tq,x(f)(−y)g(y)dqy =

∫ ∞
−∞

f(y)Tq,x(g)(−y)dqy. (22)

iii) For all x, t ∈ Rq, y ∈ R̃q

Tq,y(e(it.; q
2))(x) = e(itx; q2)e(ity; q2). (23)

iv) For all x ∈ R̃q

∂q (Tq,xf) = Tq,x (∂qf) . (24)

Proof. i) The definition of Tq,xf gives the result.
ii) Let f, g ∈ L1

q(Rq), we have ∀t, x, y ∈ Rq

|Fq(f)(t)e(itx; q2)e(−ity; q2)g(y)| ≤ 2

(q, q)∞
‖Fq(f)‖∞,q|e(itx; q2)||g(y)|,

since e(ix. ; q2) and g are in L1
q(Rq) so, by the Fubini’s theorem, we obtain∫ ∞

−∞
Tq,x(f)(−y)g(y)dqy = K

∫ ∞
−∞

[∫ ∞
−∞
Fq(f)(t)e(itx; q2)e(−ity; q2)dqt

]
g(y)dqy

= K

∫ ∞
−∞

[∫ ∞
−∞

e(−ity; q2)g(y)dqy

]
Fq(f)(t)e(itx; q2)dqt

=

∫ ∞
−∞
Fq(g)(t)Fq(f)(t)e(itx; q2)dqt

= K

∫ ∞
−∞

[∫ ∞
−∞

f(y)e(−ity; q2)dqy

]
Fq(g)(t)e(itx; q2)dqt

=

∫ ∞
−∞

f(y)Tq,x(g)(−y)dqy.
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iii) Using [[4], Theorem 3, e)] and [[4], property 2, c)], one can prove the
following orthogonality relation:∫ ∞

−∞
e(−iλx; q2)e(iλy; q2)dqλ =

1

K2(1− q)|xy|1/2
δx,y, x, y ∈ Rq,

which together with the properties of the q-Jackson integral give the result.
iv) The result follows from the relation (14) and the properties of ∂q. �

Proposition 2. (see [4]) Let f ∈ L2
q(Rq) then

i) Tq,xf ∈ L2
q(Rq) and

‖Tq,xf‖q,2 ≤
2

(q; q)∞
‖f‖q,2, x ∈ R̃q (25)

ii) For all x ∈ R̃q, λ ∈ Rq,

Fq(Tq,xf)(λ) = e(iλx; q2)Fq(f)(λ). (26)

The following result gives a Taylor formula for the q-translation operator
Tq,..

Proposition 3. Let f ∈ Sq(Rq) satisfying:

∃C > 0, ∃R > 0 such that ∀n ∈ N, ‖∂nq f‖1,q ≤ CRn.

Then,

∀x, y ∈ Rq, Tq,y(f)(x) =
+∞∑
n=0

an,q∂
n
q (f)(y)xn =

+∞∑
n=0

an,q∂
n
q (f)(x)yn, (27)

where 
a2n,q =

qn(n+1)

[2n]q!

a2n+1,q =
qn(n+1)

[2n+ 1]q!
.

(28)
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Proof. Let f ∈ Sq(Rq), satisfying the condition of the proposition and fix
x, y ∈ Rq. On the one hand, from (6),(5) and (4), we have

e(iλx; q2) =
+∞∑
n=0

an,q(iλx)n.

On the other hand, from the Plancheral theorem, we have
+∞∑
n=0

an,q∂
n
q (f)(y)xn = K

+∞∑
n=0

an,qx
n

∫ ∞
−∞
Fq(∂nq f)(λ)e(iλx; q2)dqλ.

Now, using the fact that the function λ 7−→ e(iλy; q2) is in L1
q(Rq) and

for all n ∈ N,

‖Fq(∂nq f)‖∞,q ≤
2K

(q; q)∞
‖∂nq f‖1,q ≤

2KC

(q; q)∞
Rn,

we deduce that ∑
n≥0

∫ ∞
−∞
|an,qFq(∂nq f)(λ)e(iλy; q2)xn|dqλ

converges. Then, the Fubini’s theorem implies that we can exchange the order
of the sum and the q-integral signs, and we obtain

+∞∑
n=0

an,q∂
n
q (f)(y)xn = K

∫ ∞
−∞

+∞∑
n=0

an,qFq(∂nq f)(λ)e(iλy; q2)xndqλ

= K

∫ ∞
−∞

(
+∞∑
n=0

an,q(iλx)n

)
Fq(f)(λ)e(iλy; q2)dqλ

= Tq,y(f)(x).

�
As an immediate consequence of the previous proposition, we have the follow-
ing result.

Corollary 1. Let f ∈ Sq(Rq) satisfying:

∃C > 0, ∃R > 0 such that ∀n ∈ N, ‖∂nq f‖1,q ≤ CRn.

Then, for all x ∈ Rq, the function z 7→ Tq,z(f)(x) is entire on C and for all
z ∈ C,

Tq,z(f)(x) =
+∞∑
n=0

an,q∂
n
q (f)(x)zn.
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4. Paley-Wiener Theorem

In this section, for a ∈ Rq,+, we introduce the q-Fourier Paley-Wiener space
PWq,a as

PWq,a =

{
f(x) = K

∫ a

−a
u(t)e(itx; q2)dqt, u ∈ Dq([−a, a])

}
.

Following the classical theory, an element of PWq,a will be called q-Fourier
bandlimited signal. We begin by the following easily proved result.

Proposition 4.
1) The q2-analogue Fourier transform Fq is an isomorphism from PWq,a onto
Dq([−a, a]).
2) Every element of the q-Fourier Paley-Wiener space PWq,a is the restriction
on Rq of an entire function on C of exponential type.

Proof. 1) follows from the definition of PWq,a and the Plancherel theorem.
2) Let f ∈ PWq,a, then there exists u ∈ Dq([−a, a]) such that for all x ∈ Rq,

f(x) = K

∫ a

−a
u(t)e(itx; q2)dqt.

Since for all t ∈ Rq ∩ [−a, a], the function z 7→ e(itz; q2) is entire on C and
satisfies for all R > 0 and all z ∈ C such that |z| < R,∣∣u(t)e(itz; q2)

∣∣ ≤ ‖u‖∞,qe(|tz|; q2) ≤ ‖u‖∞,qe(aR; q2).

Then, z 7→
∫ a

−a
u(t)e(itz; q2)dqt is entire on C and f is extendable to an entire

function on C.
On the other hand, making a proof as in [[2], Proposition 2], one can show
that for all z ∈ C, and all t ∈ Rq ∩ [−a, a],∣∣e(itz; q2)

∣∣ ≤ 2e(1+
√
q)a|z|.

So, for all z ∈ C,
|f(z)| ≤ 2K‖u‖∞,q e(1+

√
q)a|z|,

which proves that f is extendable on C to an entire function of exponential
type. �
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Remark. Since Dq([−a, a]) ⊂ Sq(Rq), then the Plancherel theorem and the
previous proposition assert that PWq,a is a non trivial subspace of Sq(Rq).

In what follows, we will give some characterizations of the q-Fourier Paley-
Wiener space PWq,a.

Theorem 3. The q-Fourier Paley-Wiener space PWq,a is the subspace of
Sq(Rq) constituted of functions satisfying:

∃n > 1, ∃cn > 0, such that, ∀x ∈ Rq,∀k ∈ N, |∂kq f(x)| ≤ cn
1 + |x|n

ak. (29)

Proof. Let f ∈ PWq,a, then there exists u ∈ Dq([−a, a]), such that for all
x ∈ Rq,

f(x) = K

∫ a

−a
u(t)e(itx; q2)dqt.

So, for all k, n ∈ N, we have

∂kq f(x) = K(i)k
∫ a

−a
u(t)tke(itx; q2)dqt.

By using (13) and (9), we get for all x ∈ Rq,

xn∂kq f(x) = K(i)k−n
∫ a

−a
u(t)tk

[
∂nq e(itx; q2)

]
dqt

= K(i)k−n
∫ ∞
−∞

u(t)tk
[
∂nq e(itx; q2)

]
dqt

= K(i)k+n
∫ ∞
−∞

∂nq
[
u(t)tk

]
e(itx; q2)dqt.

Since u ∈ Dq([−a, a]), we have for all k ∈ N, t 7→ u(t)tk ∈ Dq([−a, a]). Then,
the fact that Dq(Rq) is invariant by ∂q implies that t 7→ ∂nq

[
u(t)tk

]
belongs to

Dq(Rq), for all k, n ∈ N.
So, for k < n, using the relation (7), we obtain for all x ∈ Rq,

|x|n|∂kq f(x)| ≤ 2K

(q; q)∞

∫ ∞
−∞

∣∣∂nq [u(t)tk
]∣∣ dqt = c̃n,k = (c̃n,k a

−k) ak. (30)
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On the other hand, by the definition of the operator ∂q, one can prove, by
induction, that for all n ∈ N, there exists a sequence (sm(ε, n, q))−n≤m≤n,ε=±1
of real numbers such that for all function g,

∂nq [g(t)] =
1

tn

n∑
m=−n,ε=±1

sm(ε, n, q) · g (εqmt) .

So, for all k, n ∈ N, we have

∂nq
[
u(t)tk

]
=

1

tn

n∑
m=−n,ε=±1

sm(ε, n, q)
[
u(εqmt)(εqmt)k

]
.

Since the function t 7→
[
u(εqmt)(εqmt)k

]
, −n ≤ m ≤ n, has compact support

in
[
−q−|m|a, q−|m|a

]
, then for k ≥ n, we have∣∣∣∣∣ 1

tn

n∑
m=−n,ε=±1

sm(ε, n, q)
[
u(εqmt)(εqmt)k

]∣∣∣∣∣ ≤ ‖u‖∞,q
n∑

m=−n,ε=±1

|sm(ε, n, q)|qmk|t|k−n

≤ ‖u‖∞,q
n∑

m=−n,ε=±1

|sm(ε, n, q)|qmk(q−ma)k−n

≤

(
‖u‖∞,q

n∑
m=−n,ε=±1

|sm(ε, n, q)|qmn
)
ak−n

= Cna
k−n.

Hence, for k ≥ n,∣∣xn∂kq f(x)
∣∣ =

∣∣∣∣K(−i)k+n
∫ ∞
−∞

∂nq
[
u(t)tk

]
e(−itx; q2)dqt

∣∣∣∣
≤

(
4K

(q; q)∞
Cna

−n+1q−n
)
ak.

Finally, by taking

c̃n = max

{
sup
0≤i≤n

c̃n,i,
2K

(q; q)∞
Cna

−n
∫ q−na

−q−na

dqt

}
,

we get for all n, k ∈ N and all x ∈ Rq,∣∣xn∂kq f(x)
∣∣ ≤ c̃na

k.
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Thus, for all n, k ∈ N and all x ∈ Rq,

(1 + |x|n)
∣∣∂kq f(x)

∣∣ ≤ cna
k,

with cn = c̃0 + c̃n.
Conversely, suppose that f satisfies (29), put u = Fq(f) and fix x ∈ Rq,

such that |x| > a.
We have, by the use of the relations (14) and (7), for all k ∈ N,

Fq
(
∂kq f

)
(x) = (i)kxkFq(f)(x) = (ix)ku(x)

and ∣∣Fq (∂kq f) (x)
∣∣ ≤ K

∫ ∞
0

|∂kq f(t)||e(−itx; q2)|dqt

≤ 2K

(q; q)∞
ak
∫ ∞
−∞

1

1 + |t|n
dqt.

Then for all k ∈ N,

|u(x)| ≤
[

2K

(q; q)∞

∫ ∞
−∞

1

1 + |t|n
dqt

](
a

|x|

)k
.

As |x| > a, we obtain by letting k to +∞, u(x) = 0. This proves that
u ∈ Dq([−a, a]) and f = (Fq)−1(u) ∈ PWq,a. �

Theorem 4. The q-Fourier Paley-Wiener space PWq,a is the subspace of
Sq(Rq) constituted of functions satisfying

z 7→ Tq,zf(x)

is entire on C for all x ∈ Rq, and for some n > 1 there exists cn > 0, such
that

|Tq,zf(x)| ≤ cn
1 + |x|n

e(a|z|; q2), ∀x ∈ Rq, ∀z ∈ C.

Proof. Let f ∈ PWq,a. Then, there exists u ∈ Dq([−a, a]), such that f =
(Fq)−1(u). So, by the relations (13) and (16), we have for all n ∈ N and all
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x ∈ Rq,

‖∂nq f‖1,q =

∫ +∞

−∞
|∂nq (f)(x)|dqx

≤ K

∫ +∞

−∞

[∫ a

−a
|tnu(t)e(itx; q2)|dqt

]
dqx

≤ K‖u‖∞,q
∫ +∞

−∞

[∫ a

−a
|tn||e(itx; q2)|dqt

]
dqx

≤ K‖u‖∞,q
∫ a

−a
|tn|
[∫ +∞

−∞
|e(itx; q2)|dqx

]
dqt

≤ K‖u‖∞,q‖e(i. ; q2)‖1,q
∫ a

−a
|tn−1|dqt, ∀n ≥ 1

≤ 2K‖u‖∞,q‖e(i. ; q2)‖1,q an, ∀n ≥ 1,

and for n = 0, we have ‖∂0qf‖1,q = ‖f‖1,q.
Hence, Corollary 1 implies that for all x ∈ Rq the function z 7→ Tq,zf(x) is
entire on C and for all z ∈ C,

|Tq,zf(x)| =

∣∣∣∣∣
+∞∑
k=0

ak,q∂
k
q (f)(x)zk

∣∣∣∣∣
≤

+∞∑
k=0

ak,q
∣∣∂kq (f)(x)

∣∣ |z|k.
Since f ∈ PWq,a, then from Theorem 2, one can see that there exist n > 1
and cn > 0, such that

∀x ∈ Rq,∀k ∈ N, |∂kq f(x)| ≤ cn
1 + |x|n

ak.

So, for all x ∈ Rq and all z ∈ C,

|Tq,zf(x)| ≤ cn
1 + |x|n

+∞∑
k=0

ak,q|az|k

=
cn

1 + |x|n
e
(
a|z|; q2

)
.
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Conversely, suppose that f ∈ Sq(Rq), satisfying for all y ∈ Rq, z 7→ Tq,zf(y) is
entire on C and there exist n > 1 and cn > 0, such that

|Tq,zf(y)| ≤ cn
1 + |y|n

e(a|z|; q2), ∀y ∈ Rq,∀z ∈ C.

Let b ∈ Rq such that |b| > a. Using the fact that

|∂kq e(it. ; q2)| ≤ 2|t|k

(q; q)∞
, ∀k ∈ N,

we can see that the two functions y 7→
∫ |b|
0

e(ity; q2)dqt and y 7→
∫ |b|
0

e(−ity; q2)dqt

are in Sq(Rq), and from the product formula, we can show that for all x ∈ Rq,

Tq,x

[
y 7→

∫ |b|
0

e(ity; q2)dqt

]
=

∫ |b|
0

e(itx; q2)e(ity; q2)dqt. (31)

On the one hand, since for all y ∈ Rq, z 7→ Tq,zf(y) is entire on C, then for all
R > 0 and all z ∈ C such that |z| ≤ R, we have∣∣∣∣∣Tq,zf(y)

[∫ |b|
0

e(ity; q2)dqt

]∣∣∣∣∣ ≤ 4|b|
(q; q)∞

cn
1 + |y|n

e(a|z|; q2) ≤ 4|b|
(q; q)∞

cn
1 + |y|n

e(aR; q2).

Thus, the functions

ϕ± : z 7→ K

∫ ∞
−∞

Tq,zf(y)

[∫ |b|
0

e(±ity; q2))dqt

]
dqy

are entire on C and we have, for all z ∈ C,

|ϕ±(z)| ≤ Ce(a|z|; q2), (32)

with

C =
2|b|K
(q; q)∞

∫ ∞
−∞

cn
1 + |y|n

dqy.
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On the other hand, from the relations (22) and (31), one can write for all

x ∈ R̃q,

ϕ±(x) = K

∫ ∞
−∞

Tq,xf(y)

[∫ |b|
0

e(±ity; q2)dqt

]
dqy

= K

∫ ∞
−∞

Tq,xf(−y)

[∫ |b|
0

e(±ity; q2)dqt

]
dqy

= K

∫ ∞
−∞

f(y)Tq,x

[∫ |b|
0

e(±ity; q2)dqt

]
dqy

= K

∫ ∞
−∞

f(y)

[∫ |b|
0

e(±ity; q2)e(±itx; q2)dqt

]
dqy

= K

∫ |b|
0

[∫ ∞
−∞

f(y)e(±ity; q2)dqy

]
e(±itx; q2)dqt

=

∫ |b|
0

Fq(f)(∓t)e(±itx; q2)dqt.

The interchange of the two q-integrals is legitimated by the fact that for all
x ∈ R̃q, all y ∈ Rq and all t ∈ Rq such that 0 ≤ t ≤ |b|, we have∣∣f(y)e(±ity; q2)e(±itx; q2)

∣∣ ≤ 16cn
(q; q)2∞

1

1 + |y|n
and n > 1.

It is not hard to prove that, the function z 7→
∫ |b|
0

Fq(f)(∓t)e(±itz; q2)dqt is

entire on C, since for all 0 < t ≤ |b|, z 7→ e(itz; q2) is entire on C, for all R > 0
and all z ∈ C such that |z| < R,∣∣Fq(f)(∓t)e(±itz; q2)

∣∣ ≤ ‖Fq(f)‖∞,qe(|b|R; q2).

So, since 0 is a limit point of R̃q, the analytic theorem shows that for all z ∈ C,

ϕ±(z) =

∫ |b|
0

Fq(f)(∓t)e(±itz; q2)dqt.

Hence, from the inequality (32), we obtain, since a, b ∈ Rq and |b| > a,∣∣∣∣∣
∫ |b|
0

Fq(f)(∓t)e(±itz; q2)dqt

∣∣∣∣∣ ≤ Ce(a|z|; q2) ≤ Ce(qb|z|; q2), ∀z ∈ C.
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This inequality together with the definition of the q−Jackson integral lead to,
for all z ∈ C,

(1− q)|b|
∣∣Fq(f)(∓|b|)e(±iz|b|; q2)

∣∣ − ∣∣∣∣∣(1− q)
∞∑
k=1

Fq(f)(∓|b|qk)e(±iz|b|qk; q2)|bqk|

∣∣∣∣∣
≤ Ce(q|b||z|; q2).

Moreover, Fq(f) is bounded on Rq, then using the fact that for all z ∈ C and
all positive integer k, ∣∣e(±iz|b|qk; q2)∣∣ ≤ e(q|b||z|; q2),

we get

|Fq(f)(b)| ≤ C̃
e(q|b||z|; q2)
|e(±iz|b|; q2)|

.

A replacement of z by ix or −ix gives

|Fq(f)(b)| ≤ C̃
e(q|b|x; q2)

|e(|b|x; q2)|
, ∀x ∈ Rq,+.

But,

x−2
[
e(|b|x; q2)− 1− |b|x

]
=

∞∑
k=2

ak,q(x|b|)(k−2)

=
∞∑
k=1

a2k,q(x|b|)(2k−2) +
∞∑
k=1

a2k+1,q(x|b|)(2k−1)

=
∞∑
k=0

q(k+1)(k+2)

[2k + 2]q!
(x|b|)2k +

∞∑
k=0

q(k+1)(k+2)

[2k + 3]q!
(x|b|)(2k+1)

≥ e(q|b|x; q2)

and
lim
x→∞

e(|b|x; q2) =∞,

then

lim
x→∞

e(|b|x; q2)− 1− |b|x
e(|b|x; q2)

= 1 and lim
x→∞

e(q|b|x; q2)

e(|b|x; q2)
= 0.
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Thus
u(b) = Fq(f)(±|b|) = 0.

This proves that u = Fq(f) ∈ Dq([−a, a]) and as consequence f ∈ PWq,a. �
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