On the Annihilators of Derivations with Engel Conditions in Prime Rings *

B. Dhara †
Department of Mathematics, Belda College, Belda, Paschim Medinipur-721424(W.B.), India
and
R. K. Sharma ${ }^{\ddagger}$
Department of Mathematics, Indian Institute of Technology, Delhi,Hauz Khas, New Delhi-110016, India

Received May 20, 2008, Accepted September 28, 2009.

Abstract

Let R be a prime ring of char $R \neq 2, d$ a non-zero derivation of $R, 0 \neq$ $b \in R$ and ρ a non-zero right ideal of R such that $b\left[[d(x), x]_{n},[y, d(y)]_{m}\right]=$ 0 for all $x, y \in \rho$, where $n, m \geq 0$ are fixed integers. If $[\rho, \rho] \rho \neq 0$, then either $b \rho=0$ or $d(\rho) \rho=0$.

Keywords and Phrases: Prime ring, Semiprime ring, Derivation.

[^0]
1. Introduction

Let R be an associative ring and $Z(R)$ be its center. Let n be a positive integer. For $x, y \in R$, set $[x, y]_{0}=x,[x, y]_{1}=[x, y]=x y-y x$, then an Engel condition is a polynomial $[x, y]_{k}=\left[[x, y]_{k-1}, y\right], k=1,2, \ldots$ in noncommuting indeterminates.

A well known result of Posner [19] states that for a non-zero derivation d of a prime ring R, if $[[d(x), x], y]=0$ for all $x, y \in R$, then R is commutative. In [16], Lanski generalized this result of Posner to the Lie ideal. Lanski proved that if U is a noncommutative Lie ideal of a prime ring R and $d \neq 0$ is a derivation of R such that $[[d(x), x], y]=0$ for all $x \in U, y \in R$, then either R is commutative, or char $R=2$ and R satisfies S_{4}, the standard identity in four variables. Bell and Martindale [4] studied this identity for a non-zero left ideal of R. They proved that if R is a semiprime ring and d a non-zero derivation such that $[[d(x), x], y]=0$ for all x in a non-zero left ideal of R and $y \in R$, then R contains a non-zero central ideal. Clearly, this result says that if R is a prime ring, then R must be commutative.

Several authors have studied this kind of Engel type identities with derivation in different ways. In [11], Herstein proved that if R is a prime ring with char $R \neq 2$ and R admits a non-zero derivation d such that $[d(x), d(y)]=0$ for all $x, y \in R$, then R is commutative. In [10], Filippis showed that if R be a prime ring of characteristic different from $2, d$ a non-zero derivation of R and ρ a non-zero right ideal of R such that $[\rho, \rho] \rho \neq 0$ and $[[d(x), x],[d(y), y]]=0$ for all $x, y \in \rho$, then $d(\rho) \rho=0$.

In the present paper we study this identity with annihilator conditions on prime rings in more generalized form.

Throughout this paper, unless specially stated, R always denotes a prime ring with center $Z(R)$, with extended centroid C, and with two-sided Martindale quotient ring Q.

It is well known that any derivation of R can be uniquely extended to a derivation of Q, and so any derivation of R can be defined on the whole of Q. Moreover Q is a prime ring as well as R and the extended centroid C of R coincides with the center of Q. We refer to $[2,17]$ for more details.

Denote by $Q *_{C} C\{X, Y\}$ the free product of the C-algebra Q and $C\{X, Y\}$, the free C-algebra in noncommuting indeterminates X, Y.

On the Annihilators of Derivations with Engel Conditions in Prime Rings 257

2. Main Results

We need the following lemma.
Lemma 2.1. Let ρ be a non-zero right ideal of R and d a derivation of R. Then the following conditions are equivalent: (i) d is an inner derivation induced by some $b \in Q$ such that $b \rho=0$; (ii) $d(\rho) \rho=0$ (For its proof we refer to [5, Lemma]).

We mention a important result which will be used quite frequently as follows:
Theorem (Kharchenko [14]): Let R be a prime ring, d a derivation on R and I a non-zero ideal of R. If I satisfies the differential identity

$$
f\left(r_{1}, r_{2}, \ldots, r_{n}, d\left(r_{1}\right), d\left(r_{2}\right), \ldots, d\left(r_{n}\right)\right)=0 \text { for any } r_{1}, r_{2}, \ldots, r_{n} \in I
$$

then either
(i)I satisfies the generalized polynomial identity

$$
f\left(r_{1}, r_{2}, \ldots, r_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

or (ii) d is Q-inner i.e., for some $q \in Q, \quad d(x)=[q, x]$ and I satisfies the generalized polynomial identity

$$
f\left(r_{1}, r_{2}, \ldots, r_{n},\left[q, r_{1}\right],\left[q, r_{2}\right], \ldots,\left[q, r_{n}\right]\right)=0
$$

Theorem 2.2. Let R be a prime ring of char $R \neq 2$ and d a non-zero derivation of R and $0 \neq b \in R$ such that $b\left[[d(x), x]_{n},[y, d(y)]_{m}\right]=0$ for all $x, y \in R$, where $n, m \geq 0$ are fixed integers, then R is commutative.

Proof. If R is commutative, we have nothing to prove. So, let R be noncommutative. Assume first that d is Q-inner derivation, say $d=a d(a)$ for some $a \in Q$ i.e., $d(x)=[a, x]$ for all $x \in R$. Then we have

$$
b\left[[a, x]_{n+1},[y,[a, y]]_{m}\right]=0
$$

for all $x, y \in R$. Since $d \neq 0, a \notin C$ and hence R satisfies a nontrivial generalized polynomial identity (GPI). Since Q and R satisfy the same generalized polynomial identities with coefficients in $Q[6], f(x, y)=b\left[[a, x]_{n+1},[y,[a, y]]_{m}\right]$ is also satisfied by Q. In case the center C of Q is infinite, we have $f(x, y)=0$ for all $x, y \in Q \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both Q and $Q \otimes_{C} \bar{C}$ are prime and centrally closed [7, Theorem 2.5 and 3.5], we may replace R by Q or $Q \otimes_{C} \bar{C}$ according to C finite or infinite. Thus we
may assume that R is centrally closed over C which is either finite or algebraically closed and $f(x, y)=0$ for all $x, y \in R$. By Martindale's theorem [18], R is then a primitive ring having nonzero socle H with C as the associated division ring. Hence by Jacobson's theorem [13, p.75] R is isomorphic to a dense ring of linear transformations of some vector space V over C, and H consists of the linear transformations in R of finite rank. If V is a finite dimensional over C then the density of R on V implies that $R \cong M_{k}(C)$ where $k=\operatorname{dim}_{C} V$. We may assume that for some $v \in V,\{a v, v\}$ are linearly C independent, for otherwise $a v-\alpha v=0$ for all $v \in V$, that is $(a-\alpha) V=0$ implying $a=\alpha \in C$, a contradiction. If $a^{2} v \notin \operatorname{span}_{C}\{v, a v\}$, then $\left\{v, a v, a^{2} v\right\}$ are all linearly C-independent. By density there exist $x, y \in R$ such that $x v=v, x a v=0, x a^{2} v=0 ; y v=0, y a v=v, y a^{2} v=0$ for which we get

$$
0=b\left[[a, x]_{n+1},[y,[a, y]]_{m}\right] v=-2^{m} b v .
$$

If $a^{2} v \in \operatorname{span}_{C}\{v, a v\}$, then $a^{2} v=v \alpha+a v \beta$. Then again by density there exist $x, y \in R$ such that $x v=v, x a v=0 ; y v=0, y a v=v$ for which we get

$$
0=b\left[[a, x]_{n+1},[y,[a, y]]_{m}\right] v=-2^{m} b v .
$$

Thus in both the cases, whether $a^{2} v \notin \operatorname{span}_{C}\{v, a v\}$ or $a^{2} v \in \operatorname{span}_{C}\{v, a v\}$, we have that $b v=0$, since char $R \neq 2$. So, if for some $v \in V, b v \neq 0$, then $\{v, a v\}$ must be linearly C-dependent. Let $b v=0$. Since $b \neq 0$, there exists $w \in V$ such that $b w \neq 0$ and then $b(v+w)=b w \neq 0$. Hence we have that $\{w, a w\}$ are linearly C-dependent and $\{(v+w), a(v+w)\}$ too. Thus there exist $\alpha, \beta \in C$ such that $a w=w \alpha$ and $a(v+w)=(v+w) \beta$. Moreover, v and w are clearly C-independent and so by density there exist $x, y \in R$ such that $x w=w, x v=0 ; y w=v, y v=0$. Then we obtain by using $b v=0$ that

$$
0=b\left[[a, x]_{n+1},[y,[a, y]]_{m}\right] w=(-1)^{n+1} 2^{m} b w(\beta-\alpha)^{3} .
$$

Since $b w \neq 0, \alpha=\beta$ and so $a v=v \alpha$ contradicting the independency of v and $a v$. Hence for each $v \in V, a v=v \alpha_{v}$ for some $\alpha_{v} \in C$. It is very easy to prove that α_{v} is independent of the choice of $v \in V$. Thus we can write $a v=v \alpha$ for all $v \in V$ and $\alpha \in C$ fixed.

Now let $r \in R, v \in V$. Since $a v=v \alpha$,

$$
[a, r] v=(a r) v-(r a) v=a(r v)-r(a v)=(r v) \alpha-r(v \alpha)=0
$$

Thus $[a, r] v=0$ for all $v \in V$ i.e., $[a, r] V=0$. Since $[a, r]$ acts faithfully as a linear transformation on the vector space $V,[a, r]=0$ for all $r \in R$. Therefore $a \in Z(R)$ implies $d=0$, ending the proof of this part.

Assume next that d is not Q-inner derivation in R. Then by Kharchenko's theorem [14], we have

$$
b\left[[u, x]_{n},[y, v]_{m}\right]=0
$$

for all $x, y, u, v \in R$. Choose $a \notin C$. Then replacing u with $[a, x]$ and v with $[a, y]$, we obtain $b\left[[a, x]_{n+1},[y,[a, y]]_{m}\right]=0$ for all $x, y \in R$, implying $a \in C$ by same argument as earlier, a contradiction.

Theorem 2.3. Let R be a prime ring of char $R \neq 2$, d a non-zero derivation of R and ρ a non-zero right ideal of R such that $b\left[[d(x), x]_{n},[y, d(y)]_{m}\right]=0$ for all $x, y \in \rho$, where $n, m \geq 0$ are fixed integers. If $[\rho, \rho] \rho \neq 0$, then either $b \rho=0$ or $d(\rho) \rho=0$.

We begin the proof by proving the following lemma
Lemma 2.4. Let ρ be a nonzero right ideal of R, d a nonzero derivation of R and $0 \neq b \in R$ such that $b\left[[d(x), x]_{n},[y, d(y)]_{m}\right]=0$ for all $x, y \in \rho$ where $n, m \geq 0$ are fixed integers. Then if $d(\rho) \rho \neq 0$ and $b \rho \neq 0, R$ satisfies nontrivial generalized polynomial identity (GPI).

Proof. Suppose that $d(\rho) \rho \neq 0$ and $b \rho \neq 0$. Now we prove that R satisfies nontrivial generalized polynomial identity. On contrary, we assume that R does not satisfy any nontrivial GPI. We consider two cases

Case I. Suppose that d is an Q-inner derivation induced by an element $a \in Q$. Then for any $x \in \rho$

$$
b\left[\left[[a, x X]_{n+1},[y Y,[a, y Y]]_{m}\right]\right.
$$

is a GPI for R, so it is the zero element in $Q *_{C} C\{X, Y\}$. Expanding this we get,

$$
\begin{aligned}
& b\left\{[a, x X]_{n+1} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}[a, y Y]^{j} y Y[a, y Y]^{m-j}\right. \\
& \left.-[y Y,[a, y Y]]_{m} \sum_{j=0}^{n+1}(-1)^{j}\binom{n+1}{j}(x X)^{j} a(x X)^{n+1-j}\right\}=0
\end{aligned}
$$

Let $a y$ and y are linearly C-independent for some $y \in \rho$. Then $a \notin C$. Hence,

$$
\begin{aligned}
& b\left\{[a, x X]_{n+1} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}[a, y Y]^{j} y Y[a, y Y]^{m-j-1}(-y Y a)\right. \\
& \left.-[y Y,[a, y Y]]_{m}(-1)^{n+1}(x X)^{n+1} a\right\}=0
\end{aligned}
$$

in $Q *_{C} C\{X, Y\}$ and so

$$
b\left\{[a, x X]_{n+1} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}[a, y Y]^{j} y Y[a, y Y]^{m-j-1}(-y Y a)\right\}=0 .
$$

Again, since $a y$ and y are linearly C-independent,

$$
b[a, x X]_{n+1} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}(-y Y a)^{j} y Y(-y Y a)^{m-j}=0 .
$$

In particular,

$$
\begin{equation*}
b[a, x X]_{n+1} y Y(-y Y a)^{m}=0 \tag{2.1}
\end{equation*}
$$

that is

$$
\begin{equation*}
b \sum_{j=0}^{n+1}(-1)^{j}\binom{n+1}{j}(x X)^{j} a(x X)^{n+1-j} y Y(-y Y a)^{m}=0 \tag{2.2}
\end{equation*}
$$

Since $a y$ and y are linearly C-independent,

$$
b(-1)^{n+1}(x X)^{n+1} a y Y(-y Y a)^{m}=0
$$

in $Q *_{C} C\{X, Y\}$. This implies $b x=0$ for all $x \in \rho$ that is $b \rho=0$, a contradiction. Thus for any $y \in \rho, a y$ and y are linearly C-dependent. Then $(a-\alpha) \rho=0$ for some $\alpha \in C$. Replacing a with $a-\alpha$, we may assume that $a \rho=0$. Then by Lemma 2.1, $d(\rho) \rho=0$, a contradiction.
Case II. Suppose that d is not Q-inner derivation. If for all $x \in \rho, d(x) \in x C$, then $[d(x), x]=0$ which implies that R is commutative (see [3]). Therefore there exists $x \in \rho$ such that $d(x) \notin x C$ i.e., x and $d(x)$ are linearly C-independent.

By our assumption we have that R satisfies

$$
b\left[[d(x X), x X]_{n},[x Y, d(x Y)]_{m}\right]=0
$$

By Kharchenko's theorem [14],

$$
b\left[\left[d(x) X+x r_{1}, x X\right]_{n},\left[x Y, d(x) Y+x r_{2}\right]_{m}\right]=0
$$

for all $X, Y, r_{1}, r_{2} \in R$. In particular for $r_{1}=r_{2}=0$,

$$
b\left[[d(x) X, x X]_{n},[x Y, d(x) Y]_{m}\right]=0
$$

which is a non-trivial GPI for R, because x and $d(x)$ are linearly C-independent, a contradiction.

We are now ready to prove our main Theorem.
Proof of Theorem 2.3. Suppose that $d(\rho) \rho \neq 0$ and then we derive a contradiction. By Lemma 2.4, R is a prime GPI-ring, so is also Q by [6]. Since Q is centrally closed over C, it follows from [18] that Q is a primitive ring with $H=\operatorname{Soc}(Q) \neq 0$.

By our assumption and by [17], we may assume that

$$
\begin{equation*}
b\left[[d(x), x]_{n},[y, d(y)]_{m}\right]=0 \tag{2.3}
\end{equation*}
$$

is satisfied by ρQ and hence by ρH. Let $e=e^{2} \in \rho H$ and $y \in H$. Then replacing x with e and y with $e y(1-e)$ in (2.3) and then right multiplying it by e we obtain that

$$
\begin{aligned}
0= & b\left[[d(e), e]_{n},[e y(1-e), d(e y(1-e))]_{m}\right] e \\
= & b\left\{[d(e), e]_{n} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} d(e y(1-e))^{j} e y(1-e) d(e y(1-e))^{m-j} e\right. \\
& \left.-\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} d(e y(1-e))^{j} e y(1-e) d(e y(1-e))^{m-j}[d(e), e]_{n} e\right\} .
\end{aligned}
$$

Now we have the fact that for any idempotent $e, d(y(1-e)) e=-y(1-$ $e) d(e), e d(e) e=0$ and so

$$
0=b\left\{0-\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} e(-y(1-e) d(e))^{j} y(1-e) d(e y(1-e))^{m-j} d(e) e\right\} .
$$

Now since for any idempotent e and for any $y \in R,(1-e) d(e y)=(1-e) d(e) y$, above relation gives

$$
\begin{aligned}
0 & =b\left\{-e \sum_{j=0}^{m}\binom{m}{j}(y(1-e) d(e))^{j} y(1-e)(d(e) y(1-e))^{m-j} d(e) e\right\} \\
& =b\left\{-e \sum_{j=0}^{m}\binom{m}{j}(y(1-e) d(e))^{m+1} e\right\} \\
& =-2^{m} b e(y(1-e) d(e) e)^{m+1} .
\end{aligned}
$$

for all $y \in H$. Since char $R \neq 2$, we have by [9, Theorem 2] that bey $(1-$ $e) d(e) e=0$ for all $y \in H$. By primeness of H, be $=0$ or $(1-e) d(e) e=0$. By [8, Lemma 1], since H is a regular ring, for each $r \in \rho H$, there exists an idempotent $e \in \rho H$ such that $r=e r$ and $e \in r H$. Hence $b e=0$ gives $b r=$ ber $=0$ and $(1-e) d(e) e=0$ gives $(1-e) d(e)=(1-e) d\left(e^{2}\right)=(1-e) d(e) e=0$ and so $d(e)=e d(e) \in e H \subseteq \rho H$ and $d(r)=d(e r)=d(e) e r+e d(e r) \in \rho H$. Hence for each $r \in \rho H$, either $b r=0$ or $d(r) \in \rho H$. Thus ρH is the union of its two additive subgroups $\{r \in \rho H \mid b r=0\}$ and $\{r \in \rho H \mid d(r) \in \rho H\}$. Hence $b \rho H=0$ and $d(\rho H) \subseteq \rho H$. The case $b \rho H=0$ gives $b \rho=0$, a contradiction. Thus $d(\rho H) \subseteq \rho H$. Set $J=\rho H$. Replacing b with a nonzero element in $J b$, we may assume that $b \in J$. Then $\bar{J}=\frac{J}{J \cap l_{H}(J)}$, a prime C-algebra with the derivation \bar{d} such that $\bar{d}(\bar{x})=\overline{d(x)}$, for all $x \in J$. By assumption we have that

$$
\bar{b}\left[[\bar{d}(\bar{x}), \bar{x}]_{n},[\bar{y}, \bar{d}(\bar{y})]_{m}\right]=0
$$

for all $\bar{x}, \bar{y} \in \bar{J}$. By Theorem 2.2, we have either $\bar{d}=0, \bar{b}=0, \overline{\rho H}$ is commutative. Therefore we have that either $d(\rho H) \rho H=0, b \rho H=0$ or $[\rho H, \rho H] \rho H=$ 0 . Now $d(\rho H) \rho H=0$ implies $0=d(\rho \rho H) \rho H=d(\rho) \rho H \rho H$ and so $d(\rho) \rho=0$. $b \rho H=0$ implies $b \rho=0$. $[\rho H, \rho H] \rho H=0$ implies $0=[\rho \rho H, \rho H] \rho H=$ $[\rho, \rho H] \rho H \rho H$ and so $[\rho, \rho H] \rho=0$ and then $0=[\rho, \rho \rho H] \rho=[\rho, \rho] \rho H \rho$ implying $[\rho, \rho] \rho=0$. Thus in all the cases we have contradiction. This completes the proof of the theorem.

On the Annihilators of Derivations with Engel Conditions in Prime Rings 263

References

[1] K. I. Beidar, Rings of quotients of semiprime rings, Vestnik Moskov. Univ. Ser I Math. Meh. (Engl. Transl:. Moscow Univ. Math. Bull.), 33 (1978), 36-42.
[2] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
[3] H. E. Bell and Q. Deng, On derivations and commutativity in semi-prime rings, Comm. Algebra, 23 (10) (1995), 3705-3713.
[4] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30 (1987), 92-101.
[5] M. Brešar, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (1994), 979-983.
[6] C. L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (3) (1988), 723-728.
[7] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60 (1975), 49-63.
[8] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14 (1963), 369-371.
[9] B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull., 21 (1978), 241-242.
[10] V. De. Filippis, On derivations and commutativity in prime rings, Int. J. Math. Math. Sci., 70 (2004), 3859-3865.
[11] I. N. Herstein, A note on derivations, Canad. Math. Bull., 21(3) (1978), 369-370.
[12] I. N. Herstein, Topics in ring theorey, The University of Chicago Press, Chicago, 1969.
[13] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
[14] V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic., 17 (1978), 155-168.
[15] C. Lanski, An engel condition with derivation, Proc. Amer. Math. Soc., 118(3) (1993), 731-734.
[16] C. Lanski, Differential identities, Lie ideals, and Posner's theorems, $P a$ cific J. Math., 134 (1988), 275-297.
[17] T. K. Lee, Semi-prime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20 (1) (1992), 27-38.
[18] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
[19] E. C. Posner, Derivation in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.

[^0]: *2000 Mathematics Subject Classification. Primary 16W25, 16R50, 16N60.
 ${ }^{\dagger}$ Corresponding author. E-mail: basu_dhara@yahoo.com
 \ddagger E-mail: rksharma@maths.iitd.ac.in

