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Abstract

Let R be a prime ring of char R # 2, d a non-zero derivation of R, 0 #
b € R and p a non-zero right ideal of R such that b[[d(x), x]n, [y, d(y)|m] =
0 for all z,y € p, where n,m > 0 are fixed integers. If [p, p]p # 0, then
either bp = 0 or d(p)p = 0.
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1. Introduction

Let R be an associative ring and Z(R) be its center. Let n be a positive
integer. For x,y € R, set [z,y|o = =, [z,y]1 = [z,y] = 2y — yz, then an Engel
condition is a polynomial [z, y|x = [[z,y|k-1,¥], £ = 1,2, ... in noncommuting
indeterminates.

A well known result of Posner [19] states that for a non-zero derivation d
of a prime ring R, if [[d(z),z],y] = 0 for all z,y € R, then R is commutative.
In [16], Lanski generalized this result of Posner to the Lie ideal. Lanski proved
that if U is a noncommutative Lie ideal of a prime ring R and d # 0 is a
derivation of R such that [[d(z),z],y] = 0 for all z € U,y € R, then either R is
commutative, or char R = 2 and R satisfies S, the standard identity in four
variables. Bell and Martindale [4] studied this identity for a non-zero left ideal
of R. They proved that if R is a semiprime ring and d a non-zero derivation
such that [[d(z),z],y] = 0 for all z in a non-zero left ideal of R and y € R,
then R contains a non-zero central ideal. Clearly, this result says that if R is
a prime ring, then R must be commutative.

Several authors have studied this kind of Engel type identities with deriva-
tion in different ways. In [11], Herstein proved that if R is a prime ring with
char R # 2 and R admits a non-zero derivation d such that [d(z),d(y)] = 0
for all z,y € R, then R is commutative. In [10], Filippis showed that if R be a
prime ring of characteristic different from 2, d a non-zero derivation of R and
p a non-zero right ideal of R such that [p, p]p # 0 and [[d(x), z], [d(y),y]] = 0
for all z,y € p, then d(p)p = 0.

In the present paper we study this identity with annihilator conditions on
prime rings in more generalized form.

Throughout this paper, unless specially stated, R always denotes a prime
ring with center Z(R), with extended centroid C', and with two-sided Martin-
dale quotient ring Q).

It is well known that any derivation of R can be uniquely extended to a
derivation of (), and so any derivation of R can be defined on the whole of Q).
Moreover () is a prime ring as well as R and the extended centroid C' of R
coincides with the center of ). We refer to [2, 17] for more details.

Denote by Q*cC{X, Y} the free product of the C-algebra @ and C{X, Y},

the free C-algebra in noncommuting indeterminates X, Y.
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2. Main Results

We need the following lemma.

Lemma 2.1. Let p be a non-zero right ideal of R and d a derivation of R. Then
the following conditions are equivalent: (i) d is an inner derivation induced
by some b € Q such that bp = 0; (ii) d(p)p = 0 (For its proof we refer to [5,
Lemmal).

We mention a important result which will be used quite frequently as fol-
lows:
Theorem (Kharchenko [14]): Let R be a prime ring, d a derivation on R and
I a non-zero ideal of R. If I satisfies the differential identity

flri,ray oo rn,d(ry),d(r2),...,d(r,)) =0 for any ri,7r9,...,1n €1

then either
(i)l satisfies the generalized polynomial identity
flri,ro, .o Tn, T, @,y ...y xy) =0
or (i) d is Q-inner i.e., for some q € Q, d(z) = [q,x] and I satisfies the
generalized polynomaial identity
f(ri,ray e oyrny (g, mals (g, e, - - -5 [g, ra]) = 0.

Theorem 2.2. Let R be a prime ring of char R # 2 and d a non-zero deriva-
tion of R and 0 # b € R such that b[[d(x), x],, [y, d(y)]m] = 0 for all z,y € R,
where n,m > 0 are fized integers, then R is commutative.

Proof. If R is commutative, we have nothing to prove. So, let R be noncom-
mutative. Assume first that d is Q-inner derivation, say d = ad(a) for some
a €@ ie.,dx)=la,x] for all z € R. Then we have

bla, 2]ns1, [y [a, yllm] = 0

for all z,y € R. Since d # 0, a ¢ C and hence R satisfies a nontrivial gener-
alized polynomial identity (GPI). Since @) and R satisfy the same generalized
polynomial identities with coefficients in Q [6], f(z,v) = b[[a, T|nt1, [y, [, Y]]m]
is also satisfied by @. In case the center C of @ is infinite, we have f(z,y) =0
for all z,y € Q ®c C, where C is the algebraic closure of C. Since both
Q and Q ®¢ C are prime and centrally closed [7, Theorem 2.5 and 3.5, we
may replace R by Q or Q ®¢ C according to C finite or infinite. Thus we
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may assume that R is centrally closed over C' which is either finite or alge-
braically closed and f(x,y) = 0 for all z,y € R. By Martindale’s theorem
[18], R is then a primitive ring having nonzero socle H with C' as the asso-
ciated division ring. Hence by Jacobson’s theorem [13, p.75] R is isomorphic
to a dense ring of linear transformations of some vector space V over C, and
H consists of the linear transformations in R of finite rank. If V is a finite
dimensional over C' then the density of R on V implies that R = M (C') where
k = dimcV. We may assume that for some v € V| {av,v} are linearly C-
independent, for otherwise av — av = 0 for all v € V| that is (a — )V =0
implying @ = o € C, a contradiction. If a?v € spanc{v,av}, then {v,av,a’v}
are all linearly C-independent. By density there exist x,y € R such that
20 = v, zav = 0,za’v = 0;yv = 0, yav = v, ya’v = 0 for which we get

0= b[[a7 Ji]n_H, [y’ [(l, y]]m]’l} = —2"bv.

If a®>v € spanc{v,av}, then a®>v = va + avB. Then again by density there
exist x,y € R such that xv = v, xav = 0; yv = 0, yav = v for which we get

0= b[[a7 x]n-‘rl? [y7 [a7 y]]m]v = —2"bv.

Thus in both the cases, whether a?v ¢ spanc{v,av} or a*v € spanc{v,av},
we have that bv = 0, since char R # 2. So, if for some v € V| bv # 0, then
{v,av} must be linearly C-dependent. Let bv = 0. Since b # 0, there exists
w € V such that bw # 0 and then b(v + w) = bw # 0. Hence we have that
{w,aw} are linearly C-dependent and {(v + w),a(v + w)} too. Thus there
exist a, f € C such that aw = wa and a(v + w) = (v + w)B. Moreover, v and
w are clearly C-independent and so by density there exist x,y € R such that
zw = w,zv = 0;yw = v,yv = 0. Then we obtain by using bv = 0 that

0 =b[[a, 2]ns1, [y, [a, yllm]w = (=1)"12"bw(B — a)*.

Since bw # 0, a = § and so av = va contradicting the independency of v and
av. Hence for each v € V', av = va,, for some «a, € C'. It is very easy to prove
that «, is independent of the choice of v € V. Thus we can write av = va for
allv e V and a € C fixed.

Now let r € R, v € V. Since av = va,

la,r)v = (ar)v — (ra)v = a(rv) — r(av) = (rv)a — r(va) = 0.
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Thus [a,r]v = 0 for all v € V i.e., [a,7]V = 0. Since [a,r]| acts faithfully as a
linear transformation on the vector space V', [a,r] = 0 for all r € R. Therefore
a € Z(R) implies d = 0, ending the proof of this part.

Assume next that d is not Q-inner derivation in R. Then by Kharchenko’s
theorem [14], we have

bl[w, z]n, [y, v]m] =0

for all x,y,u,v € R. Choose a ¢ C. Then replacing u with [a,z] and v with
la, y], we obtain b[a, x],11, [y, [a, y]];m] = O for all z,y € R, implying a € C by
same argument as earlier, a contradiction.

Theorem 2.3. Let R be a prime ring of char R # 2, d a non-zero derivation
of R and p a non-zero right ideal of R such that b[[d(x),x]n, [y, d(y)]m] = 0
for all z,y € p, where n,m > 0 are fized integers. If [p,plp # 0, then either
bp =10 ord(p)p =0.

We begin the proof by proving the following lemma

Lemma 2.4. Let p be a nonzero right ideal of R, d a monzero derivation
of R and 0 # b € R such that b][d(x), x|, [y, d(y)|m] = 0 for all z,y € p
where n,m > 0 are fized integers. Then if d(p)p # 0 and bp # 0, R satisfies
nontrivial generalized polynomial identity (GPI).

Proof. Suppose that d(p)p # 0 and bp # 0. Now we prove that R satisfies
nontrivial generalized polynomial identity. On contrary, we assume that R
does not satisfy any nontrivial GPI. We consider two cases

Case 1. Suppose that d is an @)-inner derivation induced by an element a € Q).
Then for any x € p

b[[[a7 ‘TX]N-H? [yY, [CL, yY]]m]

is a GPI for R, so it is the zero element in @ x¢c C{X,Y}. Expanding this we
get,

S{E y e (A e

J=0

Y- -0 (T

J=0

)(xx)ja(xx)"“—j} =0
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Let ay and y are linearly C-independent for some y € p. Then a ¢ C. Hence,

b fa.aXhes S0 (M) 0V oY a1 v

Jj=0

—[yY, [a, yY]Jm(—l)"+1($X)n+la} -

in @ xc C{X,Y} and so

m

ol X S0 ()l Py Ty 17 v | o

=0
Again, since ay and y are linearly C-independent,

m

bla, e X S (~ 1) (?) (—yYaly¥ (~y¥a)™ =0,

J

In particular,

bla, X, 11yY (—yYa)™ =0 (2.1)
that is
n+1 I+ 1 ‘ e
bZ(—l)J( ; )(Q:X)Ja(xX)” IyY (—yYa)™ = 0. (2.2)

Since ay and y are linearly C-independent,
b(—1)" (2 X)"MayY (—yYa)™ =0

in @ xc C{X,Y}. This implies bx = 0 for all x € p that is bp = 0, a con-
tradiction. Thus for any y € p, ay and y are linearly C-dependent. Then
(a — a)p = 0 for some a € C. Replacing a with a — o, we may assume that
ap = 0. Then by Lemma 2.1, d(p)p = 0, a contradiction.

Case II. Suppose that d is not Q-inner derivation. If for all z € p, d(x) € zC,
then [d(z),z] = 0 which implies that R is commutative (see [3]). There-
fore there exists © € p such that d(x) ¢ xC ie., z and d(x) are linearly
C-independent.
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By our assumption we have that R satisfies
bl[d(zX), xX],, [zY,d(zY)],] = 0.
By Kharchenko’s theorem [14],
b[[d(z)X + xr, xX],, [2Y,d(z)Y + x13),] =0
for all X,Y,ry,r9 € R. In particular for ry =r, =0,
bl[d(z) X, 2 X],, [2Y,d(x)Y]n] =0

which is a non-trivial GPI for R, because x and d(z) are linearly C-independent,
a contradiction.

We are now ready to prove our main Theorem.

Proof of Theorem 2.3. Suppose that d(p)p # 0 and then we derive a
contradiction. By Lemma 2.4, R is a prime GPI-ring, so is also @ by [6].
Since @ is centrally closed over C it follows from [18] that @ is a primitive
ring with H = Soc(Q) # 0.

By our assumption and by [17], we may assume that

blld(z), x]n, [y, d(y)]m] = O (2.3)

is satisfied by pQ and hence by pH. Let e = ¢? € pH and y € H. Then
replacing x with e and y with ey(1 —e) in (2.3) and then right multiplying it
by e we obtain that

0 = b[[d(e), el [ey(1 —€),d(ey(1 — €))]mle
= { n Z ( ) (ey(1 —e)Yey(1 —e)d(ey(1 —e))" e

Jj=
m

=0 (7 Jaenta — st - eyt ~ )" de), el .

=0

Now we have the fact that for any idempotent e, d(y(1 — €))e = —y(1 —
e)d(e), ed(e)e = 0 and so

0 = b{O—i(—l)j (m)e(—ya —e)d(e))jy(l—e)d(ey(l—e))m_jd(e)e}.
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Now since for any idempotent e and for any y € R, (1—e)d(ey) = (1 —e)d(e)y,
above relation gives

for all y € H. Since char R # 2, we have by [9, Theorem 2| that bey(1l —
e)d(e)e = 0 for all y € H. By primeness of H, be = 0 or (1 — e)d(e)e = 0.
By [8, Lemma 1], since H is a regular ring, for each r € pH, there exists an
idempotent e € pH such that r = er and e € rH. Hence be = 0 gives br =
ber =0 and (1—e)d(e)e = 0 gives (1—e)d(e) = (1—e)d(e?) = (1—e)d(e)e =0
and so d(e) = ed(e) € eH C pH and d(r) = d(er) = d(e)er + ed(er) € pH.
Hence for each r € pH, either br = 0 or d(r) € pH. Thus pH is the union of
its two additive subgroups {r € pH|br = 0} and {r € pH|d(r) € pH}. Hence
bpH = 0 and d(pH) C pH. The case bpH = 0 gives bp = 0, a contradiction.
Thus d(pH) C pH. Set J = pH. Replacing b with a nonzero element in Jb,

we may assume that b € J. Then J = JO+H(J) , a prime C-algebra with the

derivation d such that d(7) = d(x), for all € J. By assumption we have that

Ol[d(T), T, [Y, d(H)]m] = O

for all 7,7 € J. By Theorem 2.2, we have either d = 0, b = 0, pH is commuta-
tive. Therefore we have that either d(pH)pH =0, bpH =0 or [pH, pH|pH =
0. Now d(pH)pH = 0 implies 0 = d(ppH)pH = d(p)pHpH and so d(p)p = 0.
bpH = 0 implies bp = 0. [pH,pH|pH = 0 implies 0 = [ppH,pH|pH =
lp, pHpHpH and so [p, pH]p = 0 and then 0 = [p, ppH]p = [p, p|pH p imply-
ing [p, p]p = 0. Thus in all the cases we have contradiction. This completes
the proof of the theorem.
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