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Abstract

LetR be a prime ring of charR 6= 2, d a non-zero derivation ofR, 0 6=
b ∈ R and ρ a non-zero right ideal ofR such that b[[d(x), x]n, [y, d(y)]m] =
0 for all x, y ∈ ρ, where n,m ≥ 0 are fixed integers. If [ρ, ρ]ρ 6= 0, then
either bρ = 0 or d(ρ)ρ = 0.
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1. Introduction

Let R be an associative ring and Z(R) be its center. Let n be a positive
integer. For x, y ∈ R, set [x, y]0 = x, [x, y]1 = [x, y] = xy − yx, then an Engel
condition is a polynomial [x, y]k = [[x, y]k−1, y], k = 1, 2, . . . in noncommuting
indeterminates.

A well known result of Posner [19] states that for a non-zero derivation d
of a prime ring R, if [[d(x), x], y] = 0 for all x, y ∈ R, then R is commutative.
In [16], Lanski generalized this result of Posner to the Lie ideal. Lanski proved
that if U is a noncommutative Lie ideal of a prime ring R and d 6= 0 is a
derivation of R such that [[d(x), x], y] = 0 for all x ∈ U, y ∈ R, then either R is
commutative, or char R = 2 and R satisfies S4, the standard identity in four
variables. Bell and Martindale [4] studied this identity for a non-zero left ideal
of R. They proved that if R is a semiprime ring and d a non-zero derivation
such that [[d(x), x], y] = 0 for all x in a non-zero left ideal of R and y ∈ R,
then R contains a non-zero central ideal. Clearly, this result says that if R is
a prime ring, then R must be commutative.

Several authors have studied this kind of Engel type identities with deriva-
tion in different ways. In [11], Herstein proved that if R is a prime ring with
char R 6= 2 and R admits a non-zero derivation d such that [d(x), d(y)] = 0
for all x, y ∈ R, then R is commutative. In [10], Filippis showed that if R be a
prime ring of characteristic different from 2, d a non-zero derivation of R and
ρ a non-zero right ideal of R such that [ρ, ρ]ρ 6= 0 and [[d(x), x], [d(y), y]] = 0
for all x, y ∈ ρ, then d(ρ)ρ = 0.

In the present paper we study this identity with annihilator conditions on
prime rings in more generalized form.

Throughout this paper, unless specially stated, R always denotes a prime
ring with center Z(R), with extended centroid C, and with two-sided Martin-
dale quotient ring Q.

It is well known that any derivation of R can be uniquely extended to a
derivation of Q, and so any derivation of R can be defined on the whole of Q.
Moreover Q is a prime ring as well as R and the extended centroid C of R
coincides with the center of Q. We refer to [2, 17] for more details.

Denote by Q∗CC{X, Y } the free product of the C-algebra Q and C{X, Y },
the free C-algebra in noncommuting indeterminates X, Y .
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2. Main Results

We need the following lemma.

Lemma 2.1. Let ρ be a non-zero right ideal of R and d a derivation of R. Then
the following conditions are equivalent: (i) d is an inner derivation induced
by some b ∈ Q such that bρ = 0; (ii) d(ρ)ρ = 0 (For its proof we refer to [5,
Lemma]).

We mention a important result which will be used quite frequently as fol-
lows:
Theorem (Kharchenko [14]): Let R be a prime ring, d a derivation on R and
I a non-zero ideal of R. If I satisfies the differential identity

f(r1, r2, . . . , rn, d(r1), d(r2), . . . , d(rn)) = 0 for any r1, r2, . . . , rn ∈ I

then either
(i)I satisfies the generalized polynomial identity

f(r1, r2, . . . , rn, x1, x2, . . . , xn) = 0
or (ii) d is Q-inner i.e., for some q ∈ Q, d(x) = [q, x] and I satisfies the
generalized polynomial identity

f(r1, r2, . . . , rn, [q, r1], [q, r2], . . . , [q, rn]) = 0.

Theorem 2.2. Let R be a prime ring of char R 6= 2 and d a non-zero deriva-
tion of R and 0 6= b ∈ R such that b[[d(x), x]n, [y, d(y)]m] = 0 for all x, y ∈ R,
where n,m ≥ 0 are fixed integers, then R is commutative.

Proof. If R is commutative, we have nothing to prove. So, let R be noncom-
mutative. Assume first that d is Q-inner derivation, say d = ad(a) for some
a ∈ Q i.e., d(x) = [a, x] for all x ∈ R. Then we have

b[[a, x]n+1, [y, [a, y]]m] = 0

for all x, y ∈ R. Since d 6= 0, a /∈ C and hence R satisfies a nontrivial gener-
alized polynomial identity (GPI). Since Q and R satisfy the same generalized
polynomial identities with coefficients in Q [6], f(x, y) = b[[a, x]n+1, [y, [a, y]]m]
is also satisfied by Q. In case the center C of Q is infinite, we have f(x, y) = 0
for all x, y ∈ Q ⊗C C, where C is the algebraic closure of C. Since both
Q and Q ⊗C C are prime and centrally closed [7, Theorem 2.5 and 3.5], we
may replace R by Q or Q ⊗C C according to C finite or infinite. Thus we
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may assume that R is centrally closed over C which is either finite or alge-
braically closed and f(x, y) = 0 for all x, y ∈ R. By Martindale’s theorem
[18], R is then a primitive ring having nonzero socle H with C as the asso-
ciated division ring. Hence by Jacobson’s theorem [13, p.75] R is isomorphic
to a dense ring of linear transformations of some vector space V over C, and
H consists of the linear transformations in R of finite rank. If V is a finite
dimensional over C then the density of R on V implies that R ∼= Mk(C) where
k = dimCV . We may assume that for some v ∈ V , {av, v} are linearly C-
independent, for otherwise av − αv = 0 for all v ∈ V , that is (a − α)V = 0
implying a = α ∈ C, a contradiction. If a2v /∈ spanC{v, av}, then {v, av, a2v}
are all linearly C-independent. By density there exist x, y ∈ R such that
xv = v, xav = 0, xa2v = 0; yv = 0, yav = v, ya2v = 0 for which we get

0 = b[[a, x]n+1, [y, [a, y]]m]v = −2mbv.

If a2v ∈ spanC{v, av}, then a2v = vα + avβ. Then again by density there
exist x, y ∈ R such that xv = v, xav = 0; yv = 0, yav = v for which we get

0 = b[[a, x]n+1, [y, [a, y]]m]v = −2mbv.

Thus in both the cases, whether a2v /∈ spanC{v, av} or a2v ∈ spanC{v, av},
we have that bv = 0, since char R 6= 2. So, if for some v ∈ V , bv 6= 0, then
{v, av} must be linearly C-dependent. Let bv = 0. Since b 6= 0, there exists
w ∈ V such that bw 6= 0 and then b(v + w) = bw 6= 0. Hence we have that
{w, aw} are linearly C-dependent and {(v + w), a(v + w)} too. Thus there
exist α, β ∈ C such that aw = wα and a(v +w) = (v +w)β. Moreover, v and
w are clearly C-independent and so by density there exist x, y ∈ R such that
xw = w, xv = 0; yw = v, yv = 0. Then we obtain by using bv = 0 that

0 = b[[a, x]n+1, [y, [a, y]]m]w = (−1)n+12mbw(β − α)3.

Since bw 6= 0, α = β and so av = vα contradicting the independency of v and
av. Hence for each v ∈ V , av = vαv for some αv ∈ C. It is very easy to prove
that αv is independent of the choice of v ∈ V . Thus we can write av = vα for
all v ∈ V and α ∈ C fixed.

Now let r ∈ R, v ∈ V . Since av = vα,

[a, r]v = (ar)v − (ra)v = a(rv)− r(av) = (rv)α− r(vα) = 0.
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Thus [a, r]v = 0 for all v ∈ V i.e., [a, r]V = 0. Since [a, r] acts faithfully as a
linear transformation on the vector space V , [a, r] = 0 for all r ∈ R. Therefore
a ∈ Z(R) implies d = 0, ending the proof of this part.

Assume next that d is not Q-inner derivation in R. Then by Kharchenko’s
theorem [14], we have

b[[u, x]n, [y, v]m] = 0

for all x, y, u, v ∈ R. Choose a /∈ C. Then replacing u with [a, x] and v with
[a, y], we obtain b[[a, x]n+1, [y, [a, y]]m] = 0 for all x, y ∈ R, implying a ∈ C by
same argument as earlier, a contradiction.

Theorem 2.3. Let R be a prime ring of char R 6= 2, d a non-zero derivation
of R and ρ a non-zero right ideal of R such that b[[d(x), x]n, [y, d(y)]m] = 0
for all x, y ∈ ρ, where n,m ≥ 0 are fixed integers. If [ρ, ρ]ρ 6= 0, then either
bρ = 0 or d(ρ)ρ = 0.

We begin the proof by proving the following lemma

Lemma 2.4. Let ρ be a nonzero right ideal of R, d a nonzero derivation
of R and 0 6= b ∈ R such that b[[d(x), x]n, [y, d(y)]m] = 0 for all x, y ∈ ρ
where n,m ≥ 0 are fixed integers. Then if d(ρ)ρ 6= 0 and bρ 6= 0, R satisfies
nontrivial generalized polynomial identity (GPI).

Proof. Suppose that d(ρ)ρ 6= 0 and bρ 6= 0. Now we prove that R satisfies
nontrivial generalized polynomial identity. On contrary, we assume that R
does not satisfy any nontrivial GPI. We consider two cases

Case I. Suppose that d is an Q-inner derivation induced by an element a ∈ Q.
Then for any x ∈ ρ

b[[[a, xX]n+1, [yY, [a, yY ]]m]

is a GPI for R, so it is the zero element in Q ∗C C{X, Y }. Expanding this we
get,

b

{
[a, xX]n+1

m∑
j=0

(−1)j
(
m

j

)
[a, yY ]jyY [a, yY ]m−j

−[yY, [a, yY ]]m

n+1∑
j=0

(−1)j
(
n+ 1

j

)
(xX)ja(xX)n+1−j

}
= 0
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Let ay and y are linearly C-independent for some y ∈ ρ. Then a /∈ C. Hence,

b

{
[a, xX]n+1

m∑
j=0

(−1)j
(
m

j

)
[a, yY ]jyY [a, yY ]m−j−1(−yY a)

−[yY, [a, yY ]]m(−1)n+1(xX)n+1a

}
= 0

in Q ∗C C{X, Y } and so

b

{
[a, xX]n+1

m∑
j=0

(−1)j
(
m

j

)
[a, yY ]jyY [a, yY ]m−j−1(−yY a)

}
= 0.

Again, since ay and y are linearly C-independent,

b[a, xX]n+1

m∑
j=0

(−1)j
(
m

j

)
(−yY a)jyY (−yY a)m−j = 0.

In particular,

b[a, xX]n+1yY (−yY a)m = 0 (2.1)

that is

b
n+1∑
j=0

(−1)j
(
n+ 1

j

)
(xX)ja(xX)n+1−jyY (−yY a)m = 0. (2.2)

Since ay and y are linearly C-independent,

b(−1)n+1(xX)n+1ayY (−yY a)m = 0

in Q ∗C C{X, Y }. This implies bx = 0 for all x ∈ ρ that is bρ = 0, a con-
tradiction. Thus for any y ∈ ρ, ay and y are linearly C-dependent. Then
(a − α)ρ = 0 for some α ∈ C. Replacing a with a − α, we may assume that
aρ = 0. Then by Lemma 2.1, d(ρ)ρ = 0, a contradiction.

Case II. Suppose that d is not Q-inner derivation. If for all x ∈ ρ, d(x) ∈ xC,
then [d(x), x] = 0 which implies that R is commutative (see [3]). There-
fore there exists x ∈ ρ such that d(x) /∈ xC i.e., x and d(x) are linearly
C-independent.
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By our assumption we have that R satisfies

b[[d(xX), xX]n, [xY, d(xY )]m] = 0.

By Kharchenko’s theorem [14],

b[[d(x)X + xr1, xX]n, [xY, d(x)Y + xr2]m] = 0

for all X, Y, r1, r2 ∈ R. In particular for r1 = r2 = 0,

b[[d(x)X, xX]n, [xY, d(x)Y ]m] = 0

which is a non-trivial GPI forR, because x and d(x) are linearly C-independent,
a contradiction.

We are now ready to prove our main Theorem.

Proof of Theorem 2.3. Suppose that d(ρ)ρ 6= 0 and then we derive a
contradiction. By Lemma 2.4, R is a prime GPI-ring, so is also Q by [6].
Since Q is centrally closed over C, it follows from [18] that Q is a primitive
ring with H = Soc(Q) 6= 0.

By our assumption and by [17], we may assume that

b[[d(x), x]n, [y, d(y)]m] = 0 (2.3)

is satisfied by ρQ and hence by ρH. Let e = e2 ∈ ρH and y ∈ H. Then
replacing x with e and y with ey(1− e) in (2.3) and then right multiplying it
by e we obtain that

0 = b[[d(e), e]n, [ey(1− e), d(ey(1− e))]m]e

= b

{
[d(e), e]n

m∑
j=0

(−1)j
(
m

j

)
d(ey(1− e))jey(1− e)d(ey(1− e))m−je

−
m∑
j=0

(−1)j
(
m

j

)
d(ey(1− e))jey(1− e)d(ey(1− e))m−j[d(e), e]ne

}
.

Now we have the fact that for any idempotent e, d(y(1 − e))e = −y(1 −
e)d(e), ed(e)e = 0 and so

0 = b

{
0−

m∑
j=0

(−1)j
(
m

j

)
e(−y(1− e)d(e))jy(1− e)d(ey(1− e))m−jd(e)e

}
.
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Now since for any idempotent e and for any y ∈ R, (1−e)d(ey) = (1−e)d(e)y,
above relation gives

0 = b

{
− e

m∑
j=0

(
m

j

)
(y(1− e)d(e))jy(1− e)(d(e)y(1− e))m−jd(e)e

}

= b

{
− e

m∑
j=0

(
m

j

)
(y(1− e)d(e))m+1e

}
= −2mbe(y(1− e)d(e)e)m+1.

for all y ∈ H. Since char R 6= 2, we have by [9, Theorem 2] that bey(1 −
e)d(e)e = 0 for all y ∈ H. By primeness of H, be = 0 or (1 − e)d(e)e = 0.
By [8, Lemma 1], since H is a regular ring, for each r ∈ ρH, there exists an
idempotent e ∈ ρH such that r = er and e ∈ rH. Hence be = 0 gives br =
ber = 0 and (1−e)d(e)e = 0 gives (1−e)d(e) = (1−e)d(e2) = (1−e)d(e)e = 0
and so d(e) = ed(e) ∈ eH ⊆ ρH and d(r) = d(er) = d(e)er + ed(er) ∈ ρH.
Hence for each r ∈ ρH, either br = 0 or d(r) ∈ ρH. Thus ρH is the union of
its two additive subgroups {r ∈ ρH|br = 0} and {r ∈ ρH|d(r) ∈ ρH}. Hence
bρH = 0 and d(ρH) ⊆ ρH. The case bρH = 0 gives bρ = 0, a contradiction.
Thus d(ρH) ⊆ ρH. Set J = ρH. Replacing b with a nonzero element in Jb,
we may assume that b ∈ J . Then J = J

J∩ lH(J)
, a prime C-algebra with the

derivation d such that d(x) = d(x), for all x ∈ J . By assumption we have that

b[[d(x), x]n, [y, d(y)]m] = 0

for all x, y ∈ J . By Theorem 2.2, we have either d = 0, b = 0, ρH is commuta-
tive. Therefore we have that either d(ρH)ρH = 0, bρH = 0 or [ρH, ρH]ρH =
0. Now d(ρH)ρH = 0 implies 0 = d(ρρH)ρH = d(ρ)ρHρH and so d(ρ)ρ = 0.
bρH = 0 implies bρ = 0. [ρH, ρH]ρH = 0 implies 0 = [ρρH, ρH]ρH =
[ρ, ρH]ρHρH and so [ρ, ρH]ρ = 0 and then 0 = [ρ, ρρH]ρ = [ρ, ρ]ρHρ imply-
ing [ρ, ρ]ρ = 0. Thus in all the cases we have contradiction. This completes
the proof of the theorem.
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