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Abstract

Given a sigraph S and a positive integer t, the t-path sigraph (S)t
of S is formed by taking a copy of the vertex set V (S) of S, joining
two vertices u and v in the copy by a single edge e = uv whenever
there is a u − v path of length t in S and then by defining its sign to
be − whenever in every u − v path of length t in S all the edges are
negative. In this paper, we introduce a variation of the concept of t-
path sigraphs studied above. The motivation stems naturally from one’s
mathematically inquisitiveness as to ask why not define the sign of an
edge e = uv in (S)t as the product of the signs of the vertices u and v in
S. It is shown that for any sigraph S, its t-path sigraph (S)t is balanced.
We then give structural characterization of t-path sigraphs. Further, in
this paper we characterize sigraphs which are switching equivalent to
their 2(3)-path sigraphs.
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1. Introduction

For standard terminology and notion in graph theory we refer the reader to
West [14]; the non-standard will be given in this paper as and when required.
We treat only finite simple graphs without self loops and isolates.

A sigraph is an ordered pair S = (G, σ), where G = (V,E) is a graph called
underlying graph of S and σ : E → {+,−} is a function. A sigraph S = (G, σ)
is balanced if every cycle in S has an even number of negative edges (See [7]).
Equivalently, a sigraph is balanced if product of signs of the edges on every
cycle of S is positive.

A marking of S is a function µ : V (G) → {+,−}; a sigraph S together
with a marking µ is denoted by Sµ. Given a sigraph S one can easily define a
marking µ of S as follows: For any vertex v ∈ V (S),

µ(v) =
∏

u∈N(v)

σ(uv),

the marking µ of S is called canonical marking of S.

The following characterization of balanced sigraphs is well known.

Proposition 1. (E. Sampathkumar [12]) A sigraph S = (G, σ) is balanced
if, and only if, there exist a marking µ of its vertices such that each edge uv
in S satisfies σ(uv) = µ(u)µ(v).

The idea of switching a sigraph was introduced by Abelson and Rosen-
berg [2] in connection with structural analysis of marking µ of a sigraph S.
Switching S with respect to a marking µ is the operation of changing the sign
of every edge of S to its opposite whenever its end vertices are of opposite
signs. The sigraph obtained in this way is denoted by Sµ(S) and is called
µ-switched sigraph or just switched sigraph. Two sigraphs S1 = (G, σ) and
S2 = (G′, σ′) are said to be isomorphic, written as S1

∼= S2 if there exists a
graph isomorphism f : G → G′ (that is a bijection f : V (G) → V (G′) such
that if uv is an edge in G then f(u)f(v) is an edge in G′) such that for any edge
e ∈ G, σ(e) = σ′(f(e)). Further, a sigraph S1 = (G, σ) switches to a sigraph
S2 = (G′, σ′) (or that S1 and S2 are switching equivalent) written S1 ∼ S2,



t-Path Sigraphs 435

whenever there exists a marking µ of S1 such that Sµ(S1) ∼= S2. Note that
S1 ∼ S2 implies that G ∼= G′, since the definition of switching does not in-
volve change of adjacencies in the underlying graphs of the respective sigraphs.

Two sigraphs S1 = (G, σ) and S2 = (G′, σ′) are said to be cycle isomorphic
(see [15]) if there exists an isomorphism φ : G→ G′ such that the sign of every
cycle Z in S1 equals to the sign of φ(Z) in S2. The following result will be
useful in our further investigation (See [15]):

Proposition 2. (T. Zaslavasky [15]) Two sigraphs S1 and S2 with the same
underlying graph are switching equivalent if, and only if, they are cycle iso-
morphic.

One can extend the study of sigraph equations w.r.t. isomorphism to si-
graph equations w.r.t. switching equivalence. The purpose of this paper is to
determine the solutions of one such extended sigraph equations.

2. t-Path Sigraphs

Given a graph G and a positive integer t, the t-path graph (G)t of G is formed
by taking a copy of the vertex set V (G) of G, joining two vertices u and v
in the copy by a single edge e = uv whenever there is a u − v path of length
t in G. The notion of t-path graphs was introduced by Escalante et al. [4]
as a generalization of the notion of open neighborhood graphs introduced by
Acharya [1] (also see Escalante & Montejano [3, 5], Harary et al. [9], Simic
[13], for further studies as also Kovchegov [10] for application of the notion to
analyze evolution of social networks triggered by local interactions). A graph
G for which

(G)t ∼= G (1)

has been termed as t-path invariant graph by Esclante et. al [4], Escalante
& Montejano [5] where the explicit solution to (1) has been determined for
t = 2, 3. The structure of t-path invariant graphs are still remains uninvesti-
gated in literature for all t ≥ 4. The following result characterize the structure
of 2-path invariant graphs.
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Proposition 3. (Escalante et al. [4])
A graph G order p is a 2-path invariant graph if, and only if, G ∼= Kp or KP

with p ≥ 3 or the odd p-cycle Cp, p = 2m+ 1, m ≥ 2.

The structure of 3-path invariant graph is given by the following result:

Proposition 4. (Escalante & Montejano [5])
A graph G order p is a 3-path invariant graph if, and only if, it is isomorphic
to any of the following graphs:

[a] Cm, 4 ≤ m 6= 3k, k is a positive integer

[b] Kn, n ≥ 4

[c] Km,n, 2 ≤ m ≤ n

[d] The double star Km,n
t,2

[e] E1 = K4 − x

[f ] E2 = the subdivision of E1

[g] E3 (See [5])

[h] E4 (See [5])

The notion of t-path graph of a given graph was extended to the class of
sigraphs by Mishra [11] as follows: Given a sigraph S and a positive integer
t, the t-path sigraph (S)t of S is formed by taking a copy of the vertex set
V (S) of S, joining two vertices u and v in the copy by a single edge e = uv
whenever there is a u − v path of length t in S and then by defining its sign
to be − whenever in every u−v path of length t in S all the edges are negative.

In this paper, we shall now introduce a variation of the concept of t-path
sigraphs studied above. The motivation stems naturally from one’s mathe-
matically inquisitiveness as to ask why not define the sign of an edge e = uv in
(S)t as the product of the signs of the vertices u and v in S. The t-path sigraph
(S)t = ((G)t, σ

′) of a sigraph S = (G, σ) is a sigraph whose underlying graph
is (G)t called t-path graph and sign of any edge e = uv in (S)t is µ(u)µ(v),
where µ is the canonical marking of S. Further, a sigraph S = (G, σ) is called
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t-path sigraph, if S ∼= (S ′)t, for some sigraph S ′.

The following result indicates the limitations of the notion of t-path sigraphs
as introduced above, since the entire class of unbalanced sigraphs is forbidden
to be t-path sigraphs.

Proposition 5. For any sigraph S = (G, σ), its t-path sigraph (S)t is balanced.

Proof. Since sign of any edge e = uv is (S)t is µ(u)µ(v), where µ is the
canonical marking of S, by Proposition 1, (S)t is balanced.

Remark. For any two signed graphs S and S ′ with same underlying graph,
their path signed graphs are switching equivalent.

Corollary 6. For any sigraph S = (G, σ), its 2 (3)-path sigraph (S)2 ((S)3)
is balanced.

The following result characterize sigraphs which are t-path sigraphs.

Proposition 7. A sigraph S = (G, σ) is a t-path sigraph if, and only if, S is
balanced sigraph and its underlying graph G is a t-path graph.

Proof. Suppose that S is balanced and G is a t-path graph. Then there
exists a graph H such that (H)t ∼= G. Since S is balanced, by Proposition
1, there exists a marking µ of G such that each edge e = uv in S satisfies
σ(uv) = µ(u)µ(v). Now consider the sigraph S ′ = (H, σ′), where for any edge
e in H, σ′(e) is the marking of the corresponding vertex in G. Then clearly,
(S ′)t ∼= S. Hence S is a t-path sigraph.

Conversely, suppose that S = (G, σ) is a t-path sigraph. Then there exists
a signed graph S ′ = (H, σ′) such that (S ′)t ∼= S. Hence G is the t-path graph
of H and by Proposition 5, S is balanced.

3. Switching Invariant Two-Path Sigraphs

Let ψ(G) denotes the set of all sigraphs whose underlying graph is G. In
view of Proposition 3, we see that if S is a solution to
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(S)2 ∼ S, (2)

then S is either a totally disconnected sigraph, or S ∈ ψ(Kp) for some in-
teger p ≥ 3, or S ∈ ψ(C2m+1) for m ≥ 2. Therefore, in order to completely
determine of the structure of switching invariant 2-path sigraphs, it is enough
to search for solutions of (2) in the sets ψ(Kp), p ≥ 3 and ψ(C2m+1), m ≥ 2.

Proposition 8. For any sigraph S = (G, σ), S ∼ (S)2 if, and only if, G is
isomorphic to either Kp, p ≥ 3 or C2m+1, m ≥ 2 and S is balanced.

Proof. Suppose S ∼ (S)2. This implies, G ∼= (G)2 and hence by Proposition
3, we see that the G must be isomorphic to either Kp or C2m+1. Now, if S is
any sigraph on any of these graphs, Corollary 6 implies that (S)2 is balanced
and hence if S is unbalanced its 2-path sigraph (S)2 being balanced cannot
be switching equivalent to S in accordance with Proposition 2. Therefore, S
must be balanced.

Conversely, suppose that S is a balanced sigraph on Kp or C2m+1. Then,
since (S)2 is balanced as per Corollary 6 and since G ∼= (G)2 in each of these
cases, the result follows from Proposition 2.

Remark. In [6], the authors has proved the above result using notion t-
path sigraph defined by Mishra [11]. The result and proof given here is very
simple and straightforward from that given in [6].

The notion of negation η(S) of a given sigraph S defined in [8] as follows:
η(S) has the same underlying graph as that of S with the sign of each edge
opposite to that given to it in S. However, this definition does not say any-
thing about what to do with nonadjacent pairs of vertices in S while applying
the unary operator η(.) of taking the negation of S.

For a sigraph S = (G, σ), the (S)t is balanced (Proposition 5). We now
examine, the condition under which negation of (S)t (i.e., η((S)t)) is balanced.

Proposition 9. Let S = (G, σ) be a sigraph. If (G)t is bipartite then η((S)t)
is balanced.

Proof. Since, by Proposition 5, (S)t is balanced, then every cycle in (S)t
contains even number of negative edges. Also, since (G)t is bipartite, all
cycles have even length; thus, the number of positive edges on any cycle C
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in (S)t are also even. This implies that the same thing is true in negation of
(S)t. Hence η((S)t) is balanced. Proposition 8 provides easy solutions to three
other sigraph switching equivalence relations, which are given in the following
results.

Corollary 10. For any sigraph S = (G, σ), η(S) ∼ (S)2 if, and only if, S is
unbalanced sigraph on Kp, p ≥ 3 or C2m+1, m ≥ 2.

Corollary 11. For any sigraph S = (G, σ), (η(S))2 ∼ (S)2.

Corollary 12. For any sigraph S = (G, σ), η(S) ∼ (S)2 if, and only if, G is
isomorphic to either Kp, p ≥ 3 or C2m+1, m ≥ 2 and η(S) is balanced.

4. Switching Invariant Three-Path Sigraphs

In view of Proposition 4, we see that if S is a solution to

(S)3 ∼ S, (3)

then G is isomorphic to any of the graphs Cm, 4 ≤ m 6= 3k, k is a positive
integer, Kn, n ≥ 4, Km,n, 2 ≤ m ≤ n, The double star Km,n

t,2 , E1 = K4 − x,
E2 = the subdivision of E1, E3, E4 and S must be balanced. The proof of
technique of the following result is similar to the Proposition 8.

Proposition 13. For any sigraph S = (G, σ), S ∼ (S)3 if, and only if, G
isomorphic to any of the graphs: Cm, 4 ≤ m 6= 3k, k is a positive integer,
Kn, n ≥ 4, Km,n, 2 ≤ m ≤ n, The double star Km,n

t,2 , E1 = K4 − x, E2 = the
subdivision of E1, E3, E4 and S is balanced.

Remark. The other results are in Section 3 one can easily apply to three-path
sigraphs.
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