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Abstract

In this paper we study some basic qualitative properties of solutions
of a certain Fredholm type sum-difference equation. A finite difference
inequality with explicit estimate is used to establish the results.
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1. Introduction

The theory of finite difference equations and their wide applications has drawn
much attention in the past few decades. A simple way of solving Fredholm
integral equation is to write down the equation for a set of equidistant points
and to approximate the integral terms by appropriate quadrature formulas.
This procedure in general leads to the study of Fredholm type sum-difference
equation

y (n) = h (n) +

β∑
s=α

k (n, s, y (s)) ,

on the fixed region of summation (see [1,3,5]).
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In this paper we consider the following more general Fredholm type sum-
difference equation

x (n) = f (n) +

β∑
s=α

g (n, s, x (s) ,∆x (s)) , (1.1)

where f and g are given functions and x is the unknown function to be found.
The origin of equation (1.1) can be traced back to the recent study of its
integral analogue by Bica, Cǎuş and Mureşan in [2] (see also [4,10]). In fact
the study of qualitative properties of solutions of equation (1.1) is a challanging
task, because of the occurance of the extra factor ∆x (s) in the sum on the
right hand side in (1.1), about which almost nothing seems to be known. The
problem of existence of solutions for equations like (1.1) can be dealt with the
method employed in [9,10] (see also [2,5,6]). The aim of the present paper
is to study some basic qualitative properties of solutions of equation (1.1)
under some suitable conditions on the functions involved therein. The main
tool employed in the analysis is based on the application of a certain finite
difference inequality with explicit estimate given in [8, Theorem 4.5.1, part
(a2), p. 224] (see also [7] for similar results).

2. Estimates on the Solutions

Let Rm denote the real m-dimensional Euclidean space with appropriate norm
denoted by |.|. Let R+ = [0,∞), N0 = {0, 1, 2, ...} , N = {1, 2, ...}, Nα,β =
{α, α + 1, ..., α + n = β} (α ∈ N0, n ∈ N) be the given subsets of R, the set of
real numbers and D(A,B) the class of discrete functions from the set A to the
set B. For the functions w(n), z(n, ., .) (n ∈ N0), we define the operators ∆
and ∆1 by ∆w (n) = w (n+ 1)−w (n) , ∆1z (n, ., .) = z (n+ 1, ., .)− z (n, ., .).
Throughout, we assume that f ∈ D (Nα,β, R

m) , g ∈ D
(
N2
α,β ×Rm ×Rm, Rm

)
and all the functions involved in our discussion satisfy the condition w (n) = 0
for n /∈ Nα,β.

By a solution of equation (1.1) we mean a function x (n) : Nα,β → Rm

for which ∆x (n) exists and satisfies the equation (1.1). It is easy to observe
that the solution x(n) of equation (1.1) satisfies the following sum-difference
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equation

∆x (n) = ∆f (n) +

β∑
s=α

∆1g (n, s, x (s) ,∆x (s)) , (2.1)

for n ∈ Nα,β.

We need the following special version of the finite difference inequality given
in [8, Theorem 4.5.1, part (a2), p. 224]. We shall state it in the following lemma
for completeness.

Lemma. Let u, a, c, g ∈ D (Nα,β, R+) . Suppose that

u (n) ≤ a (n) + c (n)

β∑
s=α

g (s)u (s) , (2.2)

for n ∈ Nα,β. If

d =

β∑
s=α

g (s) c (s) < 1, (2.3)

then

u (n) ≤ a (n) + c (n)

{
1

1− d

β∑
s=α

g (s) a (s)

}
, (2.4)

for n ∈ Nα,β.

First, we shall give the following theorem which deals with the estimate on
the solution of equation (1.1).

Theorem 1. Suppose that the functions g,∆1g satisfy the conditions

|g (n, s, u, v)| ≤ p (n) q (s) [|u|+ |v|] , (2.5)

|∆1g (n, s, u, v)| ≤ p (n) q1 (s) [|u|+ |v|] , (2.6)

where p, q, q1 ∈ D (Nα,β, R+) and

d1 =

β∑
s=α

[q (s) + q1 (s)] p (s) < 1, (2.7)
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holds. Then for every solution x ∈ D (Nα,β, R
m) of equation (1.1), we have

the estimate
|x (n)|+ |∆x (n)| ≤ [|f (n)|+ |∆f (n)|]

+p (n)

{
1

1− d1

β∑
s=α

[q (s) + q1 (s)] [|f (s)|+ |∆f (s)|]

}
, (2.8)

for n ∈ Nα,β.

Proof. Let x ∈ D (Nα,β, R
m) be a solution of equation (1.1). Then from

the hypotheses, we have

|x (n)|+ |∆x (n)|

≤ |f (n)|+
β∑
s=α

|g (n, s, x (s) ,∆x (s))|+ |∆1f (n)|+
β∑
s=α

|∆1g (n, s, x (s) ,∆x (s))|

≤ |f (n)|+ |∆f (n)|+
β∑
s=α

p (n) q (s) [|x (s)|+ |∆x (s)|]

+

β∑
s=α

p (n) q1 (s) [|x (s)|+ |∆x (s)|]

= |f (n)|+ |∆f (n)|+ p (n)

β∑
s=α

[q (s) + q1 (s)] [|x (s)|+ |∆x (s)|]. (2.9)

Now, an application of Lemma to (2.9) gives the desired estimate in (2.8).

Remark 1. We note that the estimate obtained in (2.8) yields not only the
bound on the solution x(n) of equation (1.1), but also the bound on ∆x (n) .
If the bound on the right hand side in (2.8) is bounded, then the solution x(n)
of equation (1.1) and ∆x (n) are bounded.

Next, we shall obtain the estimate on the solution of equation (1.1), assum-
ing that the functions g,∆1g satisfy Lipschitz type conditions.

Theorem 2. Suppose that the functions g,∆1g satisfy the conditions

|g (n, s, u, v)− g (n, s, ū, v̄)| ≤ r (n)w (s) [|u− ū|+ |v − v̄|] , (2.10)
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|∆1g (n, s, u, v)−∆1g (n, s, ū, v̄)| ≤ r (n)w1 (s) [|u− ū|+ |v − v̄|] , (2.11)

where r, w, w1 ∈ D (Nα,β, R+) and

d2 =

β∑
s=α

[w (s) + w1 (s)] r (s) < 1. (2.12)

If x ∈ D (Nα,β, R
m) is any solution of equation (1.1), then

|x (n)− f (n)|+ |∆x (n)−∆f (n)|

≤ Q(n) + r (n)

{
1

1− d2

β∑
s=α

[w (s) + w1 (s)]Q (s)

}
, (2.13)

for n ∈ Nα,β, where

Q (n) =

β∑
τ=α

[|g (n, τ, f (τ) ,∆f (τ))|+ |∆1g (n, τ, f (τ) ,∆f (τ))|]. (2.14)

Proof. Since x(n) is a solution of equation (1.1), by using the hypotheses, we
have

|x (n)− f (n)|+ |∆x (n)−∆f (n)|

≤
β∑
s=α

|g (n, s, x (s) ,∆x (s))− g (n, s, f (s) ,∆f (s))|+
β∑
s=α

|g (n, s, f (s) ,∆f (s))|

+

β∑
s=α

|∆1g (n, s, x (s) ,∆x (s))−∆1g (n, s, f (s) ,∆f (s))|+
β∑
s=α

|∆1g (n, s, f (s) ,∆f (s))|

≤ Q (n) +

β∑
s=α

r (n)w (s) [|x (s)− f (s)|+ |∆x (s)−∆f (s)|]

+

β∑
s=α

r (n)w1 (s) [|x (s)− f (s)|+ |∆x (s)−∆f (s)|]

= Q (n) + r (n)

β∑
s=α

[w (s) + w1 (s)] [|x (s)− f (s)|+ |x (s)− f (s)|+ |∆x (s)−∆f (s)|].

(2.15)

Now, an application of Lemma to (2.15) yields (2.13).
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3. Uniqueness and Continuous Dependence

In this section, we study the uniqueness of solutions of equation (1.1) and also
the dependency of solutions of equations of the form (1.1) on patrameters.

The following theorem deals with the uniqueness of solutions of equation
(1.1).

Theorem 3. Suppose that the functions g,∆1g satisfy the conditions (2.10),
(2.11) and the condition (2.12) holds. Then the equation (1.1) has at most
one solution on Nα,β.

Proof. Let x1 (n) and x2 (n) be two solutions of equation (1.1) on Nα,β.
Using these facts and the hypotheses, we have

|x1 (n)− x2 (n)|+ |∆x1 (n)−∆x2 (n)|

≤
β∑
s=α

|g (n, s, x1 (s) ,∆x1 (s))− g (n, s, x2 (s) ,∆x2 (s))|

+

β∑
s=α

|∆1g (n, s, x1 (s) ,∆x1 (s))−∆1g (n, s, x2 (s) ,∆x2 (s))|

≤
β∑
s=α

r (n)w (s) [|x1 (s)− x2 (s)|+ |∆x1 (s)−∆x2 (s)|]

+

β∑
s=α

r (n)w1 (s) [|x1 (s)− x2 (s)|+ |∆x1 (s)−∆x2 (s)|]

= r (n)

β∑
s=α

[w (s) + w1 (s)] [|x1 (s)− x2 (s)|+ |∆x1 (s)−∆x2 (s)|]. (3.1)

Now, a suitable application of Lemma to (3.1) yields |x1 (n)− x2 (n)|+
|∆x1 (n)−∆x2 (n)| ≤ 0, which implies x1 (n) = x2 (n). Thus, there is at most
one solution to equation (1.1).
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We next consider the following sum-difference equations

z (n) = f (n) +

β∑
s=α

g (n, s, z (s) ,∆z (s) , µ) , (3.2)

z (n) = f (n) +

β∑
s=α

g (n, s, z (s) ,∆z (s) , µ0) , (3.3)

for n ∈ Nα,β, where f ∈ D (Nα,β, R
m) , g ∈ D

(
N2
α,β ×Rm ×Rm ×R,Rm

)
and

µ, µ0 are real parameters.

Finally, we give the following theorem which shows the dependency of solu-
tions of equations (3.2), (3.3) on parameters.

Theorem 4. Suppose that the functions g,∆1g satisfy the conditions

|g (n, s, u, v, µ)− g (n, s, ū, v̄, µ)| ≤ r̄ (n) w̄ (s) [|u− ū|+ |v − v̄|] , (3.4)

|g (n, s, u, v, µ)− g (n, s, u, v, µ0)| ≤ γ (n, s) |µ− µ0| , (3.5)

|∆1g (n, s, u, v, µ)−∆1g (n, s, ū, v̄, µ)| ≤ r̄ (n) w̄1 (s) [|u− ū|+ |v − v̄|] , (3.6)

|∆1g (n, s, u, v, µ)−∆1g (n, s, u, v, µ0)| ≤ γ1 (n, s) |µ− µ0| , (3.7)

where r̄, w̄, w̄1 ∈ D (Nα,β, R+), γ, γ1 ∈ D
(
N2
α,β, R+

)
. Let

γ̄ (n) = |µ− µ0|
β∑

τ=α

[γ (n, τ) + γ1 (n, τ)], (3.8)

and suppose that

d3 =

β∑
s=α

[w̄ (s) + w̄1 (s)] r̄ (s) < 1. (3.9)

Let z1 (n) and z2 (n) be the solutions of equations (3.2) and (3.3) respectively.
Then

|z1 (n)− z2 (n)|+ |∆z1 (n)−∆z2 (n)|

≤ γ̄ (n) + r̄ (n)

{
1

1− d3

β∑
s=α

[w̄ (s) + w̄1 (s)] γ̄ (s)

}
, (3.10)
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for n ∈ Nα,β.

Proof. Let w (n) = z1 (n)− z2 (n) . Using the facts that z1 (n) and z2 (n) are
the solutions of equations (3.2) and (3.3), we have

|w (n)|+ |∆w (n)|

≤
β∑
s=α

|g (n, s, z1 (s) ,∆z1 (s) , µ)− g (n, s, z2 (s) ,∆z2 (s) , µ0)|

+

β∑
s=α

|∆1g (n, s, z1 (s) ,∆z1 (s) , µ)−∆1g (n, s, z2 (s) ,∆z2 (s) , µ0)|

≤
β∑
s=α

|g (n, s, z1 (s) ,∆z1 (s) , µ)− g (n, s, z2 (s) ,∆z2 (s) , µ)|

+

β∑
s=α

|g (n, s, z2 (s) ,∆z2 (s) , µ)− g (n, s, z2 (s) ,∆z2 (s) , µ0)|

+

β∑
s=α

|∆1g (n, s, z1 (s) ,∆z1 (s) , µ)−∆1g (n, s, z2 (s) ,∆z2 (s) , µ)|

+

β∑
s=α

|∆1g (n, s, z2 (s) ,∆z2 (s) , µ)−∆1g (n, s, z2 (s) ,∆z2 (s) , µ0)|

≤
β∑
s=α

r̄ (n) w̄ (s) [|z1 (s)− z2 (s)|+ |∆z1 (s)−∆z2 (s)|]

+

β∑
s=α

γ (n, s) |µ− µ0|

+

β∑
s=α

r̄ (n) w̄1 (s) [|z1 (s)− z2 (s)|+ |∆z1 (s)−∆z2 (s)|]

+

β∑
s=α

γ1 (n, s) |µ− µ0|

= γ̄ (n) + r̄ (n)

β∑
s=α

[w̄ (s) + w̄1 (s)] [|w (s)|+ |∆w (s)|] . (3.11)
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Now an application of Lemma to (3.11) yields (3.10), which shows the
dependency of solutions of equations (3.2) and (3.3) on parameters.

Remark 2. We note that the results obtained in this paper can be very
easily extended to the study of discrete analogue of the more general Fred-
holm type integrodifferential equation recently studied in [9]. Moreover, our
approach here can be used to study the qualitative behavior of solutions of
equations of the form (1.1) in more than one dimension. Naturally, these con-
siderations will make the analysis more complicated and we leave them for
future investigations.
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[2] A. M. Bica, V.A. Cǎuş, and S. Mureşan, Application of a trapezoid
inequality to neutral Fredholm Integro-differential equations in Banach
spaces, J. Inequal. Pure and Appl. Math., 7 no. 5, Art.173, 2006.

[3] H. Brunner and P. J. Van der Houwen, The numerical solution of Volterra
equations, CWI Monographs, 3, North-Holland, Amsterdam, 1986.

[4] B. Cahlon and D. Westreich, Complete continuity of integro-differential
operators with discontinuous kernels and collectively compact approxima-
tions, J. Math. Anal. Appl., 71(1979), 313-332.

[5] B. Cahlon, L. J. Nachman, and D. Schmidt, Numerical solution of Volterra
integral equations with delay arguments, J. Integral Equations, 7(1984),
191-208.

[6] M. Kwapisz, Some existence and uniqueness results for boundary value
problems for difference equations, Applicable Analysis, 37(1990), 169-182.



432 B. G. Pachpatte

[7] B. G. Pachpatte, Inequalities for Finite Difference Equations, Marcel
Dekker, Inc., New York, 2002.

[8] B. G. Pachpatte, Integral and Finite Difference Inequalities and Appli-
cations, North-Holland Mathematics Studies, Vol. 205, Elsevier Science
B.V., Amsterdam 2006.

[9] B. G. Pachpatte, On Fredholm type integrodifferential equation, Tamkang
J. Math., 39(2008), 85-94.

[10] B. G. Pachpatte, On Volterra and Fredholm type integrodifferential equa-
tions, Tamusi Oxford J. Math. Sci., 24(2008), 289-310.


