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Abstract

Let H(B) denote the space of all holomorphic functions on the unit
ball B of Cn and <h(z) =

∑n
j=1 zj

∂h
∂zj

(z) the radial derivative of h. In

this paper we study the boundedness and compactness of the extended
Cesàro operator

Tg(f)(z) =

∫ 1

0
f(tz)<g(tz)

dt

t
, f ∈ H(B), z ∈ B,

from mixed norm spaces to Zygmund type spaces.

Keywords and Phrases: Mixed norm space, Zygmund type space, Extended
Cesàro operator.

1. Introduction

Let B be the unit ball of Cn and dv the normalized Lebesgue measure on
B. Let H(B) be the class of all holomorphic functions in B and <f(z) =
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∑n
j=1 zj

∂f
∂zj

(z) stand for the radial derivative of f ∈ H(B). It is well known

that, if f =
∑

α aαz
α ∈ H(B), then

<f(z) =
∑
α

|α|aαzα,

where α is a multi-index. We write <2f for <(<f) (see [25]).
A positive continuous function µ on the interval [0, 1) is called normal if

there is δ ∈ [0, 1) and s and t, 0 < s < t such that

µ(r)

(1− r)s
is decreasing on [δ, 1) and lim

r→1

µ(r)

(1− r)s
= 0;

µ(r)

(1− r)t
is increasing on [δ, 1) and lim

r→1

µ(r)

(1− r)t
=∞. (1)

If we say that µ : B → [0,∞) is normal we will assume that µ(z) = µ(|z|), z ∈
B (see, e.g. [4, 21]).

Let ν be a normal function on [0, 1). For 0 < p, q < ∞, the mixed norm
space H(p, q, ν) = H(p, q, ν)(B) consists of all f ∈ H(B) such that

‖f‖H(p,q,ν) =

(∫ 1

0

Mp
q (f, r)

νp(r)

1− r
dr

)1/p

<∞,

where

Mq(f, r) =

(∫
S

|f(rζ)|qdσ(ζ)

)1/q

.

For p = q and ϕ(r) = (1 − r2)
α+1
p , the mixed norm space is equivalent to the

weighted Bergman space Apα = Apα(B), which consists of all f ∈ H(B) such
that

‖f‖p
Apα

=

∫
B

|f(z)|p(1− |z|2)αdv(z) <∞.

Recall that the Bloch space B = B(B) is the space of all f ∈ H(B) for
which (see [25])

b(f) = sup
z∈B

(1− |z|2) |<f(z)| <∞.

Under the norm introduced by ‖f‖B = |f(0)|+ b(f), B is a Banach space.
Let Λ = Λ(B) denote the class of all f ∈ H(B) such that

sup
z∈B

(1− |z|2)|<2f(z)| <∞. (2)
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Denote by A(B) the ball algebra on B. From [25, p. 261] we see that f ∈ Λ
if and only if f ∈ A(B) and there exists a constant C > 0 for which

|f(ζ + h) + f(ζ − h)− 2f(ζ)| < Ch,

for all ζ ∈ ∂B and ζ ± h ∈ ∂B, the boundary of B. Write

‖f‖Λ = |f(0)|+ sup
z∈B

(1− |z|2)|<2f(z)|. (3)

From [25] we see that Λ is a Banach space with the norm ‖ · ‖Λ. Λ is called
the Zygmund space. Let Λ0 denote the class of all f ∈ H(B) such that

lim
|z|→1

(1− |z|2)|<2f(z)| = 0.

It is natural to generalize the Zygmund space to a more general form. Let
µ :: B → [0,∞) be normal. An f ∈ H(B) is said to belong to the Zygmund
type space, denoted by Λµ = Λµ(B), if

sup
z∈B

µ(z)|<2f(z)| <∞. (4)

Under the norm

‖f‖Λµ = |f(0)|+ sup
z∈B

µ(z)|<2f(z)|, (5)

Λµ becomes a Banach space. Let Λµ,0 denote the subspace of Λµ consisting of
those f ∈ Λµ such that

lim
|z|→1

µ(z)|<2f(z)| = 0, (6)

which will be called the little Zygmund type space.
Suppose that g ∈ H(B). We consider the extended Cesàro operator (or

the Riemann-Stieltjes operator) Tg as follows

Tgf(z) =

∫ 1

0

f(tz)
dg(tz)

dt
=

∫ 1

0

f(tz)<g(tz)
dt

t
, f ∈ H(B), z ∈ B. (7)

This operator was introduced in [4], and was studied in [1, 2, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 19, 22, 23, 24, 26, 27]. For example, the boundedness
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and compactness of the extended Cesàro operator on Bloch spaces and Bloch
type spaces, were studied in [5, 10, 19, 22, 23, 26, 27]. In [16], Li and Stević
studied the boundedness and compactness of the extended Cesàro operator on
Zygmund spaces.

In this paper, we study the operator Tg from mixed norm spaces to Zyg-
mund type spaces. Some sufficient and necessary conditions for the operator
Tg to be bounded or compact are given.

Throughout the paper, constants are denoted by C, they are positive and
may not be the same in every occurrence.

2. Auxiliary Results

In order to prove the main results of this paper, we need some lemmas which
follows.

Lemma 1. ([4]) For every f, g ∈ H(B) it holds <[Tg(f)](z) = f(z)<g(z).

Lemma 2. Assume that 0 < p, q < ∞, g ∈ H(B), ν : B → [0,∞) and
µ : B → [0,∞) are normal. Then Tg : H(p, q, ν) → Λµ is compact if and
only if Tg : H(p, q, ν) → Λµ is bounded and for any bounded sequence (fk)k∈N
in H(p, q, ν) which converges to zero uniformly on compact subsets of B as
k →∞, we have ‖Tgfk‖Λµ → 0 as k →∞.
Proof. The proof follows by standard arguments similar to those outlined in
Proposition 3.11 of [3]. We omit the details.

Lemma 3. Assume that µ : B → [0,∞) is normal. A closed set K in Λµ,0 is
compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(z)|<2f(z)| = 0.

Proof. The proof is similar to the proof of Lemma 1 in [18]. We omit the
details.

Lemma 4. ([20]) Assume that 0 < p, q <∞ and ν : B → [0,∞) is normal. If
f ∈ H(p, q, ν), then there is a positive constant C independent of f such that

|f(z)| ≤ C
‖f‖H(p,q,ν)

ν(z)(1− |z|2)
n
q

, z ∈ B. (8)
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Similarly to the proof of Lemma 1 of [20] and by using the following well-
known asymptotic formula (see, e.g. [4])∫ 1

0

Mp
q (f, r)

νp(r)

1− r
dr � |f(0)|q +

∫ 1

0

Mp
q (<f, r)νp(r)(1− r)p−1dr

we obtain the following lemma.

Lemma 5. Assume that 0 < p, q < ∞ and ν : B → [0,∞) is normal. If
f ∈ H(p, q, ν), then there is a positive constant C independent of f such that

|<f(z)| ≤ C
‖f‖H(p,q,ν)

ν(z)(1− |z|2)
n
q

+1
, z ∈ B. (9)

3. Main Results and Proofs

In this section, we give our main results and proofs.

Theorem 1. Assume that 0 < p, q < ∞, g ∈ H(B), ν : B → [0,∞) and
µ : B → [0,∞) are normal. Then Tg : H(p, q, ν)→ Λµ is bounded if and only
if

M1 := sup
z∈B

µ(z)|<g(z)|
ν(z)(1− |z|2)

n
q

+1
<∞ (10)

and

M2 := sup
z∈B

µ(z)|<2g(z)|
ν(z)(1− |z|2)

n
q

<∞. (11)

Proof. Assume that (10) and (11) hold. For any f ∈ H(p, q, ν), using Lemmas
1, 4 and 5 we have

µ(z)|<2(Tgf)(z)| = µ(z)|<f(z)<g(z) + f(z)<2g(z)|

≤ C‖f‖H(p,q,ν)
µ(z)|<g(z)|

ν(z)(1− |z|2)
n
q

+1
+ C‖f‖H(p,q,ν)

µ(z)|<2g(z)|
ν(z)(1− |z|2)

n
q

. (12)
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On the other hand, we have that Tg(f)(0) = 0. On account of the conditions
(10) and (11), the boundedness of the operator Tg : H(p, q, ν) → Λµ follows
from (12) by taking the supremum over B.

Conversely, assume that Tg : H(p, q, ν) → Λµ is bounded. By taking the
function f(z) = 1, we get g ∈ Λµ, i.e.

sup
z∈B

µ(z)|<2g(z)| <∞. (13)

Taking the functions given by fj(z) = zj, j = 1, . . . , n, we obtain

sup
z∈B

µ(z)|zj<g(z) + zj<2g(z)| <∞, j = 1, . . . , n. (14)

(14) together with g ∈ Λµ imply

sup
z∈B

µ(z)|zj<g(z)| <∞, (15)

for each j = 1, . . . , n. From (15) we get

sup
1/3<|z|<1

µ(z)|<g(z)| ≤ 3 sup
1/3<|z|<1

n∑
j=1

µ(z)|zj||<g(z)| <∞,

from which we obtain

sup
z∈B

µ(z)|<g(z)| <∞. (16)

For a ∈ B, set

fa(z) =
(1− |a|2)t+1

ν(a)(1− 〈z, a〉)
n
q

+t+1
. (17)

From [20] we see that fa ∈ H(p, q, ν) and supa∈B ‖fa‖H(p,q,ν) <∞. By Lemma
1 we have

∞ > ‖Tgfa‖Λµ = sup
z∈B

µ(z)|<2(Tgfa)(z)| = sup
z∈B

µ(z)|<(fa · <g)(z)|

= sup
z∈B

µ(z)|<fa(z)<g(z) + fa(z)<2g(z)|

≥ (
n

q
+ t+ 1)

µ(a)|a|2|<g(a)|
ν(a)(1− |a|2)

n
q

+1
− µ(a)|<2g(a)|
ν(a)(1− |a|2)

n
q

. (18)
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Set

ha(z) =
1

n
q

+ t+ 1

(1− |a|2)t+1

ν(a)(1− 〈z, a〉)
n
q

+t+1
− 1

n
q

+ t+ 2

(1− |a|2)t+2

ν(a)(1− 〈z, a〉)
n
q

+t+2
.(19)

Then, as the case of fa, ha ∈ H(p, q, ν) and supa∈B ‖ha‖H(p,q,ν) <∞ . Since

<ha(a) = 0, ha(a) =
1

n
q

+ t+ 1

1
n
q

+ t+ 2

1

ν(a)(1− |a|2)
n
q

,

we obtain

∞ > ‖Tgha‖Λµ = sup
z∈B

µ(z)|<ha(z)<g(z) + ha(z)<2g(z)|

≥ µ(a)|<ha(a)<g(a) + ha(a)<2g(a)|
= µ(a)|ha(a)<2g(a)|

=
1

n
q

+ t+ 1

1
n
q

+ t+ 2

µ(a)|<2g(a)|
ν(a)(1− |a|2)

n
q

, (20)

which means that (11) holds by the arbitrary of a ∈ B.
From (18) and (20) we obtain

sup
a∈B

µ(a)|a|2|<g(a)|
ν(a)(1− |a|2)

n
q

+1
<∞, (21)

which implies that

sup
|a|> 1

3

µ(a)|<g(a)|
ν(a)(1− |a|2)

n
q

+1
< 9 sup

|a|> 1
3

µ(a)|a|2|<g(a)|
ν(a)(1− |a|2)

n
q

+1
<∞. (22)

From (16),

sup
|a|≤ 1

3

µ(a)|<g(a)|
ν(a)(1− |a|2)

n
q

+1
< C sup

|a|≤ 1
3

µ(a)|<g(a)| <∞. (23)

Combining (22) with (23) we get (10). The proof of this theorem is completed.
2
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Theorem 2. Assume that 0 < p, q < ∞, g ∈ H(B), ν : B → [0,∞) and
µ : B → [0,∞) are normal. Then Tg : H(p, q, ν)→ Λµ,0 is bounded if and only
if Tg : H(p, q, ν)→ Λµ is bounded, g ∈ Λµ,0 and

lim
|z|→1

µ(z)|<g(z)| = 0. (24)

Proof. Assume Tg : H(p, q, ν) → Λµ,0 is bounded. Then it is clear that
Tg : H(p, q, ν) → Λµ is bounded. Taking f = 1, from the boundedness of
Tg : H(p, q, ν) → Λµ,0 it follows that g ∈ Λµ,0. By taking the functions given
by fj(z) = zj, j = 1, . . . , n, and similarly to the proof of the Theorem 6 of
[17], we see that (24) holds .

Conversely, suppose that Tg : H(p, q, ν) → Λµ is bounded, g ∈ Λµ,0 and
(24) holds. For any polynomial p(z),

µ(z)|<2(Tgp)(z)| ≤ µ(z)|<g(z)||<p(z)|+ µ(z)|<2g(z)||p(z)|. (25)

From g ∈ Λµ,0 and (24), we have that Tgp ∈ Λµ,0. Since the set of all polyno-
mials is dense in Hp,q,ν we have that for each f ∈ Hp,q,ν , there exist a sequence
of polynomials (pk)k∈N such that ‖f − pk‖Hp,q,ν → 0, as k → ∞. From the
boundedness of the operator Tg : Hp,q,ν → Λµ, we have

‖Tgf − Tgpk‖Λµ ≤ ‖Tg‖Hp,q,ν→Λµ‖f − pk‖Hp,q,ν .

From this and since Λµ,0 is closed, we obtain

Tgf = lim
k→∞

Tgpk ∈ Λµ,0,

which together with the boundedness of Tg : Hp,q,ν → Λµ implies the bound-
ednes of Tg : Hp,q,ν → Λµ,0. The proof of this theorem is completed. 2

Theorem 3. Assume that 0 < p, q < ∞, g ∈ H(B), ν : B → [0,∞) and
µ : B → [0,∞) are normal. Then the following statements are equivalent.

(a) Tg : H(p, q, ν)→ Λµ is compact;
(b) Tg : H(p, q, ν)→ Λµ,0 is compact;
(c)

lim
|z|→1

µ(z)|<g(z)|
ν(z)(1− |z|2)

n
q

+1
= 0 (26)
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and

lim
|z|→1

µ(z)|<2g(z)|
ν(z)(1− |z|2)

n
q

= 0. (27)

Proof. (c) ⇒ (b). Assume that (c) holds. Then, for any f ∈ H(p, q, ν), it
follows from Lemmas 4 and 5 that

µ(z)|<2(Tgf)(z)|

≤ C‖f‖H(p,q,ν)
µ(z)|<g(z)|

ν(z)(1− |z|2)
n
q

+1
+ C‖f‖H(p,q,ν)

µ(z)|<2g(z)|
ν(z)(1− |z|2)

n
q

.

Employing Lemma 3 and condition (c), we see that Tg : H(p, q, ν) → Λµ,0 is
compact.

(b)⇒ (a). This implication is clear.
(a)⇒ (c). Assume that Tg : H(p, q, ν)→ Λµ is compact. Let (zk)k∈N be a

sequence in B such that limk⇀∞ |zk| = 1. Set

fk(z) =
(1− |zk|2)t+1

ν(zk)(1− 〈z, zk〉)
n
q

+t+1
. (28)

Then fk ∈ H(p, q, ν), supk ‖fk‖H(p,q,ν) <∞ and fk → 0 uniformly on compact
subsets of B as k →∞. By Lemma 2,

lim
k→∞
‖Tgfk‖Λµ = 0. (29)

On the other hand, we have

0 ← ‖Tgfk‖Λµ = sup
z∈B

µ(z)|<fk(z)<g(z) + fk(z)<2g(z)|

≥ µ(zk)|<fk(zk)<g(zk) + fk(zk)<2g(zk)|

≥
∣∣∣∣(nq + t+ 1)

µ(zk)|zk|2|<g(zk)|
ν(zk)(1− |zk|2)

n
q

+1
− µ(zk)|<2g(zk)|
ν(zk)(1− |zk|2)

n
q

∣∣∣∣, (30)

as k →∞. Now set

hk(z) =
1

n
q

+ t+ 1

(1− |zk|2)t+1

ν(zk)(1− 〈z, zk〉)
n
q

+t+1
− 1

n
q

+ t+ 2

(1− |zk|2)t+2

ν(zk)(1− 〈z, zk〉)
n
q

+t+2
.
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Then hk ∈ H(p, q, ν), supk ‖hk‖H(p,q,ν) <∞ and hk → 0 uniformly on compact
subsets of B as k →∞. By Lemma 2, it hold limk→∞ ‖Tghk‖Λµ = 0. Since

<hk(zk) = 0 and hk(zk) =
1

n
q

+ t+ 1

1
n
q

+ t+ 2

1

ν(zk)(1− |zk|2)
n
q

,

we have

0← ‖Tghk‖Λµ ≥ sup
z∈B

µ(z)|<hk(z)<g(z) + hk(z)<2g(z)|

≥ µ(zk)|<hk(zk)<g(zk) + hk(zk)<2g(zk)|

≥ 1
n
q

+ t+ 1

1
n
q

+ t+ 2

µ(zk)|<2g(zk)|
ν(zk)(1− |zk|2)

n
q

, (31)

as k →∞, which means that (27) holds. It follows from (30) and (31) that

lim
k→∞

(
n

q
+ t+ 1)

µ(zk)|zk|2|<g(zk)|
ν(zk)(1− |zk|2)

n
q

+1
= lim

k→∞

µ(zk)|<2g(zk)|
ν(zk)(1− |zk|2)

n
q

, (32)

if one of the limits exists. From (27) and (32), (26) follows. The proof of this
theorem is completed. 2
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[19] S. Stević, On an integral operator on the unit ball in Cn, J. Inequal. Appl.,
2005 no. 1 (2005), 81-88.
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