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Abstract

Let h be a harmonic function on Rn, n ≥ 2. Then there exists
on entire function f on C such that f(u) = h(u, 0, ...., 0) for all real
u.This fact has been used to deduce theorems for harmonic function
on Rn from classical results about entire functions. Moreover, we have
considered the characterizations of lower order and lower type of h in
terms of coefficients and ratio of these successive coefficients occurring
in power series expansion of f .
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1. Introduction

A twice differentiable function h(x), x = (x1, x2, · · · , xn), which is a solution
of Laplace’s equation

∂2h

∂x21
+
∂2h

∂x22
+ · · ·+ ∂2h

∂x2n
= 0,
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said to be harmonic in Rn, n ≥ 2. If h is harmonic in Rn, n ≥ 2 ,then there
is a unique entire (holomorphic) function on the complex plane C such that
f(u) = h(u, 0, · · · , 0) for all real u.

This fact has been used to deduce theorems for harmonic function on Rn

from classical results about entire functions [7, 11].The space of functions that
are harmonic on Rn is denoted by ℵn and the space of entire functions on
C is denoted by ε. If fεℵn (respectively ε),then we write M∞(f, r) for the
maximum value of |f | on the sphere of radius r centered at origin and

M2(f, r) = (

∫
S

|f(rx)|2dσ(x))1/2,

where S is the unit sphere in Rn (or the unit circle in C) and σ is (n − 1)
dimensional surface measure (or length measure )normalized so that σ(s) = 1.

Let ℵm,n denote the vector space of all homogenous harmonic polynomials
of degree m on Rn. Then ℵm,n is a vector space of dimension

dm = (n+ 2m− 2)
(n+m− 3)!

m!(n− 2)!
.

Suppose that hεℵn. Then h has a unique expansion of the form

h = Σ∞m=0Hm, (1.1)

where Hmεℵm,n, such that the series Σ∞m=0|Hm| is locally uniformly convergent
on Rn[1, p.84].We then say Σ∞m=0Hm is the polynomial expansion of h. Write
e∗ for the vector (1, 0, · · · , 0)in Rn, we have

h(ue∗) = Σ∞m=0Hm(ue∗) = Σ∞m=0Hm(e∗)um for all real u.

Let
f(z) = Σ∞m=0Hm(e∗)zm. (1.2)

The power series converges for all real numbers and hence all complex z,so
fεε.
Following the usual definitions of order and type of an entire function of several
complex variables, the order ρ and type T of h are defined as

ρ = lim
r→∞

sup
log logM∞(h, r)

log r
,

T = lim
r→∞

sup
logM∞(h, r)

rρ
, o < ρ <∞,
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where M∞(h, r)is the maximum value of |h|on the sphere in Rnof radius r
centered at origin.

Using various techniques, the coefficient characterizations of order ρ and
type T in R3 were obtained by Fryant [5] and others. Srivastava [14] also
obtained the coefficient characterizations of lower order and lower type in R3.
However non of them studied the growth of entire harmonic function h in
Rn, n > 3.

In this paper we consider the characterizations of lower order and lower
type in terms of Hm(e∗) and ratio of these coefficients in Rn, n ≥ 2.

2. Auxiliary Results

Lemma 1. The harmonic function hεℵn can be extended to an entire function
if and only if

lim
m→∞

|Hm(e∗)|1/m = 0, (2.1)

where Hm(e∗) are defined in (1.2).

Proof. Since the power series defined by (1.2) is converges for all real and
hence all complex z, so f is entire. Hence using the well known condition for
entire function f we can easily prove the lemma [3,pp.27-28].

Lemma 2. If hεℵn then f and g are also entire functions. Further

K1M∞(f, r) ≤M∞(h, r) ≤M∞(g, r), (2.2)

where g(z) = Σ∞m=o

√
dmHm(e∗)zm,

M∞(f, r) = max
|z|≤r
|f(z)|,M∞(g, r) = max

|z|≤r
|g(z)|,

M∞(h, r) defined as earlier and K1 is a constant depending on m.

Proof. Let hεℵn can be extended to an entire function. In view of (2.1),
we have

lim
m→∞

(
√
dm|Hm(e∗)|)1/m = lim

m→∞
d1/2mm .|Hm(e∗)|1/m = 0,

(
d1/2mm → 1 as m→∞

)
.
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Hence both fand g are entire functions. To prove inequalities in (2.2),we
have by Brolet and Choquet [4, Prop.4]

|Hm(e∗)| ≤
√
dmr

−mM2(H, r) (Hεℵm,n, r > 0), (2.3)

where dm = dimℵm,n. Since the series h =
∑∞

m=0Hm converges uniformly on
every sphere, we have

M2
2 (h, r) =

∞∑
m=0

M2
2 (Hm, r) (r > 0). (2.4)

In view of (2.3) and (2.4), we get

|Hm(e∗)| ≤
√
dmr

−mM2(h, r). (2.5)

The power series expansion of f(z) with the help of (2.5), leads to

M∞(f, r) =
∞∑
m=0

|Hm(e∗)|rm ≤M2(h, r)
∞∑
m=0

√
dm.

Since dm → 2m(n−2)

(n−2)! as m→∞ , it follows that there is a constant K0 = K0(m)
such that

M∞(f, r) ≤M2(h, r)
∞∑
m=0

K0m
(n−2)/2 (m ≥ 1, r > 0)

or

K1M∞(f, r) ≤M2(h, r), K1 =
1∑∞

m=0K0m(n−2)/2 .

It can be easily prove from [6, pp.106] that

M2(h, r) ≤M∞(h, r).

For right hand inequality, following on the lines of proof of [6 ,Lemma 1,pp.106]
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we have

|h(xe∗)| = |
∞∑
m=0

Hm(xe∗)|,

= |
∞∑
m=0

dm∑
j=1

Hmj
(e∗)rmHj

m(rx)|

≤
∞∑
m=0

rm|
dm∑
j=1

Hmj
(e∗)Hj

m(rx)|

≤
∞∑
m=0

rm(
dm∑
j=1

[Hmj
(e∗)]2)

1
2 (

dm∑
j=1

[Hj
m(rx)]2)

1
2 .

Hj
m(rx)

dm
j=1 be an orthonormal basis for ℵm,nas the spaces ℵm,nare mutually

orthogonal in the sense that∫
S

Hm(rx)Hi(rx)dσ(x) = 0,

(Hmεℵm,n, Hiεℵi,n,m 6= i, r > 0). Now in the consequence of the Pythagorean
identity for spherical harmonics[15 ,pp.144], that is the identity

dm∑
j=1

[Hj
m(x)]2 = dm,

for all x on the unit sphere. For, on the sphere of radius r,we get

|h(xe∗)| ≤
∞∑
0

rm|Hm(e∗)|
√
dm.

Thus we have

M∞(h, r) ≤M∞(g, r).

Hence the proof is completed.

Lemma 3. Let fand g be entire functions as defined above.Then orders and
types of f and g are equal.
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Proof. Let f(z) =
∑∞

m=0Hm(e∗)zm be an entire function of order ρ(f) and
type T (f). Then it is well known [3,pp.9-11] that

ρ(f) = lim sup
m→∞

m logm

log |Hm(e∗)|−1
(2.6)

T (f) =
1

eρ
lim sup
m→∞

m|Hm(e∗)|ρ/m (2.7)

Hence for the function g(z) =
∑∞

m=0

√
dmHm(e∗)zm, we have

1

ρ(g)
= lim

m→∞
inf

log
√
dm|Hm(e∗)|−1

m logm

= lim
m→∞

inf
log(dm)−1/2 − log |Hm(e∗)|

m logm

= lim
m→∞

inf

[
log |Hm(e∗)|−1

m logm
− log d

1/2m
m

logm

]
.

Since d
1/2m
m → 1 as m→∞ ,so we get

1

ρ(g)
= lim

m→∞
inf

log |Hm(e∗)|−1

m logm
.

Hence ρ(f) = ρ(g). Now using (2.7) we can easily show that T (f) = T (g) .
Hence the proof is completed.

Let hεℵn can be extended to an entire function of order ρ and type T . In
analogy with these definitions, we define lower order λ and lower type t as

λ ≡ λ(h) = lim
r→∞

inf
log logM∞(h, r)

log r
,

t ≡ t(h) = lim
r→∞

inf
logM∞(h, r)

rρ
, 0 < ρ <∞.

Now we have

Lemma 4. If (|Hm(e∗)|/|Hm+1(e
∗)|) forms a non-decreasing function of m

then (αm/αm+1) also form a non-decreasing function of m, where αm =
√
dm|Hm(e∗)|.
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Proof. We have

αm
αm+1

=

[
(n+ 2m− 2)(m+ 1)

(n+ 2m)(n+m− 2)

]1/2
| Hm(e∗)

Hm+1(e∗)
|.

Let f(x) =
[
(n+2x−2)(x+1)
(n+2x)(n+x−2)

]1/2
. By logarithmic differentiation, we have

F ′(x)

F (x)
=

1

2

[
2

n+ 2x− 2
+

1

x+ 1
− 1

x+ n− 2
− 2

2x+ n

]
> 0 for any x > 0.

Thus F ′(x) > 0 for x > 0. Hence αm

αm+1
is nondecreasing if | Hm(e∗)

Hm+1(e∗)
| is

nondecreasing.

3. Main Results

Theorem 1. Let hεℵn can be extended to an entire function of order ρ, lower
order λ, type T and lower type t. If f and g are entire functions as defined
above, then

ρ(f) = ρ(g) = ρ(h) (3.1)

T (f) = T (g) = T (h) (3.2)

λ(f) ≤ λ(h) ≤ λ(g) (3.3)

t(f) ≤ t(h) ≤ t(g). (3.4)

Proof. Using (2.2), we have

lim sup
r→∞

(inf)
log log(K1M∞(f, r))

log r
≤ lim sup

r→∞
(inf)

log logM∞(h, r)

log r

≤ lim sup
r→∞

(inf)
log logM∞(g, r)

log r
.

It is well known [3, p-13] that for an entire function f of finite order,

logM∞(f, r) ' logm(f, r) as r →∞.

Where m(f, r) is the maximum term in the power series expansion of f(z).
Hence in view of above inequalities we get

ρ(f) ≤ ρ(h) ≤ ρ(g);λ(f) ≤ λ(h) ≤ λ(g).
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Since ρ(f) = ρ(g) ,we thus obtain (3.1) and (3.3). Denoting by ρ the common
value of orders of f, g and h, we have from (2.2),

lim sup
r→∞

logm(f, r)

rρ
≤ lim sup

r→∞

logM∞(h, r)

rρ
≤ lim sup

r→∞

logM∞(g, r)

rρ
.

Hence using Lemma 3 we get (3.2). Similarly we can prove (3.4).

Theorem 2. Let hεℵn can be extended to an entire function of order ρ(0 <
ρ <∞), type T and lower type t. Then

lim
m→∞

inf
m

ρ
(
|Hm+1(e

∗)|
|Hm(e∗)|

)ρ ≤ t ≤ T ≤ lim sup
m→∞

m

ρ
(
|Hm+1(e

∗)|
|Hm(e∗)|

)ρ. (3.5)

Further, if (|Hm(e∗)|/|Hm+1(e
∗)|) forms a non-decreasing function of m for all

m > m0, then

lim sup
m→∞

m

ρ
(
|Hm+1(e

∗)|
|Hm(e∗)|

)ρ ≤ eT, (3.6)

lim sup
m→∞

logm

log(|Hm(e∗)|/|Hm+1(e∗)|)
= ρ. (3.7)

Proof. If F (z) =
∑∞

m=0Hm(e∗)zm is an entire function of order ρ, type T and
lower type t , then we have [8, Thm.1]

lim
m→∞

inf
m

ρ
|Hm+1(e

∗)

Hm(e∗)
|ρ ≤ t ≤ T ≤ lim sup

m→∞

m

ρ
|Hm+1(e

∗)

Hm(e∗)
|ρ. (3.8)

Applying left hand inequality to f(z) =
∑∞

m=0Hm(e∗)zm , we get

lim
m→∞

inf
m

ρ

[
|Hm+1(e

∗)

Hm(e∗)
|
]ρ
≤ t(f), i.e, t(f) ≤ t(h) = t.

To prove right hand inequality of (3.5),we consider the entire function
g(z) =

∑∞
m=0

√
dmHm(e∗)zm . Then we obtain

T (g) ≤ lim sup
m→∞

m

ρ

[
|Hm+1(e

∗)

Hm(e∗)
|
(

(n+m− 2)(n+ 2m)

(n+ 2m− 2)(m+ 1)

)1/2
]ρ
.
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Now we consider

1

2
[log(n+m− 2) + log(n+ 2m)− log(n+ 2m− 2)− log(m+ 1)]

=
1

2
[logm+ log(1 +

n− 2

m
) + log 2m+ log(1 +

n

2m
)− log 2m

− log(1 +
n− 2

2m
)− logm− log(1 + 1/m)].

Since n ≥ 2 , we have

=
1

2
[(
n− 2

m
− (n− 2)2

2m2
+

(n− 2)3

3m3
...) + (

n

2m
− n2

8m2
+ ...)

− (
n− 2

2m
− (n− 2)2

8m2
+ ...)− (

1

m
− 1

2m2
+ ...)]→ 0 as m→∞.

Hence [
(n+m− 2)(n+ 2m)

(n+ 2m− 2)(m+ 1)

]1/2
→ 1 as m→∞.

Since T (g) = T (h) = T ,We get from above inequality

T ≤ lim sup
m→∞

m

ρ
|Hm+1(e

∗)

Hm(e∗)
|ρ.

Hence the proof of (3.5) is completed.

To prove (3.6) and (3.7), let us consider an entire function f(z) =
∑∞

m=0Hm(e∗)zm

of order ρ(f) and type T (f) . If | Hm(e∗)
Hm+1(e∗)

| forms a non-decreasing function of

m for m > m0 then we know ([12],[2,Thm.2]) that

ρ(f) = lim sup
m→∞

logm

log |Hm(e∗)/Hm+1(e∗)|
. (3.9)

Further we know [8, Thm.3] that

lim sup
m→∞

m

ρ(f)
|Hm+1(e

∗)

Hm(e∗)
|ρ(f) ≤ eT (f). (3.10)

Let us suppose that |Hm(e∗)/Hm+1(e
∗)| forms a non-decreasing function

of m for m > m0. From Lemma 4, (αm/αm+1) also forms a non-decreasing
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function of m for m > m0. Applying (3.9) to g(z) =
∑∞

m=0

√
dmHm(e∗)zm, we

get

ρ(g) = lim sup
m→∞

logm

log(αm/αm+1)

= lim sup
m→∞

logm

log |Hm(e∗)/Hm+1(e∗)|+ 1
2 [log(n + 2m− 2) + log(m + 1)− log(n− 2m)− log(n + m− 2)]

= lim sup
m→∞

logm

log |Hm(e∗)/Hm+1(e∗)|
,

using the calculations of the first part. Since ρ(g) = ρ(h) = ρ, we obtain (3.7).
Now using (3.10) for g(z) =

∑∞
m=0

√
dmHm(e∗)zm, we get

lim sup
m→∞

m

ρ(g)

[
|Hm+1(e

∗)

Hm(e∗)
|
[

(n+ 2m)(n+m− 2)

(n+ 2m− 2)(m+ 1)

]1/2]ρ(g)
≤ eT (g).

Since ρ(g) = ρ(h) = ρ, T (g) = T (h) = T, we thus obtain

lim sup
m→∞

m

ρ
|Hm+1(e

∗)

Hm(e∗)
|ρ ≤ eT.

Hence the proof of Theorem 2 is completed.

Finally we obtain the coefficient characterizations of the lower order λ and
lower type t of hεℵn.

Theorem 3. Let hεℵn can be extended to an entire function of order ρ, 0 <
ρ < ∞, lower order λ ,and lower type t. If |Hm(e∗)/Hm+1(e

∗)| forms a non-
decreasing function of m for m > m0, then

λ = lim inf
m→∞

m logm

log |Hm(e∗)|−1
(3.11)

t = lim inf
m→∞

m

eρ
|Hm(e∗)|ρ/m. (3.12)
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Proof. For entire function f(z) =
∑∞

m=0Hm(e∗)zm, if |Hm(e∗)/Hm+1(e
∗)|

forms a non-decreasing function ofm form > m0 then we have ([9,Thm.2],[11]),

λ(f) = lim inf
m→∞

m logm

log |Hm(e∗)|−1
. (3.13)

Let |Hm(e∗)/Hm+1(e
∗)| forms a non-decreasing function of m for m > m0.

Applying Lemma 4 and (3.13) to g(z) =
∑∞

m=0

√
dmHm(e∗)zm,

λ(g) = lim inf
m→∞

m logm

logHm(e∗)|−1 − log(dm)1/2

= lim inf
m→∞

m logmlogHm(e∗)−1

.
(3.14)

In view of (3.3) with the relations (3.13) and (3.14), the proof of (3.11) is
completed.

If f(z) =
∑∞

m=0Hm(e∗)zm is an entire function of order ρ(f), lower type
t(f) and |Hm(e∗)/Hm+1(e

∗)| forms a non-decreasing function of m for m > m0,
then by a result of Shah [13], we get

t(f) = lim inf
m→∞

m

eρ(f)
|Hm(e∗)|ρ(f)/m,

t(g) = lim inf
m→∞

m

eρ(g)
|Hm(e∗)|ρ(g)/m.

(3.12) now follows in view of (3.1) and (3.4). This completes the proof of
Theorem 3.

Theorem 4. Let hεℵn can be extended to an entire function of lower or-
der λ, and let |Hm(e∗)/Hm+1(e

∗)| forms a non-decreasing function of m for
m > m0. Then

λ = lim inf
m→∞

logm

log |Hm(e∗)/Hm+1(e∗)|
(3.15)

Proof . For an entire function f(z) =
∑∞

m=0Hm(e∗)zm, from [10,corol-
lary,p.312], we have

λ(f) = lim inf
m→∞

logm

log |Hm(e∗)/Hm+1(e∗)|
(3.16)
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provided |Hm(e∗)/Hm+1(e
∗)| forms a non-decreasing function of m for m > m0.

Using the condition on {αm} we can easily prove, that

λ(g) = lim inf
m→∞

logm

log |Hm(e∗)/Hm+1(e∗)|
(3.17)

The relation (3.15) follows in views in view of (3.3) with (3.16) and (3.17).
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