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Abstract

Recently, there are several censoring schemes that have been pro-
posed and studied. They are, among others, Chen and Bhattacharyya
(1988), Childs et al. (2003), Chandrasekar et al. (2004) and Balakrish-
nan et al. (2008) for the case of exponential distribution. In this paper,
we propose a new censoring scheme for saving time. A simulation study
has been carried out and comparisons have been investigated with some
known schemes. It is found that the proposed scheme is superior to oth-
ers in some sense.
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1. Introduction

Consider a life testing experiment where n items are simultaneously put on
test at the outset and are not replaced on failure. Let Xi denote the lifetime of
component i, i = 1, ..., n. Suppose that Xi follows an exponential distribution
with common mean lifetime θ. That is, Xi has a probability density f(x |θ ) =
1
θ
e

−x
θ , x > 0, θ > 0.

Let the ordered failure times of these items be denoted by X1:n, X2:n, ...,
Xn:n. Epstein (1954) considered a hybrid censored sampling scheme in which
the life-testing experiment is terminated at a random time T ∗

1 = min{Xr:n,
T}, where both r ∈ {1, 2, ..., n} and T ∈ (0, ∞) are fixed in advance. Chen
and Bhattacharyya (1988) derived the exact distribution of the maximum
likelihood estimator (MLE) as well as a lower confidence bound of the mean θ
based on this scheme. Childs et al. (2003) proposed Type-I and Type-II hybrid
censoring schemes (HCS) and they also derived distributions of MLE of the
unknown parameter. It was shown that the derived distribution is equivalent
to that of Chen and Bhattacharyya (1988) for Type-I HCS.

Chandrasekar et al. (2004) modified these schemes and introduced two
new schemes which are referred to as generalized Type-I and Type-II HCS,
respectively. These schemes may be considered as an extension of Type-I HCS
and Type-II HCS in some sense. In generalized Type-I HCS, one prefixes k,
r ∈ {1, 2, ..., n} and T ∈ (0, ∞) with k < r. If the kth failure occurs before
time T , the experiment terminates at min{Xr:n, T}. If the kth failure occurs
after time T , the experiment terminates at Xk:n. In generalized Type-II HCS,
one prefixes r ∈ {1, 2, ..., n} and T1, T2 ∈ (0, ∞) such that T1 < T2. If the rth
failure occurs before time T1, the experiment terminates at T1; if the rth failure
occurs between T1 and T2, the experiment terminates at Xr:n; otherwise, the
experiment terminates at T2. This HCS guarantees that the experiment time
will not exceed T2.

Balakrishnan et al. (2008) combined the last two schemes of sampling
and introduced an unified hybrid censored sampling (UHCS). In this scheme,
one prefixes k, r ∈ {1, 2, ..., n} and T1, T2 ∈ (0, ∞) such that k < r and
T1 < T2. If the kth failure occurs before time T1, the experiment terminates
at min{max{Xr:n, T1}, T2}. If it occurs between T1 and T2, the experiment
terminates at min{Xr:n, T2} and finally if it occurs after time T2, then the
experiment is terminated at Xk:n. The unified HCS can guarantee that at
least k failures can be observed.
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In this article, we consider a statistical decision-theoretic approach for a
censoring sampling scheme. We propose a new sampling scheme for two pur-
poses. We desire to shorten the total experimental time while we also try to
estimate the parameter accurately in some sense. However, we emphasize the
first purpose. For this reason, we propose a loss function which is a weighted
total time length.

Under this new loss, we propose a combined hybrid censoring sampling
(CHCS) which is formulated and studied in section 2. In section 3, we carry
out some numerical and simulation study. For a given weight and some range of
n and θ, several optimal solutions of the proposed sampling scheme (k, r, T1, T2)
are given in the sense of the proposed loss. Some comparisons have also been
given among some known censoring sampling schemes under our loss. From
the simulation results, it is clear that our proposed optimal CHCS has greatly
improved its practical applicability in the sense of saving experimental time.

2. A Combined Hybrid Censoring Sampling

(CHCS)

Consider a life-testing experiment in which n identical units are put on test.
Let X1, X2, ..., Xn denote the respective lifetimes from a population with
cumulative distribution function F (x) and probability density function f(x).
Let X1:n ≤ X2:n ≤ ... ≤ Xn:n denote its order statistics. We define combined
HCS as follows. Fix k, r ∈ {1, 2, ..., n} and T1, T2 ∈ (0,∞) such that k < r and
T1 < T2. If the kth failure occurs before time T1, the experiment terminates
at min{Xr:n, T1}. However, if the kth failure occurs between T1 and T2, the
experiment is terminated at Xk:n and finally if the kth failure occurs after
time T2, then the experiment terminates at T2. For our later convenience, we
abbreviate this scheme as CHCS(k, r;T1, T2).

In fact, we can categorize the following six cases, and obviously, in each
case some part of data are unobservable. For our convenience, let T ∗ denote
the stopping time of experiment.
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(1) For 0 < T1 < Xk:n(< T2 < Xr:n), T
∗ = Xk:n,

(2) For 0 < T1 < Xk:n(< Xr:n < T2), T
∗ = Xk:n,

(3) For 0 < T1 < T2(< Xk:n < Xr:n), T
∗ = T2,

(4) For 0 < Xk:n < Xr:n(< T1 < T2), T
∗ = Xr:n,

(5) For 0 < Xk:n < T1(< Xr:n < T2), T
∗ = T1,

(6) For 0 < Xk:n < T1(< T2 < Xr:n), T
∗ = T1,

where the data in parentheses are unobservable.
In those six situations, we see that except Case (3), there will be at least

k failures, and for Case (3), we may have no exact life data.
Let Dj denote the number of failures until Tj , j = 1, 2. Obviously, D1 ≤

D2. Then, the likelihood function of this combined HCS is given as follows:

L
(
θ
∣∣∣x
˜

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n!
(n−k)!

k∏
i=1

f(xi) [1− F (xk)]
n−k D1 = 0, · · · , k − 1;D2 = k,

n!
(n−D2)!

D2∏
i=1

f(xi) [1− F (T2)]
n−D2 D1 = 0, · · · , k − 1;D2 = 0, · · · , k − 1;D1 ≤ D2,

n!
(n−r)!

r∏
i=1

f(xi) [1− F (xr)]
n−r D1 = D2 = r,

n!
(n−D1)!

D1∏
i=1

f(xi) [1− F (T1)]
n−D1 D1 = D2 = k, · · · , r − 1.

(2.1)

The MLE for the estimate of θ, denote by
∧
θ, is as follows:

∧
θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑k
i=1xi:n+(n−k)xk:n

k
D1 = 0, · · · , k − 1;D2 = k,∑D2

i=1xi:n+(n−D2)T2

D2
D1 = 0, · · · , k − 1;D2 = 1, · · · , k − 1;D1 ≤ D2,∑r

i=1xi:n+(n−r)xr:n

r
D1 = D2 = r,∑D1

i=1xi:n+(n−D1)T1

D1
D1 = D2 = k, · · · , r − 1,

nT2 D2 = 0.

(2.2)
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Remark 1. Note that when D2 = 0, there is no exact observation of life time.

Theoretically, according to formal definition,
∧
θ should take infinity, however, it

is not practical. For its applicable consideration, here we define its conservative
MLE to be nT2 for this special case.

Based on (2.1) and (2.2), we can compute the following.

Theorem 1. The moment generating function (mgf) of
∧
θ at ω is given by

M∧
θ
(ω) = E(eω

∧
θ)

=

(
1− ωθ

k

)−k k−1∑
j=0

(
n
k

)(
k
j

)
pj1,k

n−j∑
l=k−j

(
n− j
l

)
(q1,k − q2,k)

lqn−j−l
2,k

+
k−1∑
l=1

(
1− ωθ

l

)−l (
n
l

)
qn−l
2,l

l∑
j=0

(
l
j

)
pj1,l(q1,l − q2,l)

l−j

+

(
1− ωθ

r

)−r n∑
l=r

(
n
l

)
pl1,rq

n−l
1,r +

r−1∑
j=k

(
1− ωθ

j

)−j (
n
j

)
pj1,jq

n−j
1,j

+ q
n(1−ωθ)
2 , ω <

k

θ
, (2.3)

where qj = e−Tj/θ (j = 1, 2) and qa,b = 1− pa,b = e−(Ta/θ)(1−(ωθ/b)).

Proof. We condition on the values of D1 and D2 according to the different
situations in equation (2.1).

Then, we can write

M∧
θ
(ω) = E(eω

∧
θ) = EE(eω

∧
θ |D1,D2)

=
k−1∑
j=0

E(eω
∧
θ |D1 = j)P (D1 = j) +

k−1∑
l=1

l∑
j=0

E(eω
∧
θ |D1 = j,D2 = l)P (D1 = j,D2 = l)

+ E(eω
∧
θ |D1 = r)P (D1 = r) +

r−1∑
j=k

E(eω
∧
θ |D1 = j)P (D1 = j)

+ E(eω
∧
θ |D2 = 0)P (D2 = 0). (2.4)
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Equivalently, we have

M∧
θ
(ω) = E(eω

∧
θ)

=
k−1∑
j=0

n!

(n− k)!θk

×
∫ T2

T1

· · ·
∫ T2

xk−1

∫ T1

0

· · ·
∫ x2

0

e−(1/θ)(1−(ωθ/k)){
∑k

i=1xi+(n−k)xk}dx1 · · · dxjdxk · · · dxj+1

+
k−1∑
l=1

l∑
j=0

n!

(n− l)!θl

×
∫ T2

T1

· · ·
∫ T2

xl−1

∫ T1

0

· · ·
∫ x2

0

e−(1/θ)(1−(ωθ/l)){
∑l

i=1xi+(n−l)T2}dx1 · · · dxjdxl · · · dxj+1

+
n!

(n− r)!θr

∫ T1

0

∫ xr

0

· · ·
∫ x2

0

e−(1/θ)(1−(ωθ/r)){
∑r−1

i=1 xi+(n−r+1)xr}dx1 · · · dxr

+
r−1∑
j=k

n!

(n− j)!θj

∫ T1

0

∫ xj

0

· · ·
∫ x2

0

e−(1/θ)(1−(ωθ/j)){
∑j

i=1xi+(n−j)T1}dx1 · · · dxj

+ eωnT2e−nT2/θ. (2.5)

Upon carrying out the necessary integration in equation (2.5) and simpli-
fying the resulting expression, we obtain

M∧
θ
(ω) = E(eω

∧
θ)

=

(
1− ωθ

k

)−k k−1∑
j=0

(
n
k

)(
k
j

)
pj1,k

n−j∑
l=k−j

(
n− j
l

)
(q1,k − q2,k)

lqn−j−l
2,k

+
k−1∑
l=1

(
1− ωθ

l

)−l (
n
l

)
qn−l
2,l

l∑
j=0

(
l
j

)
pj1,l(q1,l − q2,l)

l−j

+

(
1− ωθ

r

)−r n∑
l=r

(
n
l

)
pl1,rq

n−l
1,r +

r−1∑
j=k

(
1− ωθ

j

)−j (
n
j

)
pj1,jq

n−j
1,j

+ q
n(1−ωθ)
2 , ω <

k

θ
,

which completes the proof of the theorem. �
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3. New Loss Function and its Optimal Solution

As it has been mentioned previously, we desire to shorten its total experimental
time for reduction of cost.

Let c denote the cost of unit time, we define the loss function associated
with CHCS(k, r;T1, T2) as follows.

L(θ; CHCS(k, r;T1, T2)) = cT ∗, (3.1)

where T ∗ is the stopping time of the combined HCS.
For notational simplicity, we use L(θ; k, r, T1, T2) henceforth for our pre-

sentation.

Theorem 2. The expected loss is given by

EL(θ; k, r, T1, T2)

= cET ∗ = cEE(T ∗|D1,D2)

= c

{
k−1∑
j=0

n!pj1
(n− k)!j!(k − j)!

n−j∑
l=k−j

(
n− j
l

)

×
[
T2(q1 − q2)

lqn−j−l
2 − θ

l + 1

n−j∑
s=l+1

(
n− j
s

)
(q1 − q2)

sqn−j−s
2

]

+ T2

k−1∑
l=1

(
n
l

)
qn−l
2

l∑
j=0

(
l
j

)
pj1(q1 − q2)

l−j

+
n∑

l=r

(
n
l

)[
T1p

l
1q

n−l
1 − θ

l + 1

n∑
s=l+1

(
n
s

)
ps1q

n−s
1

]
+ T1

r−1∑
j=k

(
n
j

)
pj1q

n−j
1 + T2q

n
2

}
.

(3.2)

Proof. We condition on the values of D1 and D2 according to the different
situations in equation (2.1).

Then, we can write

EL(θ; k, r, T1, T2)

= cET ∗ = cEE(T ∗|D1, D2)

= c

{
k−1∑
j=0

E(T ∗|D1 = j)P (D1 = j) +
k−1∑
l=1

l∑
j=0

E(T ∗|D1 = j,D2 = l)P (D1 = j,D2 = l)

+E(T ∗|D1 = r)P (D1 = r) +
r−1∑
j=k

E(T ∗|D1 = j)P (D1 = j) + E(T ∗|D2 = 0)P (D2 = 0)

}
.

(3.3)
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So, an alternative expression of the risk function in equation (3.3) is given by

EL(θ; k, r, T1, T2)

= cET ∗ = cEE(T ∗|D1, D2)

= c

{
k−1∑
j=0

E(T ∗|D1 = j)P (D1 = j) +
k−1∑
l=1

l∑
j=0

E(T ∗|D1 = j,D2 = l)P (D1 = j,D2 = l)

+E(T ∗|D1 = r)P (D1 = r) +
r−1∑
j=k

E(T ∗|D1 = j)P (D1 = j) + E(T ∗|D2 = 0)P (D2 = 0)

}

= c

{
k−1∑
j=0

n!

(n− k)!θk

×
∫ T2

T1

· · ·
∫ T2

xk−1

∫ T1

0

· · ·
∫ x2

0

xke
−(1/θ){

∑k−1
i=1 xi+(n−k+1)xk}dx1 · · · dxjdxk · · · dxj+1

+
k−1∑
l=1

l∑
j=0

n!

(n− l)!θl

∫ T2

T1

· · ·
∫ T2

xl−1

∫ T1

0

· · ·
∫ x2

0

T2e
−(1/θ){

∑l
i=1xi+(n−l)T2}dx1 · · · dxjdxl · · · dxj+1

+
n!

(n− r)!θr

∫ T1

0

∫ xr

0

· · ·
∫ x2

0

xre
−(1/θ){

∑r−1
i=1 xi+(n−r+1)xr}dx1 · · · dxr

+
r−1∑
j=k

n!

(n− j)!θj

∫ T1

0

∫ xj

0

· · ·
∫ x2

0

T1e
−(1/θ){

∑j
i=1xi+(n−j)T1}dx1 · · · dxj

+ T2e
−nT2/θ

}
. (3.4)

Upon carrying out the necessary integration in equation (3.4) and simplifying
the resulting expression, we can finally conclude that

EL(θ; k, r, T1, T2)

= c

{
k−1∑
j=0

n!pj1
(n− k)!j!(k − j)!

n−j∑
l=k−j

(
n− j
l

)

×
[
T2(q1 − q2)

lqn−j−l
2 − θ

l + 1

n−j∑
s=l+1

(
n− j
s

)
(q1 − q2)

sqn−j−s
2

]

+ T2

k−1∑
l=1

(
n
l

)
qn−l
2

l∑
j=0

(
l
j

)
pj1(q1 − q2)

l−j

+
n∑
l=r

(
n
l

)[
T1p

l
1q

n−l
1 − θ

l + 1

n∑
s=l+1

(
n
s

)
ps1q

n−s
1

]
+ T1

r−1∑
j=k

(
n
j

)
pj1q

n−j
1 + T2q

n
2

}
.

(3.5)
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For a given θ, and prefixed c, computationally, we can find value k0, r0,
T10 and T20 so that

EL(θ; k0, r0, T10, T20) = min
1≤k<r

min
r≤n

min
T1<T2

EL(θ; k, r, T1, T2) (3.6)

Obviously, if θ were known, CHCS(k0, r0;T10, T20) is the best we can choose
in the sense of our loss. Thus, it is our optimal solution to our censoring
sampling problem.

To compute the optimal solution (k0, r0, T10, T20), we can apply equation
(3.5) to obtain its solutions. However, here we apply Monte Carlo method to
find the optimal solutions when some various values of θ, n and c are given.
These results will be explained in next section.

4. Some Simulated Optimal Solutions and Nu-

merical Comparisons

For given θ, n and c, we take a sample of size n from exponential population
with mean θ. For this complete data, we simultaneously apply the proposed
Combined, Generalized Type-I, Generalized Type-II and Unified HCS, respec-
tively to obtain the observed loss associated with each censoring sampling
plan. This process repeats 5000 times and take its average as its risk for each
censoring scheme. By this way, for each censoring scheme we can find the
corresponding (k0, r0, T10, T20) so that its associated risk is minimized.

Taking c = 1, for cases of n = 10, 20 and for θ = 1(1)10(5)30(10)50, the
optimal solution of (k0, r0, T10, T20) coupling with its risk corresponding re-
spectively to Combined, Generalized Type-I, Generalized Type-II and Unified
HCS are tabulated in Table 1 and Table 2.

Let R(A) denote the simulated minimum risk of censoring scheme A. We
define relative efficiency of censoring scheme B with respect to CHCS by
eff(B)=R(B)/R(CHCS). In Fig. 1 and Fig. 2, it plots for value of n = 10
and 20 with c = 1 respectively. It is readily seen that for those cases, CHCS
clearly shows its superiority against others.
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Table 1. Optimal solutions of (k0, r0, T10, T20) and its risk (n = 10).
θ HCS Minimum risk T10 T20 k0 r0

1

combined
generalized Type-I
generalized Type-II

unified

0.098714
0.128781
0.111188
0.142953

0.109800
0.109800
0.109800
0.109800

0.114192
−

0.114192
0.114192

1
1
1
1

2
2
−
2

2

combined
generalized Type-I
generalized Type-II

unified

0.197813
0.261799
0.222432
0.289841

0.219600
0.219600
0.219600
0.219600

0.228384
−

0.228384
0.228384

1
1
1
1

2
2
−
2

3

combined
generalized Type-I
generalized Type-II

unified

0.298199
0.399882
0.333813
0.440544

0.329400
0.329400
0.329400
0.329400

0.342576
−

0.342576
0.342576

1
1
1
1

2
2
−
2

4

combined
generalized Type-I
generalized Type-II

unified

0.397380
0.518074
0.444693
0.572478

0.439200
0.439200
0.439200
0.439200

0.456768
−

0.456768
0.456768

1
1
1
1

2
2
−
2

5

combined
generalized Type-I
generalized Type-II

unified

0.493712
0.655800
0.555962
0.726611

0.549000
0.549000
0.549000
0.549000

0.570960
−

0.570960
0.570960

1
1
1
1

2
2
−
2

6

combined
generalized Type-I
generalized Type-II

unified

0.592260
0.781235
0.667263
0.866353

0.658800
0.658800
0.658800
0.658800

0.685152
−

0.685152
0.685152

1
1
1
1

2
2
−
2

7

combined
generalized Type-I
generalized Type-II

unified

0.696264
0.912497
0.778539
1.006880

0.768600
0.768600
0.768600
0.768600

0.799344
−

0.799344
0.799344

1
1
1
1

2
2
−
2

8

combined
generalized Type-I
generalized Type-II

unified

0.796329
1.053634
0.889769
1.160693

0.878400
0.878400
0.878400
0.878400

0.913536
−

0.913536
0.913536

1
1
1
1

2
2
−
2

9

combined
generalized Type-I
generalized Type-II

unified

0.893355
1.162537
1.000936
1.285751

0.988199
0.988199
0.988199
0.988199

1.027728
−

1.027728
1.027728

1
1
1
1

2
2
−
2

10

combined
generalized Type-I
generalized Type-II

unified

0.991686
1.327536
1.112665
1.465210

1.098000
1.098000
1.098000
1.098000

1.141920
−

1.141920
1.141920

1
1
1
1

2
2
−
2

15

combined
generalized Type-I
generalized Type-II

unified

1.494521
1.973882
1.668271
2.173867

1.647000
1.647000
1.647000
1.647000

1.712880
−

1.712880
1.712880

1
1
1
1

2
2
−
2

20

combined
generalized Type-I
generalized Type-II

unified

1.971385
2.603023
2.224693
2.889557

2.196000
2.196000
2.196000
2.196000

2.283840
−

2.283840
2.283840

1
1
1
1

2
2
−
2

25

combined
generalized Type-I
generalized Type-II

unified

2.482993
3.270078
2.780472
3.610295

2.745000
2.745000
2.745000
2.745000

2.854800
−

2.854800
2.854800

1
1
1
1

2
2
−
2

30

combined
generalized Type-I
generalized Type-II

unified

2.978349
3.943298
3.336302
4.353028

3.294000
3.294000
3.294000
3.294000

3.425760
−

3.425760
3.425760

1
1
1
1

2
2
−
2

40

combined
generalized Type-I
generalized Type-II

unified

3.960017
5.204969
4.449993
5.761470

4.392000
4.392000
4.392000
4.392000

4.567680
−

4.567680
4.567680

1
1
1
1

2
2
−
2

50

combined
generalized Type-I
generalized Type-II

unified

5.004714
6.665269
5.565708
7.309605

5.490000
5.490000
5.490000
5.490000

5.709600
−

5.709600
5.709600

1
1
1
1

2
2
−
2
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Table 2. Optimal solutions of (k0, r0, T10, T20) and its risk (n = 20).
θ HCS Minimum risk T10 T20 k0 r0

1

combined
generalized Type-I
generalized Type-II

unified

0.078426
0.083392
0.110271
0.116374

0.109800
0.109800
0.109800
0.109800

0.114192
−

0.114192
0.114192

1
1
1
1

2
2
−
2

2

combined
generalized Type-I
generalized Type-II

unified

0.156601
0.166479
0.220509
0.232618

0.219600
0.219600
0.219600
0.219600

0.228384
−

0.228384
0.228384

1
1
1
1

2
2
−
2

3

combined
generalized Type-I
generalized Type-II

unified

0.238527
0.254287
0.330871
0.350141

0.329400
0.329400
0.329400
0.329400

0.342576
−

0.342576
0.342576

1
1
1
1

2
2
−
2

4

combined
generalized Type-I
generalized Type-II

unified

0.311088
0.332022
0.441104
0.466496

0.439200
0.439200
0.439200
0.439200

0.456768
−

0.456768
0.456768

1
1
1
1

2
2
−
2

5

combined
generalized Type-I
generalized Type-II

unified

0.390674
0.414435
0.551208
0.580970

0.549000
0.549000
0.549000
0.549000

0.570960
−

0.570960
0.570960

1
1
1
1

2
2
−
2

6

combined
generalized Type-I
generalized Type-II

unified

0.470030
0.500076
0.661475
0.698293

0.658800
0.658800
0.658800
0.658800

0.685152
−

0.685152
0.685152

1
1
1
1

2
2
−
2

7

combined
generalized Type-I
generalized Type-II

unified

0.539775
0.574270
0.771700
0.813760

0.768600
0.768600
0.768600
0.768600

0.799344
−

0.799344
0.799344

1
1
1
1

2
2
−
2

8

combined
generalized Type-I
generalized Type-II

unified

0.622739
0.665276
0.882081
0.933658

0.878400
0.878400
0.878400
0.878400

0.913536
−

0.913536
0.913536

1
1
1
1

2
2
−
2

9

combined
generalized Type-I
generalized Type-II

unified

0.702709
0.747127
0.992251
1.046793

0.988199
0.988199
0.988199
0.988199

1.027728
−

1.027728
1.027728

1
1
1
1

2
2
−
2

10

combined
generalized Type-I
generalized Type-II

unified

0.780363
0.828235
1.102635
1.161604

1.098000
1.098000
1.098000
1.098000

1.141920
−

1.141920
1.141920

1
1
1
1

2
2
−
2

15

combined
generalized Type-I
generalized Type-II

unified

1.170085
1.247372
1.653489
1.748256

1.647000
1.647000
1.647000
1.647000

1.712880
−

1.712880
1.712880

1
1
1
1

2
2
−
2

20

combined
generalized Type-I
generalized Type-II

unified

1.554688
1.660507
2.205911
2.333811

2.196000
2.196000
2.196000
2.196000

2.283840
−

2.283840
2.283840

1
1
1
1

2
2
−
2

25

combined
generalized Type-I
generalized Type-II

unified

1.937463
2.066556
2.757007
2.912672

2.745000
2.745000
2.745000
2.745000

2.854800
−

2.854800
2.854800

1
1
1
1

2
2
−
2

30

combined
generalized Type-I
generalized Type-II

unified

2.335625
2.484987
3.307773
3.490579

3.294000
3.294000
3.294000
3.294000

3.425760
−

3.425760
3.425760

1
1
1
1

2
2
−
2

40

combined
generalized Type-I
generalized Type-II

unified

3.134853
3.353591
4.410420
4.675210

4.392000
4.392000
4.392000
4.392000

4.567680
−

4.567680
4.567680

1
1
1
1

2
2
−
2

50

combined
generalized Type-I
generalized Type-II

unified

3.934242
4.186464
5.512789
5.824028

5.490000
5.490000
5.490000
5.490000

5.709600
−

5.709600
5.709600

1
1
1
1

2
2
−
2
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Figure 1. Plots of three efficiencies
with n = 10.

Figure 2. Plots of three efficiencies
with n = 20.


