A New Hybrid Censoring Scheme and Some of its Properties*

Wen-Tao Huang ${ }^{\dagger}$
Department of Management Sciences and Decision Making, Tamkang University, Taiwan
and
Kun-Cheng Yang
Graduate Institute of Management Sciences, Tamkang University, Taiwan

Received February 10, 2009, Accepted March 5, 2009.

Abstract

Recently, there are several censoring schemes that have been proposed and studied. They are, among others, Chen and Bhattacharyya (1988), Childs et al. (2003), Chandrasekar et al. (2004) and Balakrishnan et al. (2008) for the case of exponential distribution. In this paper, we propose a new censoring scheme for saving time. A simulation study has been carried out and comparisons have been investigated with some known schemes. It is found that the proposed scheme is superior to others in some sense.

Keywords and Phrases: Exponential distribution, Combined hybrid censoring, Loss function, Optimal solution.

[^0]
1. Introduction

Consider a life testing experiment where n items are simultaneously put on test at the outset and are not replaced on failure. Let X_{i} denote the lifetime of component $i, i=1, \ldots, n$. Suppose that X_{i} follows an exponential distribution with common mean lifetime θ. That is, X_{i} has a probability density $f(x \mid \theta)=$ $\frac{1}{\theta} e^{\frac{-x}{\theta}}, x>0, \theta>0$.

Let the ordered failure times of these items be denoted by $X_{1: n}, X_{2: n}, \ldots$, $X_{n: n}$. Epstein (1954) considered a hybrid censored sampling scheme in which the life-testing experiment is terminated at a random time $T_{1}^{*}=\min \left\{X_{r: n}\right.$, $T\}$, where both $r \in\{1,2, \ldots, n\}$ and $T \in(0, \infty)$ are fixed in advance. Chen and Bhattacharyya (1988) derived the exact distribution of the maximum likelihood estimator (MLE) as well as a lower confidence bound of the mean θ based on this scheme. Childs et al. (2003) proposed Type-I and Type-II hybrid censoring schemes (HCS) and they also derived distributions of MLE of the unknown parameter. It was shown that the derived distribution is equivalent to that of Chen and Bhattacharyya (1988) for Type-I HCS.

Chandrasekar et al. (2004) modified these schemes and introduced two new schemes which are referred to as generalized Type-I and Type-II HCS, respectively. These schemes may be considered as an extension of Type-I HCS and Type-II HCS in some sense. In generalized Type-I HCS, one prefixes k, $r \in\{1,2, \ldots, n\}$ and $T \in(0, \infty)$ with $k<r$. If the k th failure occurs before time T, the experiment terminates at $\min \left\{X_{r: n}, T\right\}$. If the k th failure occurs after time T, the experiment terminates at $X_{k: n}$. In generalized Type-II HCS, one prefixes $r \in\{1,2, \ldots, n\}$ and $T_{1}, T_{2} \in(0, \infty)$ such that $T_{1}<T_{2}$. If the r th failure occurs before time T_{1}, the experiment terminates at T_{1}; if the r th failure occurs between T_{1} and T_{2}, the experiment terminates at $X_{r: n}$; otherwise, the experiment terminates at T_{2}. This HCS guarantees that the experiment time will not exceed T_{2}.

Balakrishnan et al. (2008) combined the last two schemes of sampling and introduced an unified hybrid censored sampling (UHCS). In this scheme, one prefixes $k, r \in\{1,2, \ldots, n\}$ and $T_{1}, T_{2} \in(0, \infty)$ such that $k<r$ and $T_{1}<T_{2}$. If the k th failure occurs before time T_{1}, the experiment terminates at $\min \left\{\max \left\{X_{r: n}, T_{1}\right\}, T_{2}\right\}$. If it occurs between T_{1} and T_{2}, the experiment terminates at $\min \left\{X_{r: n}, T_{2}\right\}$ and finally if it occurs after time T_{2}, then the experiment is terminated at $X_{k: n}$. The unified HCS can guarantee that at least k failures can be observed.

In this article, we consider a statistical decision-theoretic approach for a censoring sampling scheme. We propose a new sampling scheme for two purposes. We desire to shorten the total experimental time while we also try to estimate the parameter accurately in some sense. However, we emphasize the first purpose. For this reason, we propose a loss function which is a weighted total time length.

Under this new loss, we propose a combined hybrid censoring sampling (CHCS) which is formulated and studied in section 2. In section 3, we carry out some numerical and simulation study. For a given weight and some range of n and θ, several optimal solutions of the proposed sampling scheme $\left(k, r, T_{1}, T_{2}\right)$ are given in the sense of the proposed loss. Some comparisons have also been given among some known censoring sampling schemes under our loss. From the simulation results, it is clear that our proposed optimal CHCS has greatly improved its practical applicability in the sense of saving experimental time.

2. A Combined Hybrid Censoring Sampling (CHCS)

Consider a life-testing experiment in which n identical units are put on test. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote the respective lifetimes from a population with cumulative distribution function $F(x)$ and probability density function $f(x)$. Let $X_{1: n} \leq X_{2: n} \leq \ldots \leq X_{n: n}$ denote its order statistics. We define combined HCS as follows. Fix $k, r \in\{1,2, \ldots, n\}$ and $T_{1}, T_{2} \in(0, \infty)$ such that $k<r$ and $T_{1}<T_{2}$. If the k th failure occurs before time T_{1}, the experiment terminates at $\min \left\{X_{r: n}, T_{1}\right\}$. However, if the k th failure occurs between T_{1} and T_{2}, the experiment is terminated at $X_{k: n}$ and finally if the k th failure occurs after time T_{2}, then the experiment terminates at T_{2}. For our later convenience, we abbreviate this scheme as $\operatorname{CHCS}\left(k, r ; T_{1}, T_{2}\right)$.

In fact, we can categorize the following six cases, and obviously, in each case some part of data are unobservable. For our convenience, let T^{*} denote the stopping time of experiment.
(1) For $0<T_{1}<X_{k: n}\left(<T_{2}<X_{r: n}\right)$, $T^{*}=X_{k: n}$,
(2) For $0<T_{1}<X_{k: n}\left(<X_{r: n}<T_{2}\right)$, $T^{*}=X_{k: n}$,
(3) For $0<T_{1}<T_{2}\left(<X_{k: n}<X_{r: n}\right)$, $T^{*}=T_{2}$,
(4) For $0<X_{k: n}<X_{r: n}\left(<T_{1}<T_{2}\right)$, $T^{*}=X_{r: n}$,
(5) For $0<X_{k: n}<T_{1}\left(<X_{r: n}<T_{2}\right), T^{*}=T_{1}$,
(6) For $0<X_{k: n}<T_{1}\left(<T_{2}<X_{r: n}\right), T^{*}=T_{1}$,
where the data in parentheses are unobservable.
In those six situations, we see that except Case (3), there will be at least k failures, and for Case (3), we may have no exact life data.

Let D_{j} denote the number of failures until $T_{j}, j=1,2$. Obviously, $D_{1} \leq$ D_{2}. Then, the likelihood function of this combined HCS is given as follows:

$$
\begin{align*}
& \quad L(\theta \mid \underset{\sim}{x}) \\
& = \begin{cases}\frac{n!}{(n-k)!} \prod_{i=1}^{k} f\left(x_{i}\right)\left[1-F\left(x_{k}\right)\right]^{n-k} & D_{1}=0, \cdots, k-1 ; D_{2}=k, \\
\frac{n!}{\left(n-D_{2}\right)!} \prod_{i=1}^{D_{2}} f\left(x_{i}\right)\left[1-F\left(T_{2}\right)\right]^{n-D_{2}} & D_{1}=0, \cdots, k-1 ; D_{2}=0, \cdots, k-1 ; D_{1} \leq D_{2}, \\
\frac{n!}{(n-r)!} \prod_{i=1}^{r} f\left(x_{i}\right)\left[1-F\left(x_{r}\right)\right]^{n-r} & D_{1}=D_{2}=r, \\
\frac{n!}{\left(n-D_{1}\right)!} \prod_{i=1}^{D_{1}} f\left(x_{i}\right)\left[1-F\left(T_{1}\right)\right]^{n-D_{1}} & D_{1}=D_{2}=k, \cdots, r-1 .\end{cases}
\end{align*}
$$

The MLE for the estimate of θ, denote by $\hat{\theta}$, is as follows:

$$
\hat{\theta}= \begin{cases}\frac{\sum_{i=1}^{k} x_{i: n}+(n-k) x_{k: n}}{k} & D_{1}=0, \cdots, k-1 ; D_{2}=k, \tag{2.2}\\ \frac{\sum_{i=1}^{D_{2} x_{i: n}+\left(n-D_{2}\right) T_{2}} D_{2}}{D_{2}} & D_{1}=0, \cdots, k-1 ; D_{2}=1, \cdots, k-1 ; D_{1} \leq D_{2}, \\ \frac{\sum_{i=1}^{r} x_{i: n}+(n-r) x_{r: n}}{r} & D_{1}=D_{2}=r, \\ \frac{\sum_{i=1}^{D_{1} x_{i: n}+\left(n-D_{1}\right) T_{1}} D_{1}}{l} & D_{1}=D_{2}=k, \cdots, r-1, \\ n T_{2} & D_{2}=0 .\end{cases}
$$

Remark 1. Note that when $D_{2}=0$, there is no exact observation of life time. Theoretically, according to formal definition, $\hat{\theta}$ should take infinity, however, it is not practical. For its applicable consideration, here we define its conservative MLE to be $n T_{2}$ for this special case.

Based on (2.1) and (2.2), we can compute the following.
Theorem 1. The moment generating function (mgf) of $\hat{\theta}$ at ω is given by

$$
\begin{align*}
M_{\widehat{\theta}}(\omega)= & E\left(e^{\omega \hat{\theta}}\right) \\
= & \left(1-\frac{\omega \theta}{k}\right)^{-k} \sum_{j=0}^{k-1}\binom{n}{k}\binom{k}{j} p_{1, k}^{j} \sum_{l=k-j}^{n-j}\binom{n-j}{l}\left(q_{1, k}-q_{2, k}\right)^{l} q_{2, k}^{n-j-l} \\
& +\sum_{l=1}^{k-1}\left(1-\frac{\omega \theta}{l}\right)^{-l}\binom{n}{l} q_{2, l}^{n-l} \sum_{j=0}^{l}\binom{l}{j} p_{1, l}^{j}\left(q_{1, l}-q_{2, l}\right)^{l-j} \\
& +\left(1-\frac{\omega \theta}{r}\right)^{-r} \sum_{l=r}^{n}\binom{n}{l} p_{1, r}^{l} q_{1, r}^{n-l}+\sum_{j=k}^{r-1}\left(1-\frac{\omega \theta}{j}\right)^{-j}\binom{n}{j} p_{1, j}^{j} q_{1, j}^{n-j} \\
& +q_{2}^{n(1-\omega \theta)}, \quad \omega<\frac{k}{\theta} \tag{2.3}
\end{align*}
$$

where $q_{j}=e^{-T_{j} / \theta}(j=1,2)$ and $q_{a, b}=1-p_{a, b}=e^{-\left(T_{a} / \theta\right)(1-(\omega \theta / b))}$.

Proof. We condition on the values of D_{1} and D_{2} according to the different situations in equation (2.1).

Then, we can write

$$
\begin{align*}
M_{\hat{\theta}}(\omega)= & E\left(e^{\omega \hat{\theta}}\right)=E E\left(e^{\omega \hat{\theta}} \mid D_{1}, D_{2}\right) \\
= & \sum_{j=0}^{k-1} E\left(e^{\omega \hat{\theta}} \mid D_{1}=j\right) P\left(D_{1}=j\right)+\sum_{l=1}^{k-1} \sum_{j=0}^{l} E\left(e^{\omega \hat{\theta}} \mid D_{1}=j, D_{2}=l\right) P\left(D_{1}=j, D_{2}=l\right) \\
& +E\left(e^{\omega \hat{\theta}} \mid D_{1}=r\right) P\left(D_{1}=r\right)+\sum_{j=k}^{r-1} E\left(e^{\omega \hat{\theta}} \mid D_{1}=j\right) P\left(D_{1}=j\right) \\
& +E\left(e^{\omega \hat{\theta}} \mid D_{2}=0\right) P\left(D_{2}=0\right) . \tag{2.4}
\end{align*}
$$

Equivalently, we have

$$
\begin{align*}
M_{\hat{\theta}}(\omega)= & E\left(e^{\omega \hat{\theta}}\right) \\
= & \sum_{j=0}^{k-1} \frac{n!}{(n-k)!\theta^{k}} \\
& \times \int_{T_{1}}^{T_{2}} \cdots \int_{x_{k-1}}^{T_{2}} \int_{0}^{T_{1}} \cdots \int_{0}^{x_{2}} e^{-(1 / \theta)(1-(\omega \theta / k))\left\{\sum_{i=1}^{k} x_{i}+(n-k) x_{k}\right\}} d x_{1} \cdots d x_{j} d x_{k} \cdots d x_{j+1} \\
+ & \sum_{l=1}^{k-1} \sum_{j=0}^{l} \frac{n!}{(n-l)!\theta^{l}} \\
& \times \int_{T_{1}}^{T_{2}} \cdots \int_{x_{l-1}}^{T_{2}} \int_{0}^{T_{1}} \cdots \int_{0}^{x_{2}} e^{-(1 / \theta)(1-(\omega \theta / l))\left\{\sum_{i=1}^{l} x_{i}+(n-l) T_{2}\right\}} d x_{1} \cdots d x_{j} d x_{l} \cdots d x_{j+1} \\
+ & \frac{n!}{(n-r)!\theta^{r}} \int_{0}^{T_{1}} \int_{0}^{x_{r}} \cdots \int_{0}^{x_{2}} e^{-(1 / \theta)(1-(\omega \theta / r))\left\{\sum_{i=1}^{r-1} x_{i}+(n-r+1) x_{r}\right\}} d x_{1} \cdots d x_{r} \\
+ & \sum_{j=k}^{r-1} \frac{n!}{(n-j)!\theta^{j}} \int_{0}^{T_{1}} \int_{0}^{x_{j}} \cdots \int_{0}^{x_{2}} e^{-(1 / \theta)(1-(\omega \theta / j))\left\{\sum_{i=1}^{j} x_{i}+(n-j) T_{1}\right\}} d x_{1} \cdots d x_{j} \\
& +e^{\omega n T_{2}} e^{-n T_{2} / \theta} . \tag{2.5}
\end{align*}
$$

Upon carrying out the necessary integration in equation (2.5) and simplifying the resulting expression, we obtain

$$
\begin{aligned}
M_{\hat{\theta}}(\omega)= & E\left(e^{\omega \hat{\theta}}\right) \\
= & \left(1-\frac{\omega \theta}{k}\right) \sum_{j=0}^{-k}\binom{n}{k}\binom{k}{j} p_{1, k}^{j} \sum_{l=k-j}^{n-j}\binom{n-j}{l}\left(q_{1, k}-q_{2, k}\right)^{l} q_{2, k}^{n-j-l} \\
& +\sum_{l=1}^{k-1}\left(1-\frac{\omega \theta}{l}\right)^{-l}\binom{n}{l} q_{2, l}^{n-l} \sum_{j=0}^{l}\binom{l}{j} p_{1, l}^{j}\left(q_{1, l}-q_{2, l}\right)^{l-j} \\
& +\left(1-\frac{\omega \theta}{r}\right)^{-r} \sum_{l=r}^{n}\binom{n}{l} p_{1, r}^{l} q_{1, r}^{n-l}+\sum_{j=k}^{r-1}\left(1-\frac{\omega \theta}{j}\right)^{-j}\binom{n}{j} p_{1, j}^{j} q_{1, j}^{n-j} \\
& +q_{2}^{n(1-\omega \theta)}, \quad \omega<\frac{k}{\theta},
\end{aligned}
$$

which completes the proof of the theorem.

3. New Loss Function and its Optimal Solution

As it has been mentioned previously, we desire to shorten its total experimental time for reduction of cost.

Let c denote the cost of unit time, we define the loss function associated with $\operatorname{CHCS}\left(k, r ; T_{1}, T_{2}\right)$ as follows.

$$
\begin{equation*}
L\left(\theta ; \operatorname{CHCS}\left(k, r ; T_{1}, T_{2}\right)\right)=c T^{*}, \tag{3.1}
\end{equation*}
$$

where T^{*} is the stopping time of the combined HCS.
For notational simplicity, we use $L\left(\theta ; k, r, T_{1}, T_{2}\right)$ henceforth for our presentation.

Theorem 2. The expected loss is given by

$$
\begin{align*}
& E L\left(\theta ; k, r, T_{1}, T_{2}\right) \\
& =c E T^{*}=c E E\left(T^{*} \mid D_{1}, D_{2}\right) \\
& =c\left\{\begin{array}{l}
\sum_{j=0}^{k-1} \frac{n!p_{1}^{j}}{(n-k)!j!(k-j)!} \sum_{l=k-j}^{n-j}\binom{n-j}{l} \\
\quad \times\left[T_{2}\left(q_{1}-q_{2}\right)^{l} q_{2}^{n-j-l}-\frac{\theta}{l+1} \sum_{s=l+1}^{n-j}\binom{n-j}{s}\left(q_{1}-q_{2}\right)^{s} q_{2}^{n-j-s}\right] \\
\\
\quad+T_{2} \sum_{l=1}^{k-1}\binom{n}{l} q_{2}^{n-l} \sum_{j=0}^{l}\binom{l}{j} p_{1}^{j}\left(q_{1}-q_{2}\right)^{l-j} \\
\left.\quad+\sum_{l=r}^{n}\binom{n}{l}\left[T_{1} p_{1}^{l} q_{1}^{n-l}-\frac{\theta}{l+1} \sum_{s=l+1}^{n}\binom{n}{s} p_{1}^{s} q_{1}^{n-s}\right]+T_{1} \sum_{j=k}^{r-1}\binom{n}{j} p_{1}^{j} q_{1}^{n-j}+T_{2} q_{2}^{n}\right\} .
\end{array}\right.
\end{align*}
$$

Proof. We condition on the values of D_{1} and D_{2} according to the different situations in equation (2.1).

Then, we can write

$$
\begin{align*}
& E L\left(\theta ; k, r, T_{1}, T_{2}\right) \\
& =c E T^{*}=c E E\left(T^{*} \mid D_{1}, D_{2}\right) \\
& =c\left\{\sum_{j=0}^{k-1} E\left(T^{*} \mid D_{1}=j\right) P\left(D_{1}=j\right)+\sum_{l=1}^{k-1} \sum_{j=0}^{l} E\left(T^{*} \mid D_{1}=j, D_{2}=l\right) P\left(D_{1}=j, D_{2}=l\right)\right. \\
& \tag{3.3}\\
& \left.\quad+E\left(T^{*} \mid D_{1}=r\right) P\left(D_{1}=r\right)+\sum_{j=k}^{r-1} E\left(T^{*} \mid D_{1}=j\right) P\left(D_{1}=j\right)+E\left(T^{*} \mid D_{2}=0\right) P\left(D_{2}=0\right)\right\} .
\end{align*}
$$

So, an alternative expression of the risk function in equation (3.3) is given by

$$
\begin{align*}
& E L\left(\theta ; k, r, T_{1}, T_{2}\right) \\
&=c E T^{*}= c E E\left(T^{*} \mid D_{1}, D_{2}\right) \\
&=c\{ \\
& \begin{array}{l}
k=1 \\
j=0
\end{array} E\left(T^{*} \mid D_{1}=j\right) P\left(D_{1}=j\right)+\sum_{l=1}^{k-1} \sum_{j=0}^{l} E\left(T^{*} \mid D_{1}=j, D_{2}=l\right) P\left(D_{1}=j, D_{2}=l\right) \\
&\left.+E\left(T^{*} \mid D_{1}=r\right) P\left(D_{1}=r\right)+\sum_{j=k}^{r-1} E\left(T^{*} \mid D_{1}=j\right) P\left(D_{1}=j\right)+E\left(T^{*} \mid D_{2}=0\right) P\left(D_{2}=0\right)\right\} \\
&=c\left\{\sum_{j=0}^{k-1} \frac{n!}{(n-k)!\theta^{k}}\right. \\
& \quad \times \int_{T_{1}}^{T_{2}} \cdots \int_{x_{k-1}}^{T_{2}} \int_{0}^{T_{1}} \cdots \int_{0}^{x_{2}} x_{k} e^{-(1 / \theta)\left\{\sum_{i=1}^{k-1} x_{i}+(n-k+1) x_{k}\right\}} d x_{1} \cdots d x_{j} d x_{k} \cdots d x_{j+1} \\
&+\sum_{l=1}^{k-1} \sum_{j=0}^{l} \frac{n!}{(n-l)!\theta^{l}} \int_{T_{1}}^{T_{2}} \cdots \int_{x_{l-1}}^{T_{2}} \int_{0}^{T_{1}} \cdots \int_{0}^{x_{2}} T_{2} e^{-(1 / \theta)\left\{\sum_{i=1}^{l} x_{i}+(n-l) T_{2}\right\}} d x_{1} \cdots d x_{j} d x_{l} \cdots d x_{j+1} \\
&+\frac{n!}{(n-r)!\theta^{r}} \int_{0}^{T_{1}} \int_{0}^{x_{r}} \cdots \int_{0}^{x_{2}} x_{r} e^{-(1 / \theta)\left\{\sum_{i=1}^{r-1} x_{i}+(n-r+1) x_{r}\right\}} d x_{1} \cdots d x_{r} \\
&+\sum_{j=k}^{r-1} \frac{n!}{(n-j)!\theta^{j}} \int_{0}^{T_{1}} \int_{0}^{x_{j}} \cdots \int_{0}^{x_{2}} T_{1} e^{-(1 / \theta)\left\{\sum_{i=1}^{j} x_{i}+(n-j) T_{1}\right\}} d x_{1} \cdots d x_{j} \tag{3.4}\\
&\left.+T_{2} e^{-n T_{2} / \theta}\right\} .
\end{align*}
$$

Upon carrying out the necessary integration in equation (3.4) and simplifying the resulting expression, we can finally conclude that

$$
\begin{align*}
& E L\left(\theta ; k, r, T_{1}, T_{2}\right) \\
& \begin{aligned}
=c\left\{\begin{array}{l}
\sum_{j=0}^{k-1} \frac{n!p_{1}^{j}}{(n-k)!j!(k-j)!} \sum_{l=k-j}^{n-j}\binom{n-j}{l} \\
\quad \times\left[T_{2}\left(q_{1}-q_{2}\right)^{l} q_{2}^{n-j-l}-\frac{\theta}{l+1} \sum_{s=l+1}^{n-j}\binom{n-j}{s}\left(q_{1}-q_{2}\right)^{s} q_{2}^{n-j-s}\right]
\end{array}\right. \\
\quad+T_{2} \sum_{l=1}^{k-1}\binom{n}{l} q_{2}^{n-l} \sum_{j=0}^{l}\binom{l}{j} p_{1}^{j}\left(q_{1}-q_{2}\right)^{l-j} \\
\left.\quad+\sum_{l=r}^{n}\binom{n}{l}\left[T_{1} p_{1}^{l} q_{1}^{n-l}-\frac{\theta}{l+1} \sum_{s=l+1}^{n}\binom{n}{s} p_{1}^{s} q_{1}^{n-s}\right]+T_{1} \sum_{j=k}^{r-1}\binom{n}{j} p_{1}^{j} q_{1}^{n-j}+T_{2} q_{2}^{n}\right\} .
\end{aligned}
\end{align*}
$$

For a given θ, and prefixed c, computationally, we can find value k_{0}, r_{0}, T_{10} and T_{20} so that

$$
\begin{equation*}
E L\left(\theta ; k_{0}, r_{0}, T_{10}, T_{20}\right)=\min _{1 \leq k<r} \min _{r \leq n} \min _{T_{1}<T_{2}} E L\left(\theta ; k, r, T_{1}, T_{2}\right) \tag{3.6}
\end{equation*}
$$

Obviously, if θ were known, $\operatorname{CHCS}\left(k_{0}, r_{0} ; T_{10}, T_{20}\right)$ is the best we can choose in the sense of our loss. Thus, it is our optimal solution to our censoring sampling problem.

To compute the optimal solution $\left(k_{0}, r_{0}, T_{10}, T_{20}\right)$, we can apply equation (3.5) to obtain its solutions. However, here we apply Monte Carlo method to find the optimal solutions when some various values of θ, n and c are given. These results will be explained in next section.

4. Some Simulated Optimal Solutions and Numerical Comparisons

For given θ, n and c, we take a sample of size n from exponential population with mean θ. For this complete data, we simultaneously apply the proposed Combined, Generalized Type-I, Generalized Type-II and Unified HCS, respectively to obtain the observed loss associated with each censoring sampling plan. This process repeats 5000 times and take its average as its risk for each censoring scheme. By this way, for each censoring scheme we can find the corresponding ($k_{0}, r_{0}, T_{10}, T_{20}$) so that its associated risk is minimized.

Taking $c=1$, for cases of $n=10,20$ and for $\theta=1(1) 10(5) 30(10) 50$, the optimal solution of $\left(k_{0}, r_{0}, T_{10}, T_{20}\right)$ coupling with its risk corresponding respectively to Combined, Generalized Type-I, Generalized Type-II and Unified HCS are tabulated in Table 1 and Table 2.

Let $R(A)$ denote the simulated minimum risk of censoring scheme A. We define relative efficiency of censoring scheme B with respect to CHCS by $\operatorname{eff}(B)=R(B) / R(C H C S)$. In Fig. 1 and Fig. 2, it plots for value of $n=10$ and 20 with $c=1$ respectively. It is readily seen that for those cases, CHCS clearly shows its superiority against others.

References

[1] N. Balakrishnan, Abbas Rasouli, and N. Sanjari Farsipour, Exact likelihood inference based on an unified hybrid censored sample from the exponential distribution, Journal of Statistical Computation and Simulation, 78 no. 5 (2008), 475-488.
[2] B. Chandrasekar, A. Childs, and N. Balakrishnan, Exact likelihood inference for the exponential distribution under generalized Type-I and TypeII hybrid censoring, Naval Research Logistics, 51 (2004), 994-1004.
[3] S. Chen and G. K. Bhattacharyya, Exact confidence bounds for an exponential parameter under hybrid censoring, Communications in StatisticsTheory and Methods, 17 (1988), 1857-1870.
[4] A. Childs, B. Chandrasekar, N. Balakrishnan, and D. Kundu, Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55 (2003), 319-330.
[5] B. Epstein, Truncated life tests in the exponential case, Annals of Mathematical Statistics, 25 (1954), 555-564.

θ	HCS	Minimum risk	T_{10}	T_{20}	k_{0}	r_{0}
1	combined	0.098714	0.109800	0.114192	1	2
	generalized Type-I	0.128781	0.109800	-	1	2
	generalized Type-II	0.111188	0.109800	0.114192	1	-
	unified	0.142953	0.109800	0.114192	1	2
2	combined	0.197813	0.219600	0.228384	1	2
	generalized Type-I	0.261799	0.219600	-	1	2
	generalized Type-II	0.222432	0.219600	0.228384	1	-
	unified	0.289841	0.219600	0.228384	1	2
3	combined	0.298199	0.329400	0.342576	1	2
	generalized Type-I	0.399882	0.329400	-	1	2
	generalized Type-II	0.333813	0.329400	0.342576	1	-
	unified	0.440544	0.329400	0.342576	1	2
4	combined	0.397380	0.439200	0.456768	1	2
	generalized Type-I	0.518074	0.439200	-	1	2
	generalized Type-II	0.444693	0.439200	0.456768	1	-
	unified	0.572478	0.439200	0.456768	1	2
5	combined	0.493712	0.549000	0.570960	1	2
	generalized Type-I	0.655800	0.549000	-	1	2
	generalized Type-II	0.555962	0.549000	0.570960	1	-
	unified	0.726611	0.549000	0.570960	1	2
6	combined	0.592260	0.658800	0.685152	1	2
	generalized Type-I	0.781235	0.658800	-	1	2
	generalized Type-II	0.667263	0.658800	0.685152	1	-
	unified	0.866353	0.658800	0.685152	1	2
7	combined	0.696264	0.768600	0.799344	1	2
	generalized Type-I	0.912497	0.768600	-	1	2
	generalized Type-II	0.778539	0.768600	0.799344	1	-
	unified	1.006880	0.768600	0.799344	1	2
8	combined	0.796329	0.878400	0.913536	1	2
	generalized Type-I	1.053634	0.878400	-	1	2
	generalized Type-II	0.889769	0.878400	0.913536	1	-
	unified	1.160693	0.878400	0.913536	1	2
9	combined	0.893355	0.988199	1.027728	1	2
	generalized Type-I	1.162537	0.988199	-	1	2
	generalized Type-II	1.000936	0.988199	1.027728	1	-
	unified	1.285751	0.988199	1.027728	1	2
10	combined	0.991686	1.098000	1.141920	1	2
	generalized Type-I	1.327536	1.098000	-	1	2
	generalized Type-II	1.112665	1.098000	1.141920	1	-
	unified	1.465210	1.098000	1.141920	1	2
15	combined	1.494521	1.647000	1.712880	1	2
	generalized Type-I	1.973882	1.647000		1	2
	generalized Type-II	1.668271	1.647000	1.712880	1	-
	unified	2.173867	1.647000	1.712880	1	2
20	combined	1.971385	2.196000	2.283840	1	2
	generalized Type-I	2.603023	2.196000	-	1	2
	generalized Type-II	2.224693	2.196000	2.283840	1	-
	unified	2.889557	2.196000	2.283840	1	2
25	combined	2.482993	2.745000	2.854800	1	2
	generalized Type-I	3.270078	2.745000	-	1	2
	generalized Type-II	2.780472	2.745000	2.854800	1	-
	unified	3.610295	2.745000	2.854800	1	2
30	combined	2.978349	3.294000	3.425760	1	2
	generalized Type-I	3.943298	3.294000	-	1	2
	generalized Type-II	3.336302	3.294000	3.425760	1	-
	unified	4.353028	3.294000	3.425760	1	2
40	combined	3.960017	4.392000	4.567680	1	2
	generalized Type-I	5.204969	4.392000	-	1	2
	generalized Type-II	4.449993	4.392000	4.567680	1	-
	unified	5.761470	4.392000	4.567680	1	2
50	combined	5.004714	5.490000	5.709600	1	2
	generalized Type-I	6.665269	5.490000	-	1	2
	generalized Type-II	5.565708	5.490000	5.709600	1	-
	unified	7.309605	5.490000	5.709600	1	2

θ	HCS	Minimum risk	T_{10}	T_{20}	k_{0}	r_{0}
1	combined	0.078426	0.109800	0.114192	1	2
	generalized Type-I	0.083392	0.109800	-	1	2
	generalized Type-II	0.110271	0.109800	0.114192	1	-
	unified	0.116374	0.109800	0.114192	1	2
2	combined	0.156601	0.219600	0.228384	1	2
	generalized Type-I	0.166479	0.219600	-	1	2
	generalized Type-II	0.220509	0.219600	0.228384	1	-
	unified	0.232618	0.219600	0.228384	1	2
3	combined	0.238527	0.329400	0.342576	1	2
	generalized Type-I	0.254287	0.329400		1	2
	generalized Type-II	0.330871	0.329400	0.342576	1	-
	unified	0.350141	0.329400	0.342576	1	2
4	combined	0.311088	0.439200	0.456768	1	2
	generalized Type-I	0.332022	0.439200	-	1	2
	generalized Type-II	0.441104	0.439200	0.456768	1	-
	unified	0.466496	0.439200	0.456768	1	2
5	combined	0.390674	0.549000	0.570960	1	2
	generalized Type-I	0.414435	0.549000	70	1	2
	generalized Type-II	0.551208	0.549000	0.570960	1	-
	unified	0.580970	0.549000	0.570960	1	2
6	combined	0.470030	0.658800	0.685152	1	2
	generalized Type-I	0.500076	0.658800	-	1	2
	generalized Type-II	0.661475	0.658800	0.685152	1	-
	unified	0.698293	0.658800	0.685152	1	2
7	combined	0.539775	0.768600	0.799344	1	2
	generalized Type-I	0.574270	0.768600	-	1	2
	generalized Type-II	0.771700	0.768600	0.799344	1	-
	unified	0.813760	0.768600	0.799344	1	2
8	combined	0.622739	0.878400	0.913536	1	2
	generalized Type-I	0.665276	0.878400	-	1	2
	generalized Type-II	0.882081	0.878400	0.913536	1	-
	unified	0.933658	0.878400	0.913536	1	2
9	combined	0.702709	0.988199	1.027728	1	2
		0.747127	0.988199	-	1	2
	generalized Type-II	0.992251	0.988199	1.027728	1	-
	unified	1.046793	0.988199	1.027728	1	2
10	combined	0.780363	1.098000	1.141920	1	2
	generalized Type-I	0.828235	1.098000	-	1	2
	generalized Type-II	1.102635	1.098000	1.141920	1	-
	unified	1.161604	1.098000	1.141920	1	2
15	combined	1.170085	1.647000	1.712880	1	2
	generalized Type-I	1.247372	1.647000	-	1	2
	generalized Type-II	1.653489	1.647000	1.712880	1	-
	unified	1.748256	1.647000	1.712880	1	2
20	combined	1.554688	2.196000	2.283840	1	2
	generalized Type-I	1.660507	2.196000	-	1	2
	generalized Type-II	2.205911	2.196000	2.283840	1	-
	unified	2.333811	2.196000	2.283840	1	2
25	combined	1.937463	2.745000	2.854800	1	2
	generalized Type-I	2.066556	2.745000	-	1	2
	generalized Type-II	2.757007	2.745000	2.854800	1	-
	unified	2.912672	2.745000	2.854800	1	2
30	combined	2.335625	3.294000	3.425760	1	2
	generalized Type-I	2.484987	3.294000	-	1	2
	generalized Type-II	3.307773	3.294000	3.425760	1	-
	unified	3.490579	3.294000	3.425760	1	2
40	combined	3.134853	4.392000	4.567680	1	2
	generalized Type-I	3.353591	4.392000	-	1	2
	generalized Type-II	4.410420	4.392000	4.567680	1	-
	unified	4.675210	4.392000	4.567680	1	2
50	combined	3.934242	5.490000	5.709600	1	2
	generalized Type-I	4.186464	5.490000	-	1	2
	generalized Type-II	5.512789	5.490000	5.709600	1	-
	unified	5.824028	5.490000	5.709600	1	2

Figure 1. Plots of three efficiencies with $n=10$.

θ
Figure 2. Plots of three efficiencies with $n=20$.

[^0]: *2000 Mathematics Subject Classification. Primary 62N01, secondary 62N02.
 ${ }^{\dagger}$ Corresponding author.

