On a General Partial Integral Equation of Barbashin Type *

B. G. Pachpatte[†]

57 Shri Niketan Colony, Near Abhinay Talkies, Aurangabad 431 001 (Maharashtra) India

Received April 12, 2010, Accepted August 10, 2010.

Abstract

The aim of the present paper is to study some basic qualitative properties of solutions of a general partial integral equation of Barbashin type which occur frequently in applications. A variant of a certain integral inequality with explicit estimate is obtained and used to establish the results.

Keywords and Phrases: Partial integral equation, Barbashin type, Integral inequality, Explicit estimate, Approximate solutions, Discrete analogues.

1. Introduction

E.A.Barbashin [2] was the first to attempt to solve the integrodifferential equation of the form

$$\frac{\partial}{\partial t}u(t,x) = c(t,x)u(t,x) + \int_{a}^{b} k(t,x,y)u(t,y)\,dy + f(t,x)\,, \qquad (1.1)$$

*2000 Mathematics Subject Classification. Primary 65R20, 45G10. †E-mail: bgpachpatte@gmail.com B. G. Pachpatte

which appear in mathematical modelling of many applied problems (see [1, section 19]). The equation (1.1) attracted the attention of many researchers and is now known in the literature as integrodifferential equation of Barbashin type or simply Barbashin equation, see [1, p. 1]. The equation of the type (1.1) and the partial integral equations are connected to each other in several ways. For example, suppose we are interested in finding a solution u of equation (1.1) satisfying the initial condition $u(t_0, x) = u_0(x)$ for $a \leq x \leq b$ and $t_0 \in J = [0, \infty)$ is fixed and $u_0 : [a, b] \to R$ is a given continuous function. Putting $\frac{\partial}{\partial t}u(t, x) := w(t, x)$ we arrive at the equation

$$w(t,x) = g(t,x) + \int_{t_0}^t c(t,x) w(\tau,x) d\tau + \int_{t_0}^t \int_a^b k(t,x,y) w(\tau,y) dy d\tau, \quad (1.2)$$

where

$$g(t,x) = f(t,x) + c(t,x) u_0(x) + \int_a^b k(t,x,y) u_0(y) \, dy.$$
(1.3)

The equation (1.2) may be viewed as partial integral equation of Barbashin type. In this paper we consider a general partial integral equation of the form

$$u(t,x) = h(t,x) + \int_{0}^{t} f(t,x,s,u(s,x)) ds + \int_{0}^{t} \int_{B} g(t,x,s,y,u(s,y)) dy ds,$$
(1.4)

for $(t,x) \in E$, where $h \in C(E,R)$, $f \in C(E_1 \times R, R)$, $g \in C(E^2 \times R, R)$ are given functions and u is the unknown function to be found. Here $R = (-\infty, \infty)$, $R_+ = [0, \infty)$, $B = \prod_{i=1}^m [a_i, b_i] \subset R^m$ $(a_i < b_i)$ and $E = R_+ \times B$, $E_1 = \{(t, x, s) : 0 \le s \le t < \infty, x \in B\}$. The partial derivative of a function r defined on E^2 (or E_1) with respect to the first variable is denoted by D_1r and $C(A_1, A_2)$ denotes the class of continuous functions from the set A_1 to the set A_2 . For any function u defined on B, we denote by $\int_B u(y) dy$ the m-fold inte-

gral $\int_{a_1}^{b_1} \dots \int_{a_m}^{b_m} u(y_1, \dots, y_m) dy_m \dots dy_1$. The problems of existence and uniqueness of solutions of equation (1.4) can be dealt with the method employed in [5.8]

of solutions of equation (1.4) can be dealt with the method employed in [5,8], see also [3,4,11,12]. For a detailed account on the study of such equations, see the monograph [1] and the references cited therein.

In dealing with the equations like (1.4), the basic questions to be answered are : (i) if solutions do exist, then what are their nature ? (ii) how can we find them or closely approximate them ?. In practice one need a new insight to study such questions for equations like (1.4). In the present paper we focus our attention to study some fundamental qualitative properties of solutions of equation (1.4). A new variant of a certain integral inequality with explicit estimate has been found and used to establish the results. Discrete analogues of the main results are also given.

2. A Basic Integral Inequality

In this section we establish a new variant of the integral inequality given by the present author in [8] (see also [9]), which can be used as a tool in the qualitative analysis of our main results.

Theorem 1. Let $u(t, x) \in C(E, R_+)$, q(t, x, s), $D_1q(t, x, s) \in C(E_1, R_+)$, k(t, x, s, y), $D_1k(t, x, s, y) \in C(E^2, R_+)$ and $c \ge 0$ is a constant. If

$$u(t,x) \le c + \int_{0}^{t} q(t,x,s) u(s,x) \, ds + \int_{0}^{t} \int_{B} k(t,x,s,y) u(s,y) \, dy ds, \quad (2.1)$$

for $(t, x) \in E$, then

$$u(t,x) \le c P(t,x) \exp\left(\int_{0}^{t} A(\sigma,x) d\sigma\right),$$
 (2.2)

for $(t, x) \in E$, where

$$P(t,x) = \exp\left(Q(t,x)\right), \qquad (2.3)$$

in which

$$Q(t,x) = \int_{0}^{t} \left[q(\eta, x, \eta) + \int_{0}^{\eta} D_{1}q(\eta, x, \xi) d\xi \right] d\eta, \qquad (2.4)$$

and

$$A(t,x) = \int_{B} k(t,x,t,y) P(t,y) \, dy + \int_{0}^{t} \int_{B} P(s,y) D_{1}k(t,x,s,y) \, dy ds, \quad (2.5)$$

for $(t, x) \in E$.

Proof. Define a function n(t, x) by

$$n(t,x) = c + \int_{0}^{t} \int_{B} k(t,x,s,y) u(s,y) \, dy ds, \qquad (2.6)$$

then (2.1) can be restated as

$$u(t,x) \le n(t,x) + \int_{0}^{t} q(t,x,s) u(s,x) \, ds.$$
(2.7)

From the hypotheses, it is easy to observe that n(t, x) is nonnegative for $(t, x) \in E$ and nondecreasing in $t \in R_+$ for every $x \in B$. Treating (2.7) as onedimensional integral inequality for every $x \in B$ and a suitable application of the inequality given in [7, Theorem 1.2.1, Remark 1.2.1, p. 11] yields

$$u(t,x) \le n(t,x) P(t,x).$$
 (2.8)

From (2.6) and (2.8), we obtain

$$n(t,x) \le c + \int_{0}^{t} \int_{B} k(t,x,s,y) P(s,y) n(s,y) \, dy ds.$$
(2.9)

Setting

$$e(t, x, s) = \int_{B} k(t, x, s, y) P(s, y) n(s, y) dy, \qquad (2.10)$$

the inequality (2.9) can be restated as

$$n(t,x) \le c + \int_{0}^{t} e(t,x,s) \, ds.$$
 (2.11)

For every $x \in B$, define

$$z(t) = c + \int_{0}^{t} e(t, x, s) \, ds, \qquad (2.12)$$

102

then z(0) = c and

$$n\left(t,x\right) \le z\left(t\right).\tag{2.13}$$

From (2.12), (2.10), (2.13) and the fact that z(t) is nondecreasing in $t \in R_+$ for every $x \in B$, we observe that

$$z'(t) = e(t, x, t) + \int_{0}^{t} D_{1}e(t, x, s) \, ds$$

$$= \int_{B} k(t, x, t, y) P(t, y) n(t, y) dy + \int_{0}^{t} D_{1} \left\{ \int_{B} k(t, x, s, y) P(s, y) n(s, y) dy \right\} ds$$

$$\leq \int_{B} k(t, x, t, y) P(t, y) z(t) dy + \int_{0}^{t} \int_{B} P(s, y) D_{1}k(t, x, s, y) z(s) dy ds$$

$$\leq A(t, x) z(t) .$$
(2.14)

The inequality (2.14) implies

$$z(t) \le c \exp\left(\int_{0}^{t} A(\sigma, x) d\sigma\right).$$
(2.15)

The required inequality in (2.2) follows from (2.15), (2.13) and (2.8).

3. Estimates on the Solutions

First we shall give the following theorem concerning the estimate on the solution of equation (1.4).

Theorem 2. Suppose that the functions f, g, h in (1.4) satisfy the conditions

$$|f(t, x, s, u) - f(t, x, s, \bar{u})| \le q(t, x, s) |u - \bar{u}|, \qquad (3.1)$$

$$|g(t, x, s, y, u) - g(t, x, s, y, \bar{u})| \le k(t, x, s, y) |u - \bar{u}|, \qquad (3.2)$$

and

$$d = \sup_{(t,x) \in E} \left[|h(t,x)| + \int_{0}^{t} |f(t,x,s,0)| \, ds + \int_{0}^{t} \int_{B} |g(t,x,s,y,0)| \, dy ds \right] < \infty,$$
(3.3)

where $q \in C(E_1, R_+), k \in C(E^2, R_+); D_1q, D_1k$ exist and $D_1q \in C(E_1, R_+), D_1k \in C(E^2, R_+).$ If u(t, x) is any solution of (1.4) on E, then

$$|u(t,x)| \le dP(t,x) \exp\left(\int_{0}^{t} A(\sigma,x) d\sigma\right), \qquad (3.4)$$

for $(t, x) \in E$, where P and A are given by (2.3) and (2.5).

Proof. Using the fact that u(t, x) is a solution of (1.4) and hypotheses, we observe that

$$\begin{aligned} |u(t,x)| &\leq |h(t,x)| + \int_{0}^{t} |f(t,x,s,u(s,x)) - f(t,x,s,0) + f(t,x,s,0)| \, ds \\ &+ \int_{0}^{t} \int_{B} |g(t,x,s,y,u(s,y)) - g(t,x,s,y,0) + g(t,x,s,y,0)| \, dy \, ds \\ &\leq |h(t,x)| + \int_{0}^{t} |f(t,x,s,0)| \, ds + \int_{0}^{t} \int_{B} |g(t,x,s,y,0)| \, dy \, ds \\ &+ \int_{0}^{t} |f(t,x,s,u(s,x)) - f(t,x,s,0)| \, ds \\ &+ \int_{0}^{t} \int_{B} |g(t,x,s,y,u(s,y)) - g(t,x,s,y,0)| \, dy \, ds \\ &\leq d + \int_{0}^{t} q(t,x,s) \, |u(s,x)| \, ds + \int_{0}^{t} \int_{B} k(t,x,s,y) \, |u(s,y)| \, dy \, ds. \end{aligned}$$
(3.5)

Now an application of Theorem 1 to (3.5) yields (3.4).

104

A slight variant of Theorem 2 is given in the following theorem.

Theorem 3. Suppose that the functions f, g, h in (1.4) satisfy the conditions (3.1), (3.2) and

$$\bar{d} = \sup_{(t,x) \in E} \left[\int_{0}^{t} |f(t,x,s,h(s,x))| \, ds + \int_{0}^{t} \int_{B} |g(t,x,s,y,h(s,y))| \, dy ds \right] < \infty$$
(3.6)

If u(t, x) is any solution of (1.4) on E, then

$$|u(t,x) - h(t,x)| \le \bar{d} P(t,x) \exp\left(\int_{0}^{t} A(\sigma,x) d\sigma\right), \qquad (3.7)$$

for $(t, x) \in E$, where P and A are given by (2.3) and (2.5).

Proof. Let $e(t,x) = |u(t,x) - h(t,x)|, (t,x) \in E$. Using the fact that u(t,x) is a solution of (1.4) and hypothese, we observe that

$$\begin{split} e\left(t,x\right) &\leq \int_{0}^{t} \left|f\left(t,x,s,u\left(s,x\right)\right) - f\left(t,x,s,h\left(s,x\right)\right) + f\left(t,x,s,h\left(s,x\right)\right)\right| ds \\ &+ \int_{0}^{t} \int_{B}^{t} \left|g\left(t,x,s,y,u\left(s,y\right)\right) - g\left(t,x,s,y,h\left(s,y\right)\right) + g\left(t,x,s,y,h\left(s,y\right)\right)\right| dy ds \\ &\leq \int_{0}^{t} \left|f\left(t,x,s,h\left(s,x\right)\right)\right| ds + \int_{0}^{t} \int_{B}^{t} \left|g\left(t,x,s,y,h\left(s,y\right)\right)\right| dy ds \\ &+ \int_{0}^{t} \left|f\left(t,x,s,u\left(s,x\right)\right) - f\left(t,x,s,h\left(s,x\right)\right)\right| ds \\ &+ \int_{0}^{t} \int_{B} \left|g\left(t,x,s,y,u\left(s,y\right)\right) - g\left(t,x,s,y,h\left(s,y\right)\right)\right| dy ds \end{split}$$

$$\leq \bar{d} + \int_{0}^{t} q(t, x, s) e(s, x) ds + \int_{0}^{t} \int_{B} k(t, x, s, y) e(s, y) dy ds.$$
(3.8)

Now an application of Theorem 1 to (3.8) yields (3.7).

We next prove under more restrictive conditions on the functions involved in (1.4) that the solutions tends to zero as $t \to \infty$.

Theorem 4. Assume that

$$|h(t,x)| \le M \exp\left(-\alpha t\right),\tag{3.9}$$

$$|f(t, x, s, u) - f(t, x, s, \bar{u})| \le q(t, x, s) \exp(-\alpha (t - s)) |u - \bar{u}|, \qquad (3.10)$$

$$|g(t, x, s, y, u) - g(t, x, s, y, \bar{u})| \le k(t, x, s, y) \exp(-\alpha (t - s)) |u - \bar{u}|, \quad (3.11)$$

and f(t, x, s, 0) = 0, g(t, x, s, y, 0) = 0, where $\alpha > 0$, $M \ge 0$ are constants. The functions q, k be as in Theorem 2 and

$$\sup_{(t,x)\in E} Q(t,x) < \infty, \quad \int_{0}^{\infty} A(\sigma,x) \, d\sigma < \infty, \quad (3.12)$$

where Q and A are given by (2.4) and (2.5). If u(t, x) is any solution of (1.4) on E, then it tends exponentially toward zero as $t \to \infty$.

Proof. From the hypotheses, we observe that

$$|u(t,x)| \le |h(t,x)| + \int_{0}^{t} |f(t,x,s,u(s,x)) - f(t,x,s,0)| ds$$
$$+ \int_{0}^{t} \int_{B} |g(t,x,s,y,u(s,y)) - g(t,x,s,y,0)| dy ds$$
$$\le M \exp(-\alpha t) + \int_{0}^{t} q(t,x,s) \exp(-\alpha (t-s)) |u(s,x)| ds$$

$$+ \int_{0}^{t} \int_{B} k(t, x, s, y) \exp(-\alpha (t - s)) |u(s, y)| \, dy ds.$$
(3.13)

From (3.13), we observe that

$$|u(t,x)| \exp(\alpha t) \le M + \int_{0}^{t} q(t,x,s) |u(s,x)| \exp(\alpha s) ds$$

$$+ \int_{0}^{t} \int_{B} k(t, x, s, y) |u(s, y)| \exp(\alpha s) \, dy ds.$$
(3.14)

Now an application of Theorem 1 to (3.14) yields

$$|u(t,x)|\exp(\alpha t) \le MP(t,x)\exp\left(\int_{0}^{t} A(\sigma,x)\,d\sigma\right).$$
(3.15)

Multiplying both sides of (3.15) by $\exp(-\alpha t)$ and in view of (3.12), the solution u(t, x) tends to zero as $t \to \infty$.

4. Approximate Solutions

We call the function $u \in C(E, R)$ an ε -approximate solution of equation (1.4), if there exists a constant $\varepsilon \geq 0$ such that

$$\left| u\left(t,x\right) - h\left(t,x\right) - \int_{0}^{t} f\left(t,x,s,u\left(s,x\right)\right) ds - \int_{0}^{t} \int_{B} g\left(t,x,s,y,u\left(s,y\right)\right) dy ds \right| \le \varepsilon,$$

$$(4.1)$$

for $(t, x) \in E$.

The following theorem deals with the estimate on the difference between the two approximate solutions of equation (1.4).

Theorem 5. Suppose that the functions f, g in (1.4) satisfy the conditions (3.1) and (3.2). Let $u_i(t, x)(i = 1, 2)$ be respectively ε_i -approximate solutions of (1.4) on E. Then

$$|u_1(t,x) - u_2(t,x)| \le (\varepsilon_1 + \varepsilon_2) P(t,x) \exp\left(\int_0^t A(\sigma,x) \, d\sigma\right), \qquad (4.2)$$

for $(t, x) \in E$, where P and A are given by (2.3) and (2.5).

Proof. Since $u_i(t, x)(i = 1, 2)$ for $(t, x) \in E$ are respectively ε_i -approximate solutions of (1.4), we have

$$\left| u_{i}\left(t,x\right) - h\left(t,x\right) - \int_{0}^{t} f\left(t,x,s,u_{i}\left(s,x\right)\right) ds - \int_{0}^{t} \int_{B} g\left(t,x,s,y,u_{i}\left(s,y\right)\right) dy ds \right| \leq \varepsilon_{i}$$

$$(4.3)$$

From (4.3) and using the elementary inequalities $|v - z| \le |v| + |z|$, $|v| - |z| \le |v - z|$, we observe that

$$\begin{split} \varepsilon_{1} + \varepsilon_{2} &\geq \left| u_{1}\left(t,x\right) - h\left(t,x\right) - \int_{0}^{t} f\left(t,x,s,u_{1}\left(s,x\right)\right) ds - \int_{0}^{t} \int_{B}^{t} g\left(t,x,s,y,u_{1}\left(s,y\right)\right) dy ds \right| \\ &+ \left| u_{2}\left(t,x\right) - h\left(t,x\right) - \int_{0}^{t} f\left(t,x,s,u_{2}\left(s,x\right)\right) ds - \int_{0}^{t} \int_{B}^{t} g\left(t,x,s,y,u_{2}\left(s,y\right)\right) dy ds \right| \\ &\geq \left| \left\{ u_{1}\left(t,x\right) - h\left(t,x\right) - \int_{0}^{t} f\left(t,x,s,u_{1}\left(s,x\right)\right) ds - \int_{0}^{t} \int_{B}^{t} g\left(t,x,s,y,u_{1}\left(s,y\right)\right) dy ds \right\} \right| \\ &- \left\{ u_{2}\left(t,x\right) - h\left(t,x\right) - \int_{0}^{t} f\left(t,x,s,u_{2}\left(s,x\right)\right) ds - \int_{0}^{t} \int_{B}^{t} g\left(t,x,s,y,u_{2}\left(s,y\right)\right) dy ds \right\} \right| \\ &\geq \left| u_{1}\left(t,x\right) - u_{2}\left(t,x\right)\right| - \left| \int_{0}^{t} f\left(t,x,s,u_{1}\left(s,x\right)\right) ds - \int_{0}^{t} f\left(t,x,s,u_{2}\left(s,x\right)\right) ds \right| \\ &- \left| \int_{0}^{t} \int_{B}^{t} g\left(t,x,s,y,u_{1}\left(s,y\right)\right) dy ds - \int_{0}^{t} \int_{B}^{t} g\left(t,x,s,y,u_{2}\left(s,y\right)\right) dy ds \right| . \end{aligned}$$

Let $w(t,x) = |u_1(t,x) - u_2(t,x)|, (t,x) \in E$. From (4.4) and using the hypotheses, we observe that

$$w(t,x) \leq \varepsilon_{1} + \varepsilon_{2} + \int_{0}^{t} |f(t,x,s,u_{1}(s,x)) - f(t,x,s,u_{2}(s,x))| ds$$

+ $\int_{0}^{t} \int_{B} |g(t,x,s,y,u_{1}(s,y)) - g(t,x,s,y,u_{2}(s,y))| dyds$
$$\leq \varepsilon_{1} + \varepsilon_{2} + \int_{0}^{t} q(t,x,s) w(s,x) ds + \int_{0}^{t} \int_{B} k(t,x,s,y) w(s,y) dyds.$$
(4.5)

Now an application of Theorem 1 to (4.5) yields (4.2).

Remark 1. In case $u_1(t, x)$ is a solution of (1.4), then we have $\varepsilon_1 = 0$ and from (4.2) we see that $u_2(t, x) \to u_1(t, x)$ as $\varepsilon_2 \to 0$. Moreover, from (4.2) it follows that if $\varepsilon_1 = \varepsilon_2 = 0$, then the uniqueness of solutions of (1.4) is established.

Consider the equation (1.4) together with the following integral equation

$$v(t,x) = \bar{h}(t,x) + \int_{0}^{t} \bar{f}(t,x,s,v(s,x)) \, ds + \int_{0}^{t} \int_{B} \bar{g}(t,x,s,y,v(s,y)) \, dy ds,$$
for $(t,x) \in E$, where $\bar{h} \in C(E,R)$, $\bar{f} \in C(E_1 \times R,R)$, $\bar{g} \in C(E^2 \times R,R)$.
(4.6)

In the following theorem we provide conditions concerning the closeness of solutions of (1.4) and (4.6).

Theorem 6. Suppose that the functions f, g in (1.4) satisfy the conditions (3.1), (3.2) and there exist constants $\bar{\varepsilon}_i \geq 0$ (i = 1, 2), $\bar{\delta} \geq 0$ such that

$$\left|f\left(t, x, s, u\right) - \bar{f}\left(t, x, s, u\right)\right| \le \bar{\varepsilon}_{1},\tag{4.7}$$

$$|g(t, x, s, y, u) - \bar{g}(t, x, s, y, u)| \le \bar{\varepsilon}_2, \tag{4.8}$$

$$h(t,x) - \bar{h}(t,x) \Big| \le \bar{\delta}, \tag{4.9}$$

where f, g, h and $\bar{f}, \bar{g}, \bar{h}$ are functions involved in (1.4) and (4.6) and let

$$\bar{M} = \sup_{t \in R_+} \left[\bar{\delta} + t \left\{ \bar{\varepsilon}_1 + \bar{\varepsilon}_2 \prod_{i=1}^m (b_i - a_i) \right\} \right].$$
(4.10)

Let u(t, x) and v(t, x) be respectively the solutions of (1.4) and (4.6) for $(t, x) \in E$. Then

$$|u(t,x) - v(t,x)| \le \bar{M} P(t,x) \exp\left(\int_{0}^{t} A(\sigma,x) d\sigma\right), \qquad (4.11)$$

for $(t, x) \in E$, where P and A are given by (2.3) and (2.5).

Proof. Let $z(t,x) = |u(t,x) - v(t,x)|, (t,x) \in E$. Using the hypotheses, we observe that

$$\begin{split} z\left(t,x\right) &\leq \left|h\left(t,x\right) - \bar{h}\left(t,x\right)\right| + \int_{0}^{t} \left|f\left(t,x,s,u\left(s,x\right)\right) - f\left(t,x,s,v\left(s,x\right)\right)\right| ds \\ &+ f\left(t,x,s,v\left(s,x\right)\right) - \bar{f}\left(t,x,s,v\left(s,x\right)\right)\right| ds \\ &+ \int_{0}^{t} \int_{B} \left|g\left(t,x,s,y,u\left(s,y\right)\right) - g\left(t,x,s,y,v\left(s,y\right)\right)\right| dy ds \\ &\leq \bar{\delta} + \int_{0}^{t} \left|f\left(t,x,s,u\left(s,x\right)\right) - f\left(t,x,s,v\left(s,x\right)\right)\right| ds \\ &+ \int_{0}^{t} \int_{B} \left|g\left(t,x,s,v\left(s,x\right)\right) - \bar{f}\left(t,x,s,v\left(s,x\right)\right)\right| ds \\ &+ \int_{0}^{t} \int_{B} \left|g\left(t,x,s,y,u\left(s,y\right)\right) - g\left(t,x,s,y,v\left(s,y\right)\right)\right| dy ds \end{split}$$

$$+ \int_{0}^{t} \int_{B} |g(t, x, s, y, v(s, y)) - \bar{g}(t, x, s, y, v(s, y))| dyds$$

$$\leq \bar{\delta} + \int_{0}^{t} q(t, x, s) z(s, x) ds + \int_{0}^{t} \bar{\varepsilon}_{1} ds$$

$$+ \int_{0}^{t} \int_{B} k(t, x, s, y) z(s, y) dyds + \int_{0}^{t} \int_{B} \bar{\varepsilon}_{2} dyds$$

$$\bar{M} + \int_{0}^{t} q(t, x, s) z(s, x) ds + \int_{0}^{t} \int_{B} k(t, x, s, y) z(s, y) dyds.$$
(4.12)

Now an application of Theorem 1 to (4.12) yields (4.11).

Remark 2. The result given in Theorem 6 relates the solutions of (1.4) and (4.6) in the sense that if f, g, h are respectively close to $\bar{f}, \bar{g}, \bar{h}$; then the solutions of (1.4) and (4.6) are also close together.

5. Discrete Analogues

 \leq

Let $N = \{1, 2, ...\}, N_0 = \{0, 1, 2, ...\}, N_i [\alpha_i, \beta_i] = \{\alpha_i, \alpha_i + 1, ..., \beta_i\} (\alpha_i < \beta_i), \alpha_i \in N_0, \beta_i \in N \text{ for } i=1,2,...,m, H = \prod_{i=1}^m N_i [\alpha_i, \beta_i] \subset R^m, G = N_0 \times H, G_1 = \{(n, x, \sigma) : \sigma \leq n, \sigma, n \in N_0, x \in H\}$. For any function r defined on G^2 (or G_1), we define the operator Δ_1 by $\Delta_1 r (n, x, \sigma, y) = r (n + 1, x, \sigma, y) - r (n, x, \sigma, y)$ (or $\Delta_1 r (n, x, \sigma) = r (n + 1, x, \sigma) - r (n, x, \sigma)$) and for any function w defined on H we denote the m-fold sum over H for $y \in H$ by $\sum_H w (y) = \sum_{y_1 = \alpha_1}^{\beta_1} \dots \sum_{y_m = \alpha_m}^{\beta_m} w (y_1, ..., y_m)$. We denote by $D(S_1, S_2)$ the class of discrete functions from the set S_1 to the S_2 and use the usual conventions that empty sums and products are taken to be 0 and 1 respectively. The sum-difference equation that constitutes the

111

discrete analogue of equation (1.4) can be written as

$$u(n,x) = h(n,x) + \sum_{\sigma=0}^{n-1} f(n,x,\sigma,u(\sigma,x)) + \sum_{\sigma=0}^{n-1} \sum_{H} g(n,x,\sigma,y,u(\sigma,y)),$$
(5.1)

for $(n, x) \in G$, where $h \in D(G, R)$, $f \in D(G_1 \times R, R)$, $g \in D(G^2 \times R, R)$. In this section, we formulate in brief the discrete analogues of Theorems 1 and 2 only. One can formulate results similar to those given above in Theorems 3-6 for solutions of equation (5.1). For detailed account on the study of various types of sum-difference equations, see [6,7].

Theorem 7. Let $u(n, x) \in D(G, R_+)$, $q(n, x, \sigma)$, $\Delta_1 q(n, x, \sigma) \in D(G_1, R_+)$, $k(n, x, \sigma, y)$, $\Delta_1 k(n, x, \sigma, y) \in D(G^2, R_+)$ and $c \ge 0$ is a constant. If

$$u(n,x) \le c + \sum_{\sigma=0}^{n-1} q(n,x,\sigma) u(\sigma,x) + \sum_{\sigma=0}^{n-1} \sum_{H} k(n,x,\sigma,y) u(\sigma,y), \quad (5.2)$$

for $(n, x) \in G$, then

$$u(n,x) \le c \bar{P}(n,x) \prod_{\sigma=0}^{n-1} \left[1 + \bar{A}(\sigma,x) \right],$$
 (5.3)

for $(n, x) \in G$, where

$$\bar{P}(n,x) = \prod_{\xi=0}^{n-1} \left[1 + q\left(\xi + 1, x, \xi\right) + \sum_{s=0}^{\xi-1} \Delta_1 q\left(\xi, x, s\right) \right],$$
(5.4)

$$\bar{A}(n,x) = \sum_{H} k(n+1,x,n,y) \bar{P}(n,y) + \sum_{s=0}^{n-1} \sum_{H} \Delta_1 k(n,x,s,y) \bar{P}(s,y).$$
(5.5)

The proof can be completed by closely looking at the proof of Theorem 1 given above and also the proofs of similar inequalities given in [6,7].

Theorem 8. Suppose that the functions f, g, h in (5.1) satisfy the conditions

$$|f(n, x, \sigma, u) - f(n, x, \sigma, \overline{u})| \le q(n, x, \sigma) |u - \overline{u}|, \qquad (5.6)$$

$$\left|g\left(n, x, \sigma, y, u\right) - g\left(n, x, \sigma, y, \bar{u}\right)\right| \le k\left(n, x, \sigma, y\right) \left|u - \bar{u}\right|,\tag{5.7}$$

and

$$\gamma = \sup_{(n,x) \in G} \left[|h(n,x)| + \sum_{\sigma=0}^{n-1} |f(n,x,\sigma,0)| + \sum_{\sigma=0}^{n-1} \sum_{H} |g(n,x,\sigma,y,0)| \right] < \infty,$$
(5.8)

where $q \in D(G_1, R_+)$, $k \in D(G^2, R_+)$; $\Delta_1 q, \Delta_1 k$ exist and $\Delta_1 q \in D(G_1, R_+), \Delta_1 k \in D(G^2, R_+)$. If u(n, x) is any solution of (5.1) on G, then

$$|u(n,x)| \le \gamma \bar{P}(n,x) \prod_{\sigma=0}^{n-1} \left[1 + \bar{A}(\sigma,x)\right], \qquad (5.9)$$

for $(n, x) \in G$, where \overline{P} and \overline{A} are given by (5.4) and (5.5).

The proof follows by the arguments as in the proof of Theorem 2 given above and using Theorem 7. We omit the details.

Remark 3. We note that the idea used in this paper can be extended to study the integral equation of the form

$$u(x, y, z) = h(x, y, z) + \int_{0}^{x} \int_{0}^{y} f(x, y, z, s, t, u(s, t, z)) dtds + \int_{0}^{x} \int_{0}^{y} \int_{\Omega} g(x, y, z, s, t, r, u(s, t, r)) drdtds,$$
(5.10)

and its discrete analogue, which can be considered as a generalization of the equation recently studied by the present author in [10]. Here we do not discuss the details. We strongly believe that the results obtained here may be a source of an extensive and fruitful research in the future.

B. G. Pachpatte

References

- J. M. Appell, A. S. Kalitvin, and P. P. Zabrejko, *Partial integral opera*tors and integrodifferential equations, 230, Pure and applied mathematics monographs, Marcel and Dekker, Inc., New York, 2000.
- [2] E. A. Barbashin, On conditions for the conservation of stability of solutions to integrodifferential equations [in Russian], *Izv. VUZov Mat.*, 1(1957), 25-34.
- [3] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press, Cambridge, 2004.
- [4] O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 6(1978), 109-130.
- [5] B. G. Pachpatte, On mixed Volterra-Fredholm type integral equations, Indian J. Pure Appl. Math., 17(1986), 488-496.
- [6] B. G. Pachpatte, Inequalities for Finite Difference Equations, 247, Pure and Applied mathematics monographs, Marcel and Dekker, Inc., New York, 2002.
- [7] B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, North-Holland Mathematics Studies, 205, Elsevier Science B.V., Amerstdam, 2006.
- [8] B. G. Pachpatte, On a parabolic type Fredholm integrodifferential equation, Numer. Funct. Anal. Optim., 30(2009), 136-147.
- [9] B. G. Pachpatte, Growth estimates on mixed Volterra-Fredholm type integral inequalities, *Fasc. Math.*, **42** (2009), 63-72.
- [10] B. G. Pachpatte, New integral and finite difference inequalities in three variables, *Demonstratio Mathematica*, XLII(2009), 339-349.
- [11] H. R. Thieme, On the boundedness and asymptotic behavior of the nonnegative solutions of Volterra-Hammerstein integral equations, *Manuscr. Math.*, **31**(1980), 379-412.

[12] A. M. Wazwaz, A reliable treatment for mixed Volterra-Fredholm integral equations, *App. Math. Comput.*, **127**(2002), 405-414.