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Abstract

The aim of the present paper is to study some basic qualitative prop-
erties of solutions of a general partial integral equation of Barbashin
type which occur frequently in applications. A variant of a certain inte-
gral inequality with explicit estimate is obtained and used to establish
the results.
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1. Introduction

E.A.Barbashin [2] was the first to attempt to solve the integrodifferential equa-
tion of the form

∂

∂t
u (t, x) = c (t, x)u (t, x) +

b∫
a

k (t, x, y)u (t, y) dy + f (t, x) , (1.1)
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which appear in mathematical modelling of many applied problems (see [1,
section 19]). The equation (1.1) attracted the attention of many researchers
and is now known in the literature as integrodifferential equation of Barbashin
type or simply Barbashin equation, see [1, p. 1]. The equation of the type (1.1)
and the partial integral equations are connected to each other in several ways.
For example, suppose we are interested in finding a solution u of equation
(1.1) satisfying the initial condition u (t0, x) = u0 (x) for a ≤ x ≤ b and
t0 ∈ J = [0,∞) is fixed and u0 : [a, b] → R is a given continuous function.
Putting ∂

∂t
u (t, x) := w (t, x) we arrive at the equation

w (t, x) = g (t, x) +

t∫
t0

c (t, x)w (τ, x) dτ +

t∫
t0

b∫
a

k (t, x, y)w (τ, y) dydτ, (1.2)

where

g (t, x) = f (t, x) + c (t, x)u0 (x) +

b∫
a

k (t, x, y)u0 (y) dy. (1.3)

The equation (1.2) may be viewed as partial integral equation of Barbashin
type. In this paper we consider a general partial integral equation of the form

u (t, x) = h (t, x) +

t∫
0

f (t, x, s, u (s, x)) ds+

t∫
0

∫
B

g (t, x, s, y, u (s, y)) dyds,

(1.4)
for (t, x) ∈ E, where h ∈ C (E,R) , f ∈ C (E1 ×R,R) , g ∈ C (E2 ×R,R)
are given functions and u is the unknown function to be found. Here R =

(−∞,∞) , R+ = [0,∞) , B =
m∏
i=1

[ai, bi] ⊂ Rm (ai < bi) and E = R+ × B,

E1 = {(t, x, s) : 0 ≤ s ≤ t <∞, x ∈ B} . The partial derivative of a function r
defined on E2 (or E1) with respect to the first variable is denoted by D1r and
C (A1, A2) denotes the class of continuous functions from the set A1 to the set
A2. For any function u defined on B, we denote by

∫
B

u (y) dy the m-fold inte-

gral
b1∫
a1

...
bm∫
am

u (y1, ..., ym) dym...dy1. The problems of existence and uniqueness

of solutions of equation (1.4) can be dealt with the method employed in [5,8],
see also [3,4,11,12]. For a detailed account on the study of such equations, see
the monograph [1] and the references cited therein.
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In dealing with the equations like (1.4), the basic questions to be answered
are : (i) if solutions do exist, then what are their nature ? (ii) how can we
find them or closely approximate them ?. In practice one need a new insight
to study such questions for equations like (1.4). In the present paper we focus
our attention to study some fundamental qualitative properties of solutions
of equation (1.4). A new variant of a certain integral inequality with explicit
estimate has been found and used to establish the results. Discrete analogues
of the main results are also given.

2. A Basic Integral Inequality

In this section we establish a new variant of the integral inequality given by
the present author in [8] (see also [9]), which can be used as a tool in the
qualitative analysis of our main results.

Theorem 1. Let u(t, x) ∈ C (E,R+) , q (t, x, s) , D1q (t, x, s) ∈ C (E1, R+) ,
k (t, x, s, y) , D1k (t, x, s, y) ∈ C (E2, R+) and c ≥ 0 is a constant. If

u (t, x) ≤ c+

t∫
0

q (t, x, s)u (s, x) ds+

t∫
0

∫
B

k (t, x, s, y)u (s, y) dyds, (2.1)

for (t, x) ∈ E, then

u (t, x) ≤ c P (t, x) exp

 t∫
0

A (σ, x) dσ

 , (2.2)

for (t, x) ∈ E, where
P (t, x) = exp (Q (t, x)) , (2.3)

in which

Q (t, x) =

t∫
0

q (η, x, η) +

η∫
0

D1q (η, x, ξ) dξ

dη, (2.4)

and

A (t, x) =

∫
B

k (t, x, t, y)P (t, y) dy +

t∫
0

∫
B

P (s, y)D1k (t, x, s, y) dyds, (2.5)
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for (t, x) ∈ E.

Proof. Define a function n(t, x) by

n (t, x) = c+

t∫
0

∫
B

k (t, x, s, y)u (s, y) dyds, (2.6)

then (2.1) can be restated as

u (t, x) ≤ n (t, x) +

t∫
0

q (t, x, s)u (s, x) ds. (2.7)

From the hypotheses, it is easy to observe that n(t, x) is nonnegative for (t, x) ∈
E and nondecreasing in t ∈ R+ for every x ∈ B. Treating (2.7) as one-
dimensional integral inequality for every x ∈ B and a suitable application of
the inequality given in [7, Theorem 1.2.1, Remark 1.2.1, p. 11] yields

u (t, x) ≤ n (t, x)P (t, x) . (2.8)

From (2.6) and (2.8), we obtain

n (t, x) ≤ c+

t∫
0

∫
B

k (t, x, s, y)P (s, y)n (s, y) dyds. (2.9)

Setting

e (t, x, s) =

∫
B

k (t, x, s, y)P (s, y)n (s, y) dy, (2.10)

the inequality (2.9) can be restated as

n (t, x) ≤ c+

t∫
0

e (t, x, s) ds. (2.11)

For every x ∈ B, define

z (t) = c+

t∫
0

e (t, x, s) ds, (2.12)
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then z(0) = c and

n (t, x) ≤ z (t) . (2.13)

From (2.12), (2.10), (2.13) and the fact that z(t) is nondecreasing in t ∈ R+

for every x ∈ B, we observe that

z′ (t) = e (t, x, t) +

t∫
0

D1e (t, x, s) ds

=

∫
B

k (t, x, t, y)P (t, y)n (t, y) dy +

t∫
0

D1


∫
B

k (t, x, s, y)P (s, y)n (s, y) dy

 ds

≤
∫
B

k (t, x, t, y)P (t, y) z (t) dy +

t∫
0

∫
B

P (s, y)D1k (t, x, s, y) z (s) dyds

≤ A (t, x) z (t) . (2.14)

The inequality (2.14) implies

z (t) ≤ c exp

 t∫
0

A (σ, x) dσ

 . (2.15)

The required inequality in (2.2) follows from (2.15), (2.13) and (2.8).

3. Estimates on the Solutions

First we shall give the following theorem concerning the estimate on the solu-
tion of equation (1.4).

Theorem 2. Suppose that the functions f, g, h in (1.4) satisfy the conditions

|f (t, x, s, u)− f (t, x, s, ū)| ≤ q (t, x, s) |u− ū| , (3.1)

|g (t, x, s, y, u)− g (t, x, s, y, ū)| ≤ k (t, x, s, y) |u− ū| , (3.2)
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and

d =
sup

(t, x) ∈ E

|h (t, x)|+
t∫

0

|f (t, x, s, 0)| ds+

t∫
0

∫
B

|g (t, x, s, y, 0)| dyds

 <∞,
(3.3)

where q ∈ C (E1, R+) , k ∈ C (E2, R+) ; D1q,D1k exist and
D1q ∈ C (E1, R+) , D1k ∈ C (E2, R+). If u(t, x) is any solution of (1.4) on E,
then

|u (t, x)| ≤ dP (t, x) exp

 t∫
0

A (σ, x) dσ

 , (3.4)

for (t, x) ∈ E, where P and A are given by (2.3) and (2.5).

Proof. Using the fact that u(t, x) is a solution of (1.4) and hypotheses, we
observe that

|u (t, x)| ≤ |h (t, x)|+
t∫

0

|f (t, x, s, u (s, x))− f (t, x, s, 0) + f (t, x, s, 0)| ds

+

t∫
0

∫
B

|g (t, x, s, y, u (s, y))− g (t, x, s, y, 0) + g (t, x, s, y, 0)|dyds

≤ |h (t, x)|+
t∫

0

|f (t, x, s, 0)| ds+

t∫
0

∫
B

|g (t, x, s, y, 0)|dyds

+

t∫
0

|f (t, x, s, u (s, x))− f (t, x, s, 0)| ds

+

t∫
0

∫
B

|g (t, x, s, y, u (s, y))− g (t, x, s, y, 0)|dyds

≤ d+

t∫
0

q (t, x, s) |u (s, x)| ds+

t∫
0

∫
B

k (t, x, s, y) |u (s, y)|dyds. (3.5)

Now an application of Theorem 1 to (3.5) yields (3.4).
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A slight variant of Theorem 2 is given in the following theorem.

Theorem 3. Suppose that the functions f, g, h in (1.4) satisfy the conditions
(3.1), (3.2) and

d̄ =
sup

(t, x) ∈ E

 t∫
0

|f (t, x, s, h (s, x))| ds+

t∫
0

∫
B

|g (t, x, s, y, h (s, y))| dyds

 <∞.
(3.6)

If u(t, x) is any solution of (1.4) on E, then

|u (t, x)− h (t, x)| ≤ d̄ P (t, x) exp

 t∫
0

A (σ, x) dσ

 , (3.7)

for (t, x) ∈ E, where P and A are given by (2.3) and (2.5).

Proof. Let e (t, x) = |u (t, x)− h (t, x)|, (t, x) ∈ E. Using the fact that
u(t, x) is a solution of (1.4) and hypothses, we observe that

e (t, x) ≤
t∫

0

|f (t, x, s, u (s, x))− f (t, x, s, h (s, x)) + f (t, x, s, h (s, x))| ds

+

t∫
0

∫
B

|g (t, x, s, y, u (s, y))− g (t, x, s, y, h (s, y)) + g (t, x, s, y, h (s, y))|dyds

≤
t∫

0

|f (t, x, s, h (s, x))| ds+

t∫
0

∫
B

|g (t, x, s, y, h (s, y))|dyds

+

t∫
0

|f (t, x, s, u (s, x))− f (t, x, s, h (s, x))| ds

+

t∫
0

∫
B

|g (t, x, s, y, u (s, y))− g (t, x, s, y, h (s, y))|dyds
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≤ d̄+

t∫
0

q (t, x, s) e (s, x) ds+

t∫
0

∫
B

k (t, x, s, y) e (s, y)dyds. (3.8)

Now an application of Theorem 1 to (3.8) yields (3.7).

We next prove under more restrictive conditions on the functions involved
in (1.4) that the solutions tends to zero as t→∞.

Theorem 4. Assume that

|h (t, x)| ≤M exp (−αt) , (3.9)

|f (t, x, s, u)− f (t, x, s, ū)| ≤ q (t, x, s) exp (−α (t− s)) |u− ū| , (3.10)

|g (t, x, s, y, u)− g (t, x, s, y, ū)| ≤ k (t, x, s, y) exp (−α (t− s)) |u− ū| , (3.11)

and f(t, x, s, 0) = 0, g(t, x, s, y, 0) = 0, where α > 0,M ≥ 0 are constants. The
functions q, k be as in Theorem 2 and

sup
(t, x) ∈ E Q (t, x) <∞,

∞∫
0

A (σ, x) dσ <∞, (3.12)

where Q and A are given by (2.4) and (2.5). If u(t, x) is any solution of (1.4)
on E, then it tends exponentially toward zero as t→∞.

Proof. From the hypotheses, we observe that

|u (t, x)| ≤ |h (t, x)|+
t∫

0

|f (t, x, s, u (s, x))− f (t, x, s, 0)| ds

+

t∫
0

∫
B

|g (t, x, s, y, u (s, y))− g (t, x, s, y, 0)|dyds

≤M exp (−αt) +

t∫
0

q (t, x, s) exp (−α (t− s)) |u (s, x)| ds
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+

t∫
0

∫
B

k (t, x, s, y) exp (−α (t− s)) |u (s, y)| dyds. (3.13)

From (3.13), we observe that

|u (t, x)| exp (αt) ≤M +

t∫
0

q (t, x, s) |u (s, x)| exp (αs) ds

+

t∫
0

∫
B

k (t, x, s, y) |u (s, y)| exp (αs) dyds. (3.14)

Now an application of Theorem 1 to (3.14) yields

|u (t, x)| exp (αt) ≤M P (t, x) exp

 t∫
0

A (σ, x) dσ

 . (3.15)

Multiplying both sides of (3.15) by exp (−αt) and in view of (3.12), the solution
u(t, x) tends to zero as t→∞.

4. Approximate Solutions

We call the function u ∈ C (E,R) an ε-approximate solution of equation (1.4),
if there exists a constant ε ≥ 0 such that∣∣∣∣∣∣u (t, x)− h (t, x)−

t∫
0

f (t, x, s, u (s, x)) ds−
t∫

0

∫
B

g (t, x, s, y, u (s, y)) dyds

∣∣∣∣∣∣ ≤ ε,

(4.1)
for (t, x) ∈ E.

The following theorem deals with the estimate on the difference between the
two approximate solutions of equation (1.4).
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Theorem 5. Suppose that the functions f, g in (1.4) satisfy the conditions
(3.1) and (3.2). Let ui(t, x)(i = 1, 2) be respectively εi-approximate solutions
of (1.4) on E. Then

|u1 (t, x)− u2 (t, x)| ≤ (ε1 + ε2)P (t, x) exp

 t∫
0

A (σ, x) dσ

 , (4.2)

for (t, x) ∈ E, where P and A are given by (2.3) and (2.5).

Proof. Since ui(t, x)(i = 1, 2) for (t, x) ∈ E are respectively εi-approximate
solutions of (1.4), we have∣∣∣∣∣∣ui (t, x)− h (t, x)−

t∫
0

f (t, x, s, ui (s, x)) ds−
t∫

0

∫
B

g (t, x, s, y, ui (s, y)) dyds

∣∣∣∣∣∣ ≤ εi.

(4.3)
From (4.3) and using the elementary inequalities |v − z| ≤ |v|+ |z| , |v|− |z| ≤
|v − z| , we observe that

ε1+ε2 ≥

∣∣∣∣∣∣u1 (t, x)− h (t, x)−
t∫

0

f (t, x, s, u1 (s, x)) ds−
t∫

0

∫
B

g (t, x, s, y, u1 (s, y)) dyds

∣∣∣∣∣∣
+

∣∣∣∣∣∣u2 (t, x)− h (t, x)−
t∫

0

f (t, x, s, u2 (s, x)) ds−
t∫

0

∫
B

g (t, x, s, y, u2 (s, y)) dyds

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
u1 (t, x)− h (t, x)−

t∫
0

f (t, x, s, u1 (s, x)) ds−
t∫

0

∫
B

g (t, x, s, y, u1 (s, y)) dyds


−

u2 (t, x)− h (t, x)−
t∫

0

f (t, x, s, u2 (s, x)) ds−
t∫

0

∫
B

g (t, x, s, y, u2 (s, y)) dyds


∣∣∣∣∣∣

≥ |u1 (t, x)− u2 (t, x)| −

∣∣∣∣∣∣
t∫

0

f (t, x, s, u1 (s, x)) ds−
t∫

0

f (t, x, s, u2 (s, x)) ds

∣∣∣∣∣∣
−

∣∣∣∣∣∣
t∫

0

∫
B

g (t, x, s, y, u1 (s, y)) dyds−
t∫

0

∫
B

g (t, x, s, y, u2 (s, y)) dyds

∣∣∣∣∣∣ . (4.4)
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Let w (t, x) = |u1 (t, x)− u2 (t, x)|, (t, x) ∈ E. From (4.4) and using the
hypotheses, we observe that

w (t, x) ≤ ε1 + ε2 +

t∫
0

|f (t, x, s, u1 (s, x))− f (t, x, s, u2 (s, x))|ds

+

t∫
0

∫
B

|g (t, x, s, y, u1 (s, y))− g (t, x, s, y, u2 (s, y))| dyds

≤ ε1 + ε2 +

t∫
0

q (t, x, s)w (s, x)ds+

t∫
0

∫
B

k (t, x, s, y)w (s, y) dyds. (4.5)

Now an application of Theorem 1 to (4.5) yields (4.2).

Remark 1. In case u1(t, x) is a solution of (1.4), then we have ε1 = 0 and
from (4.2) we see that u2 (t, x) → u1 (t, x) as ε2 → 0. Moreover, from (4.2)
it follows that if ε1 = ε2 = 0, then the uniqueness of solutions of (1.4) is
established.

Consider the equation (1.4) together with the following integral equation

v (t, x) = h̄ (t, x) +

t∫
0

f̄ (t, x, s, v (s, x)) ds+

t∫
0

∫
B

ḡ (t, x, s, y, v (s, y)) dyds,

(4.6)
for (t, x) ∈ E, where h̄ ∈ C (E,R) , f̄ ∈ C (E1 ×R,R) , ḡ ∈ C (E2 ×R,R) .

In the following theorem we provide conditions concerning the closeness of
solutions of (1.4) and (4.6).

Theorem 6. Suppose that the functions f, g in (1.4) satisfy the conditions
(3.1), (3.2) and there exist constants ε̄i ≥ 0 (i = 1, 2) , δ̄ ≥ 0 such that∣∣f (t, x, s, u)− f̄ (t, x, s, u)

∣∣ ≤ ε̄1, (4.7)

|g (t, x, s, y, u)− ḡ (t, x, s, y, u)| ≤ ε̄2, (4.8)
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∣∣h (t, x)− h̄ (t, x)
∣∣ ≤ δ̄, (4.9)

where f, g, h and f̄ , ḡ, h̄ are functions involved in (1.4) and (4.6) and let

M̄ =
sup

t ∈ R+

[
δ̄ + t

{
ε̄1 + ε̄2

m∏
i=1

(bi − ai)

}]
. (4.10)

Let u(t, x) and v(t, x) be respectively the solutions of (1.4) and (4.6) for (t, x) ∈
E. Then

|u (t, x)− v (t, x)| ≤ M̄ P (t, x) exp

 t∫
0

A (σ, x) dσ

 , (4.11)

for (t, x) ∈ E, where P and A are given by (2.3) and (2.5).

Proof. Let z (t, x) = |u (t, x)− v (t, x)|, (t, x) ∈ E. Using the hypotheses,
we observe that

z (t, x) ≤
∣∣h (t, x)− h̄ (t, x)

∣∣+

t∫
0

|f (t, x, s, u (s, x))− f (t, x, s, v (s, x))

+f (t, x, s, v (s, x))− f̄ (t, x, s, v (s, x))
∣∣ ds

+

t∫
0

∫
B

|g (t, x, s, y, u (s, y))− g (t, x, s, y, v (s, y))

+g (t, x, s, y, v (s, y))− ḡ (t, x, s, y, v (s, y))| dyds

≤ δ̄ +

t∫
0

|f (t, x, s, u (s, x))− f (t, x, s, v (s, x))| ds

+

t∫
0

∣∣f (t, x, s, v (s, x))− f̄ (t, x, s, v (s, x))
∣∣ ds

+

t∫
0

∫
B

|g (t, x, s, y, u (s, y))− g (t, x, s, y, v (s, y))|dyds
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+

t∫
0

∫
B

|g (t, x, s, y, v (s, y))− ḡ (t, x, s, y, v (s, y))|dyds

≤ δ̄ +

t∫
0

q (t, x, s) z (s, x) ds+

t∫
0

ε̄1ds

+

t∫
0

∫
B

k (t, x, s, y) z (s, y)dyds+

t∫
0

∫
B

ε̄2dyds

≤ M̄ +

t∫
0

q (t, x, s) z (s, x) ds+

t∫
0

∫
B

k (t, x, s, y) z (s, y)dyds. (4.12)

Now an application of Theorem 1 to (4.12) yields (4.11).

Remark 2. The result given in Theorem 6 relates the solutions of (1.4)
and (4.6) in the sense that if f, g, h are respectively close to f̄ , ḡ, h̄; then the
solutions of (1.4) and (4.6) are also close together.

5. Discrete Analogues

LetN = {1, 2, ...} , N0 = {0, 1, 2, ...} , Ni [αi, βi] = {αi, αi + 1, ..., βi} (αi < βi) , αi ∈
N0, βi ∈ N for i=1,2,...,m, H =

m∏
i=1

Ni [αi, βi] ⊂ Rm, G = N0 ×H, G1 = {(n, x, σ) :

σ ≤ n, σ, n ∈ N0, x ∈ H} . For any function r defined on G2 (or G1), we de-
fine the operator ∆1 by ∆1r (n, x, σ, y) = r (n+ 1, x, σ, y) − r (n, x, σ, y) (or
∆1r (n, x, σ) = r (n+ 1, x, σ)−r (n, x, σ)) and for any function w defined on H

we denote them-fold sum overH for y ∈ H by
∑
H

w (y) =
β1∑

y1=α1

...
βm∑

ym=αm

w (y1, ..., ym) .

We denote by D(S1, S2) the class of discrete functions from the set S1 to the
S2 and use the usual conventions that empty sums and products are taken
to be 0 and 1 respectively. The sum-difference equation that constitutes the
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discrete analogue of equation (1.4) can be written as

u (n, x) = h (n, x) +
n−1∑
σ=0

f (n, x, σ, u (σ, x)) +
n−1∑
σ=0

∑
H

g (n, x, σ, y, u (σ, y)) ,

(5.1)
for (n, x) ∈ G, where h ∈ D (G,R) , f ∈ D (G1 ×R,R) , g ∈ D (G2 ×R,R) .
In this section, we formulate in brief the discrete analogues of Theorems 1 and
2 only. One can formulate results similar to those given above in Theorems 3-6
for solutions of equation (5.1). For detailed account on the study of various
types of sum-difference equations, see [6,7].

Theorem 7. Let u (n, x) ∈ D (G,R+) , q (n, x, σ) ,∆1q (n, x, σ) ∈ D (G1, R+) ,
k (n, x, σ, y) , ∆1k (n, x, σ, y) ∈ D (G2, R+) and c ≥ 0 is a constant. If

u (n, x) ≤ c+
n−1∑
σ=0

q (n, x, σ)u (σ, x) +
n−1∑
σ=0

∑
H

k (n, x, σ, y)u (σ, y) , (5.2)

for (n, x) ∈ G, then

u (n, x) ≤ c P̄ (n, x)
n−1∏
σ=0

[
1 + Ā (σ, x)

]
, (5.3)

for (n, x) ∈ G, where

P̄ (n, x) =
n−1∏
ξ=0

[
1 + q (ξ + 1, x, ξ) +

ξ−1∑
s=0

∆1q (ξ, x, s)

]
, (5.4)

Ā (n, x) =
∑
H

k (n+ 1, x, n, y) P̄ (n, y) +
n−1∑
s=0

∑
H

∆1k (n, x, s, y) P̄ (s, y).

(5.5)

The proof can be completed by closely looking at the proof of Theorem 1 given
above and also the proofs of similar inequalities given in [6,7].
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Theorem 8. Suppose that the functions f, g, h in (5.1) satisfy the conditions

|f (n, x, σ, u)− f (n, x, σ, ū)| ≤ q (n, x, σ) |u− ū| , (5.6)

|g (n, x, σ, y, u)− g (n, x, σ, y, ū)| ≤ k (n, x, σ, y) |u− ū| , (5.7)

and

γ =
sup

(n, x) ∈ G

[
|h (n, x)|+

n−1∑
σ=0

|f (n, x, σ, 0)|

+
n−1∑
σ=0

∑
H

|g (n, x, σ, y, 0)|

]
<∞, (5.8)

where q ∈ D (G1, R+), k ∈ D (G2, R+); ∆1q,∆1k exist and
∆1q ∈ D (G1, R+) ,∆1k ∈ D (G2, R+) . If u(n, x) is any solution of (5.1) on
G, then

|u (n, x)| ≤ γ P̄ (n, x)
n−1∏
σ=0

[
1 + Ā (σ, x)

]
, (5.9)

for (n, x) ∈ G, where P̄ and Ā are given by (5.4) and (5.5).

The proof follows by the arguments as in the proof of Theorem 2 given above
and using Theorem 7. We omit the details.

Remark 3. We note that the idea used in this paper can be extended to
study the integral equation of the form

u (x, y, z) = h (x, y, z) +

x∫
0

y∫
0

f (x, y, z, s, t, u (s, t, z)) dtds

+

x∫
0

y∫
0

∫
Ω

g (x, y, z, s, t, r, u (s, t, r))drdtds, (5.10)

and its discrete analogue, which can be considered as a generalization of the
equation recently studied by the present author in [10]. Here we do not discuss
the details. We strongly believe that the results obtained here may be a source
of an extensive and fruitful research in the future.
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