Compositions of Derivations with Central Values on Polynomials *

Chi-Ming Chang ${ }^{\dagger}$
General Education Center, Tzu Chi College of Technology, Hualien, Taiwan

Received October 21, 2009, Accepted December 13, 2010.

Abstract

Let R be a prime ring with extended centroid C, ρ a nonzero right ideal of $R, f\left(X_{1}, \ldots, X_{t}\right)$ a non-central polynomial with zero constant term over C, not necessarily multilinear, and δ, d two nonzero derivations of R. We determine the structures of R, δ and d when $\delta d\left(f\left(X_{1}, \ldots, X_{t}\right)\right)$ is central-valued on ρ. The theorem gives a generalization of several related results in the literature.

Keywords and Phrases: Derivation, prime ring, PI, GPI.

1. Results

Throughout this paper, let R be always a prime ring with center $\mathcal{Z}(R)$, extended centroid C, maximal ring of right quotients U and symmetric Martindale ring of quotients Q. An additive map $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. We denote by $\operatorname{ad}(b)$ the inner derivation of R induced by the element $b \in R$. That is, $\operatorname{ad}(b)(x)=[b, x]=b x-x b$ for $x \in R$. In this note we will prove a result concerning a composition of two

[^0]derivations on a prime ring. We recall some results that have motivated our work.

Let d and δ be two derivations of R and let I be either a Lie ideal of R or a right ideal of R. A number of authors have considered the following questions in the literature: Determine the structures of R, I, δ and d when $\delta d(I)=0$ or $\delta d(I) \subseteq \mathcal{Z}(R)$. For instance, Posner [12] proved that if $\delta d(R)=0$ and char $R \neq 2$, then either $d=0$ or $\delta=0$. Other related results are [9, Theorem 4], [7, Theorem], [8, Theorem 1], [1, Theorem 2], [10, Theorem 4], [8, Main Theorem], [3, Theorem 2], and so on. In a recent paper [2] Chang obtained a common generalization of the theorems above by proving the following two theorems:

Theorem 1.1. Let R be a prime ring, ρ a right ideal of R and δ, d two nonzero derivations of R. Suppose that $\delta d([\rho, \rho])=0$ and $[\rho, \rho] \rho \neq 0$. Then either $\delta=\alpha d$ for some $\alpha \in C$ and $d^{2}=0$, or there exist $p, q \in Q$ such that $\delta=\operatorname{ad}(q), d=\operatorname{ad}(p)$ with $p \rho=0=q \rho$ and $p q=0$, except when $\rho C=e R C$ for some idempotent e in the socle of $R C$ such that char $R=2$ and $\operatorname{dim}_{C} e R C e=$ 4.

Theorem 1.2. Let R be a prime ring, ρ a right ideal of R and δ, d two derivations of R. If $0 \neq \delta d([\rho, \rho]) \subseteq \mathcal{Z}(R)$ and $[\rho, \rho] \rho \neq 0$, then char $R=2$ and $\operatorname{dim}_{C} R C=4$.

Since, in Theorems 1.1 and $1.2,[\rho, \rho]$ contains the elements $x y-y x$ for all $x, y \in \rho$. It is natural to consider the above theorems by replacing $[\rho, \rho]$ with a polynomial in noncommuting indeterminates with zero constant term over C. For a right ideal ρ of R we denote by $f(\rho)$ the additive subgroup of $R C$ generated by all elements $f\left(x_{1}, \ldots, x_{t}\right)$ for $x_{1}, \ldots, x_{t} \in \rho$. The goal of this note is to prove a common generalization of the above results:

Theorem 1.3. Let R be a prime ring, ρ a nonzero right ideal of $R, f\left(X_{1}, \ldots, X_{t}\right)$ a polynomial in noncommuting indeterminates with zero constant term over C, and δ, d two nonzero derivations of R.
(I) Suppose that $\delta d(f(\rho))=0$. Then either $\delta=\alpha d$ for some $\alpha \in C$ and $d^{2}=0$, or there exist $p, q \in Q$ such that $\delta=\operatorname{ad}(q), d=\operatorname{ad}(p)$ with $p \rho=$ $0=q \rho$ and $p q=0$, or $\rho C=e R C$ for some idempotent e in the socle of $R C$ such that either $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on eRCe or char $R=2$ and $\operatorname{dim}_{C} e R C e=4$.
(II) Suppose that $0 \neq \delta d(f(\rho)) \subseteq C$. Then $\rho C=e R C$ for some idempotent
e in the socle of $R C$ such that $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on eRCe unless char $R=2$ and $\operatorname{dim}_{C} R C=4$.

In Theorem 1.3 (II) we cannot conclude that $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on R in general. The following provides such an example.

Example 1.4. Let $R=\mathrm{M}_{2 n}(F)$ be the $2 n \times 2 n$ matrix ring over F, a field of characteristic 2 , where $n \geq 2$. We let $\left\{e_{i j} \mid 1 \leq i, j \leq 2 n\right\}$ be the set of the usual matrix units in R, and let $\rho=e R$, where $e=e_{11}+\cdots+e_{n n}$. Choose $f\left(X_{1}, \ldots, X_{t}\right)$ to be a central polynomial for $\mathrm{M}_{n}(F)$ (see, for instance, [13, p.315]). Let $d=\operatorname{ad}(p)$ and $\delta=\operatorname{ad}(q)$, where $p=\sum_{i=1}^{n} e_{2 n+1-i i}$ and $q=$ $\sum_{i=1}^{n} e_{i 2 n+1-i}$. Note that $p e=p, e q=q, q e=0, p q=\sum_{i=n+1}^{2 n} e_{i i}=1-e$ and $q p=\sum_{i=1}^{n} e_{i i}=e$. Let $x_{1}, \ldots, x_{t} \in \rho=e R$. Then $f\left(x_{1}, \ldots, x_{t}\right) e=\beta e$ with $\beta \in F$, depending on $\left\{x_{i}\right\}$. We set $b=f\left(x_{1}, \ldots, x_{t}\right)$ and hence $e b=b$ and $b e=\beta e$. Since char $F=2$, we have

$$
\begin{aligned}
\delta d\left(f\left(x_{1}, \ldots, x_{t}\right)\right) & =q p b+q b p+p b q+b p q \\
& =e b+q e b p+p b e q+b(1+e) \\
& =b+\beta(1+e)+b+\beta e=\beta \in F .
\end{aligned}
$$

Since we can choose $x_{i} \in \rho$ such that $\beta \neq 0$, this implies that $0 \neq$ $\delta d(f(\rho)) \subseteq F$. It is clear that $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on $e R e$, but $f\left(X_{1}, \ldots, X_{t}\right)$ is not central-valued on R.

As an immediate consequence of the Main Theorem, we have the following:
Corollary 1.5. Let R be a prime ring and let δ, d be two nonzero derivations of $R, f\left(X_{1}, \ldots, X_{t}\right)$ a polynomial over C, and I a nonzero ideal of R.
(I) Suppose that $\delta d(f(I))=0$. Then either $\delta=\alpha d$ for some $\alpha \in C$ and $d^{2}=0$ or $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on $R C$ except when char $R=2$ and $\operatorname{dim}_{C} e R C e=4$.
(II) Suppose that $0 \neq \delta d(f(I)) \subseteq C$. Then $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on $R C$ except when char $R=2$ and $\operatorname{dim}_{C} R C=4$.

We remark that the exceptional case indeed exists in Corollary 1.5 (II). For instance, let $R=\mathrm{M}_{2}(C)$, where C is a field of characteristic 2 . We set $\delta=\operatorname{ad}\left(e_{12}\right), d=\operatorname{ad}\left(e_{11}\right)$, and $f(X, Y)=X Y-Y X$. Then a direct computation proves that $0 \neq \delta d(f(R)) \subseteq C$. Of course, $X Y-Y X$ cannot be central-valued on R.

2. Proof of Theorem 1.3

To prove Theorem 1.3 we need the following two results ([5, Theorems 1 and 2]): The first theorem investigates $f(\rho)$ the additive subgroup of $R C$ generated by all elements $f\left(x_{1}, \ldots, x_{t}\right)$ for $x_{i} \in \rho$, where $f\left(X_{1}, \ldots, X_{t}\right)$ is a polynomial over C and where ρ is a right ideal of R. The second result concerns the case when ρ is an ideal of R.
Theorem 2.1. Let R be a centrally closed prime C-algebra, ρ a nonzero right ideal of R and $f\left(X_{1}, \ldots, X_{t}\right)$ a nonzero polynomial over C.
(I) If ρ is a non-PI right ideal of R, then there exists a non-PI right ideal ρ_{0} of R contained in ρ such that $\left[\rho_{0}, \rho\right] \subseteq f(\rho)$ and $\rho \rho_{0} \subseteq \rho_{0}$.
(II) If ρ is a PI right ideal of R, then there exists an idempotent e in the socle of R such that $\rho=e R$ and the following statements hold:
(i) $e R(1-e) \subseteq f(\rho)$ if $f(\rho) \neq 0$.
(ii) $[\rho, \rho] \subseteq f(\rho)$ except when either $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on eRe or $e R e \cong \mathrm{M}_{2}(\mathrm{GF}(2))$.
Theorem 2.2. Let R be a prime ring with extended centroid C and I a nonzero ideal of R. Suppose that $f\left(X_{1}, \ldots, X_{t}\right)$ is a polynomial over C, which is not central-valued on $R C$. Then $[M, R] \subseteq f(I)$ for some nonzero ideal M of R except when $\left.R \cong M_{2} G F(2)\right)$ and $f(R)=\left\{0, e_{12}+e_{21}, 1+e_{12}, 1+e_{21}\right\}$ or $\left\{0,1, e_{11}+e_{12}+e_{21}, e_{22}+e_{12}+e_{21}\right\}$.

We are now in a position to give the proof of our main result:
Proof of Theorem 1.3. (I) By [11, Theorem 2], R and Q satisfy the same differential identities. Thus $\rho, \rho R$ and ρQ satisfy the same differential identities. By assumption, $\delta d\left(f\left(x_{1}, \ldots, x_{t}\right)\right)=0$ for all $x_{1}, \ldots, x_{t} \in \rho$. Replacing R, ρ with $R C, \rho C$ respectively, we may assume that R is a centrally closed prime C-algebra, so now we can assume that $\rho C \subseteq \rho$.

Consider first the case that ρ is a non-PI right ideal of R. In view of Theorem 2.1, $\left[\rho_{0}, \rho\right] \subseteq f(\rho)$ for some non-PI right ideal ρ_{0} of R contained in ρ and $\rho \rho_{0} \subseteq \rho_{0}$. Since $\delta d(f(\rho))=0$, we have $\delta d\left(\left[\rho_{0}, \rho_{0}\right]\right)=0$. Since $\left[\rho_{0}, \rho_{0}\right] \rho_{o} \neq 0$, applying Theorem 1.1, we have that either $\delta=\alpha d$ for some $\alpha \in C$ and $d^{2}=0$, or there exist $p, q \in Q$ such that $\delta=\operatorname{ad}(q), d=\operatorname{ad}(p)$ with $p \rho_{0}=0=q \rho_{0}$ and $p q=0$. Since $\rho \rho_{0} \subseteq \rho_{0}$, we see that $p \rho \rho_{0}=0=q \rho \rho_{0}$, implying that $p \rho=0=q \rho$ by the primeness of R. This proves the case.

Suppose next that ρ is a PI right ideal of R. By Theorem 1.2, $\rho=e R$ for some idempotent e in the socle of R. Suppose that $f\left(X_{1}, \ldots, X_{t}\right)$ is not central-
valued on $e R e$. In particular, $e R e$ is not commutative and so $[\rho, \rho] \rho \neq 0$. Moreover, we assume that either char $R \neq 2$ or $\operatorname{dim}_{C} e R C e>4$. In view of Theorem 2.1, $[\rho, \rho] \subseteq f(\rho)$ and hence $\delta d([\rho, \rho])=0$. Applying Theorem 1.1 we are done.
(II) By assumption, $\delta d\left(f\left(X_{1}, \ldots, X_{t}\right)\right)$ is a central DI (see [4]) for ρ. It follows from [4, Theorem 1] that R is a prime PI-ring and so $R C$ is a finite-dimensional central simple C-algebra by Posner's Theorem. By the Wedderburn-Artin theorem, $R C \cong \mathrm{M}_{n}(D)$ for some n and some finite-dimensional central division C-algebra D. In view of [6, Theorem 1] or [11, Theorem 2], $0 \neq \delta d(f(\rho C)) \subseteq C$. By replacing R, ρ with $R C, \rho C$ respectively, we may assume that $R=\mathrm{M}_{n}(D)$ and $\rho=e R$ for some idempotent $e \in R$. It follows from Theorems 2.1 and 2.2 that $[\rho, \rho] \subseteq f(\rho)$ except when either $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on $e R e$, or $e R e \cong \mathrm{M}_{2}(\mathrm{GF}(2))$ such that $f(e R e)=\left\{0, e_{12}+\right.$ $\left.e_{21}, e_{11}+e_{22}+e_{12}, e_{11}+e_{22}+e_{21}\right\}$ or $\left\{0, e_{11}+e_{22}, e_{11}+e_{12}+e_{21}, e_{22}+e_{12}+e_{21}\right\}$. Suppose that $f\left(X_{1}, \ldots, X_{t}\right)$ is not central-valued on $e R e$. Otherwise, we are done. In particular, $[\rho, \rho] \rho \neq 0$.

Suppose that $e R e \neq \mathrm{M}_{2}(\operatorname{GF}(2))$. Thus $[\rho, \rho] \subseteq f(\rho)$ and so $\delta d([\rho, \rho]) \subseteq$ $\delta d(f(\rho)) \subseteq C$. If $0 \neq \delta d([\rho, \rho]) \subseteq C$, then applying Theorem 1.2 yields char $R=2$ and $\operatorname{dim}_{C} R=4$. We are done in this case. Suppose that $\delta d([\rho, \rho])=0$. By Theorem 1.1, either $\delta=\alpha d$ for some $\alpha \in C$ and $d^{2}=0$, or there exist $p, q \in Q$ such that $\delta=\operatorname{ad}(q), d=\operatorname{ad}(p)$ with $p \rho=0=q \rho$ and $p q=0$, except when char $R=2$ and $\rho C=e R C$ for some idempotent e in the socle of $R C$ such that $\operatorname{dim}_{C} e R C e=4$. For the first two cases, a direct computation proves $\delta d(f(\rho))=0$, contrary to our assumption. Thus char $R=2$ and $\operatorname{dim}_{C} e R C e=4$. From the proof of Theorem 1.1 (see [2]), we see that both δ and d must be inner. In this case we have $[\rho, \rho] \subset f(\rho) \subseteq \rho$. Since $\operatorname{dim}_{C} \rho=1+\operatorname{dim}_{C}[\rho, \rho]$, this implies that $C f(\rho)=f(\rho)$. Hence $\delta d(\rho)=\delta d(C f(\rho))=C \delta d(f(\rho)) \subseteq C$ as δ and d are both inner. So we conclude that $0 \neq \delta d(\rho) \subseteq C$. It follows from Theorem 1.2 that char $R=2$ and $\operatorname{dim}_{C} R=4$.

Thus we see that $e R e \cong \mathrm{M}_{2}(\mathrm{GF}(2))$. In this case, we see $C=\mathrm{GF}(2)$. Moreover, $D=C$ since $\operatorname{dim}_{C} D<\infty$, so now $R \cong \mathrm{M}_{2}(\mathrm{GF}(2))$. Now, $d(C)=0=$ $\delta(C)$ and so δ and d are both inner. Suppose that $d=\operatorname{ad}(p)$ and $\delta=\operatorname{ad}(q)$ for some $p, q \in R$. We may assume, without loss of generality, that $e=e_{11}+e_{22}$. We describe $f(\rho)$. Using $e R=e R e+e R(1-e)$, a direct computation proves that $f(e R) \subseteq f(e R e)+e R(1-e)$. On the other hand, applying Theorem 2.1 (II) (i) yields $e R(1-e) \subseteq f(\rho)$ since $f(e R) \neq 0$. Thus we have
$f(e R)=f(e R e)+e R(1-e)$. Also, in view of Theorem 2.2, $f(e R e)=\left\{0, e_{12}+\right.$ $\left.e_{21}, e_{11}+e_{22}+e_{12}, e_{11}+e_{22}+e_{21}\right\}$ or $\left\{0, e_{11}+e_{22}, e_{11}+e_{12}+e_{21}, e_{22}+e_{12}+e_{21}\right\}$. So we obtain that either $f(\rho)=C\left(e_{11}+e_{22}+e_{12}\right)+C\left(e_{11}+e_{22}+e_{21}\right)+\sum_{i \leq 2, j>2} C e_{i j}$ or $f(\rho)=C\left(e_{11}+e_{12}+e_{21}\right)+C\left(e_{12}+e_{21}+e_{22}\right)+\sum_{i \leq 2, j>2} C e_{i j}$. We will derive a contradiction by proving $\delta d(f(\rho))=0$ in either case. Since the two cases have analogous arguments, we only prove the second case. Suppose $n \geq 3$. Moreover, we may assume that $n \geq 4$ since char $R=2$ and $\operatorname{trace}(\delta d(f(\rho)))=0$. Write $p=\sum_{1 \leq i, j \leq n} p_{i j} e_{i j}$ and $q=\sum_{1 \leq i, j \leq n} q_{i j} e_{i j}$, where $p_{i j}, q_{i j} \in C$.

If $p_{s t}=0=q_{s t}$ for all $s>2$ and $t \leq 2$, then $0 \neq \delta d(f(\rho)) \subseteq \rho \cap C$. So $\rho=R$, a contradiction. Thus we may assume that either $p_{\text {st }} \neq 0$ or $q_{s t} \neq 0$ for some $s>2$ and $t \leq 2$. Without loss of generality, we may assume that $s=3$ and $t=1$. We separate the argument into three cases.

Case 1. $p_{31} \neq 0$ and $q_{31}=0$. By replacing p, q with $p-p_{11} I_{n}, q-q_{11} I_{n}$ respectively, we may assume $p_{31}=1$ and $p_{11}=q_{11}=0$. For $j \neq 1$, the $(j, 1)$-entry of $\delta d\left(e_{13}\right) \in C$ equals $-q_{j 1} p_{31}-p_{j 1} q_{31}$, so $q_{j 1}=0$ since $q_{31}=0$ and $p_{31}=1$. For $j \neq 1,2$, the $(j, 1)$-entry of $\delta d\left(e_{23}\right) \in C$ equals $-q_{j 2} p_{31}-p_{j 2} q_{31}$, so $q_{j 2}=0$. Computing the (3,4)-entry of $\delta d\left(e_{13}\right) \in C$, we have $q_{34}=0$. Now comparing the $(1,1)$-entry and $(4,4)$-entry of $\delta d\left(e_{23}\right) \in C$, we can get that $q_{12}=0$. For $s \geq 3$, the $(1,1)$-entry of $\delta d\left(e_{1 s}\right) \in C$ equals 0 , so $\delta d\left(e_{1 s}\right)=0$. Similarly, the $(1,1)$-entry of $\delta d\left(e_{2 s}\right) \in C$ equals 0 , so $\delta d\left(e_{2 s}\right)=0$. We have showed that $\delta d(x)=0$ for all $x \in \rho \cap \ell(\rho)$. The (3,4)-entries of $\delta d\left(e_{11}+e_{12}+e_{21}\right)$ and $\delta d\left(e_{12}+e_{21}+e_{22}\right)$ are $p_{31} q_{14}+p_{31} q_{24}+p_{32} q_{14}=0$ and $p_{31} q_{24}+p_{32} q_{14}+p_{32} q_{24}=$ 0 . Since $p_{32}=0$ or $p_{32}=1$, for any case we can get that $q_{14}=q_{24}=0$. Now the $(4,4)$-entries of $\delta d\left(e_{11}+e_{12}+e_{21}\right)$ and $\delta d\left(e_{12}+e_{21}+e_{22}\right)$ equal 0 . Thus $\delta d\left(e_{11}+e_{12}+e_{21}\right)=\delta d\left(e_{12}+e_{21}+e_{22}\right)=0$. Then $\delta d(f(\rho))=0$, a contradiction.

Case 2. $p_{31}=0$ and $q_{31} \neq 0$. Applying the same argument given in Case 1 , we can get that $\delta d(f(\rho))=0$. We omit its details.

Case 3. $p_{31} \neq 0$ and $q_{31} \neq 0$. By replacing p, q with $p-p_{11} I_{n}, q-q_{11} I_{n}$ respectively, we may assume that $p_{31}=q_{31}=1, p_{11}=q_{11}=0$. We can get that $p_{i 1}=q_{i 1}$ for all $i, p_{j 2}=q_{j 2}$ for all $j \neq 1,2, p_{34}=q_{34}$ and $p_{12}=q_{12}$ as in Case 1. For $s \geq 3$, the (2,2)-entry of $\delta d\left(e_{1 s}\right) \in C$ equals $q_{21} p_{s 2}+p_{21} q_{s 2}=0$, so $\delta d\left(e_{1 s}\right)=0$. Similarly, the $(1,1)$-entry of $\delta d\left(e_{2 s}\right) \in C$ equals $q_{12} p_{s 1}+p_{12} q_{s 1}=0$, so $\delta d\left(e_{2 s}\right)=0$. We have showed that $\delta d(x)=0$ for all $x \in \rho \cap \ell_{R}(\rho)$. The (3,4)entries of $\delta d\left(e_{11}+e_{12}+e_{21}\right)$ and $\delta d\left(e_{12}+e_{21}+e_{22}\right)$ are $q_{31} p_{14}+q_{31} p_{24}+q_{32} p_{14}+$ $p_{31} q_{14}+p_{31} q_{24}+p_{32} q_{14}=0$ and $q_{31} p_{24}+q_{32} p_{14}+q_{32} p_{24}+p_{31} q_{24}+p_{32} q_{14}+p_{32} q_{24}=0$. Since $p_{32}=q_{32}=0$ or $p_{32}=q_{32}=1$, in either case we can get that $p_{14}=q_{14}$ and $p_{24}=q_{24}$. Now the (4,4)-entries of $\delta d\left(e_{11}+e_{12}+e_{21}\right)$ and $\delta d\left(e_{12}+e_{21}+e_{22}\right)$
equal 0 , implying that $\delta d\left(e_{11}+e_{12}+e_{21}\right)=0=\delta d\left(e_{12}+e_{21}+e_{22}\right)$. Hence $\delta d(f(\rho))=0$, a contradiction again. The theorem is thus proved.

References

[1] M. Brešar, One-sided Ideals and Derivations of Prime Rings, Proc. Amer. Math. Soc., 122(1994), 979-983.
[2] C.-M. Chang, Compositions of Derivations in Prime Rings, Bull. Inst. Math. Acad. Sinica, 29 (2001), 211-223.
[3] C. -M. Chang and T. -K. Lee, Derivations and Central Linear Generalized Polynomials in Prime Rings, Southeast Asian Bull. Math., 21(1997), 215225.
[4] C. -M. Chang and T. -K. Lee, Annihilators of Power Values of Derivations in Prime Rings, Comm. Algebra, 26(1998), 2091-2113.
[5] C.-M. Chang and T.-K. Lee, Additive Subgroups Generated by Polynomial Values on Right Ideals, Comm. Algebra, 29(2001), 2977-2984.
[6] C. -L. Chuang, On Compositions of Derivations of Prime Rings, Proc. Amer. Math. Soc., 108(1990), 647-652.
[7] I.N. Herstein, A Note on Derivations II, Canad. Math. Bull., 22(1979), 509-511.
[8] W. -F. Ke, On Derivations of Prime Rings of Characteristic 2, Chinese J. Math., 13(1985), 273-290.
[9] P. -H. Lee and T. -K. Lee, On Derivations of Prime Rings, Chinese J. Math., 9(1981), 107-110.
[10] P. -H. Lee and T. -K. Lee, Lie Ideals of Prime Rings with Derivations, Bull. Inst. Math. Acad. Sinica, 11(1983), 75-80.
[11] T. -K. Lee, Semiprime Rings with Differential Identities, Bull. Inst. Math. Acad. Sinica, 20(1992), 27-38.
[12] E. Posner, Derivations in Prime Rings, Proc. Amer. Math. Soc., 8(1957), 1093-1100.
[13] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980.

[^0]: *2000 Mathematics Subject Classification. Primary 16W25, 16R50, 16N60.
 ${ }^{\dagger}$ E-mail: changcm@tccn.edu.tw

