Compositions of Derivations with Central Values on Polynomials *

Chi-Ming Chang[†]

General Education Center, Tzu Chi College of Technology, Hualien, Taiwan

Received October 21, 2009, Accepted December 13, 2010.

Abstract

Let R be a prime ring with extended centroid C, ρ a nonzero right ideal of R, $f(X_1, \ldots, X_t)$ a non-central polynomial with zero constant term over C, not necessarily multilinear, and δ , d two nonzero derivations of R. We determine the structures of R, δ and d when $\delta d(f(X_1, \ldots, X_t))$ is central-valued on ρ . The theorem gives a generalization of several related results in the literature.

Keywords and Phrases: Derivation, prime ring, PI, GPI.

1. Results

Throughout this paper, let R be always a prime ring with center $\mathcal{Z}(R)$, extended centroid C, maximal ring of right quotients U and symmetric Martindale ring of quotients Q. An additive map $d: R \to R$ is called a *derivation* if d(xy) = d(x)y + xd(y) for all $x, y \in R$. We denote by ad(b) the inner derivation of R induced by the element $b \in R$. That is, ad(b)(x) = [b, x] = bx - xb for $x \in R$. In this note we will prove a result concerning a composition of two

^{*2000} Mathematics Subject Classification. Primary 16W25, 16R50, 16N60. [†]E-mail: changcm@tccn.edu.tw

derivations on a prime ring. We recall some results that have motivated our work.

Let d and δ be two derivations of R and let I be either a Lie ideal of R or a right ideal of R. A number of authors have considered the following questions in the literature: Determine the structures of R, I, δ and d when $\delta d(I) = 0$ or $\delta d(I) \subseteq \mathbb{Z}(R)$. For instance, Posner [12] proved that if $\delta d(R) = 0$ and char $R \neq 2$, then either d = 0 or $\delta = 0$. Other related results are [9, Theorem 4], [7, Theorem], [8, Theorem 1], [1, Theorem 2], [10, Theorem 4], [8, Main Theorem], [3, Theorem 2], and so on. In a recent paper [2] Chang obtained a common generalization of the theorems above by proving the following two theorems:

Theorem 1.1. Let R be a prime ring, ρ a right ideal of R and δ , d two nonzero derivations of R. Suppose that $\delta d([\rho, \rho]) = 0$ and $[\rho, \rho]\rho \neq 0$. Then either $\delta = \alpha d$ for some $\alpha \in C$ and $d^2 = 0$, or there exist $p, q \in Q$ such that $\delta = \operatorname{ad}(q), d = \operatorname{ad}(p)$ with $p\rho = 0 = q\rho$ and pq = 0, except when $\rho C = eRC$ for some idempotent e in the socle of RC such that char R = 2 and dim_C eRCe = 4.

Theorem 1.2. Let R be a prime ring, ρ a right ideal of R and δ , d two derivations of R. If $0 \neq \delta d([\rho, \rho]) \subseteq \mathcal{Z}(R)$ and $[\rho, \rho]\rho \neq 0$, then char R = 2 and dim_C RC = 4.

Since, in Theorems 1.1 and 1.2, $[\rho, \rho]$ contains the elements xy - yx for all $x, y \in \rho$. It is natural to consider the above theorems by replacing $[\rho, \rho]$ with a polynomial in noncommuting indeterminates with zero constant term over C. For a right ideal ρ of R we denote by $f(\rho)$ the additive subgroup of RC generated by all elements $f(x_1, \ldots, x_t)$ for $x_1, \ldots, x_t \in \rho$. The goal of this note is to prove a common generalization of the above results:

Theorem 1.3. Let R be a prime ring, ρ a nonzero right ideal of R, $f(X_1, \ldots, X_t)$ a polynomial in noncommuting indeterminates with zero constant term over C, and δ , d two nonzero derivations of R.

(I) Suppose that $\delta d(f(\rho)) = 0$. Then either $\delta = \alpha d$ for some $\alpha \in C$ and $d^2 = 0$, or there exist $p, q \in Q$ such that $\delta = \operatorname{ad}(q), d = \operatorname{ad}(p)$ with $p\rho = 0 = q\rho$ and pq = 0, or $\rho C = eRC$ for some idempotent e in the socle of RCsuch that either $f(X_1, \ldots, X_t)$ is central-valued on eRCe or char R = 2 and $\dim_C eRCe = 4$.

(II) Suppose that $0 \neq \delta d(f(\rho)) \subseteq C$. Then $\rho C = eRC$ for some idempotent

e in the socle of RC such that $f(X_1, \ldots, X_t)$ is central-valued on eRCe unless char R = 2 and dim_C RC = 4.

In Theorem 1.3 (II) we cannot conclude that $f(X_1, \ldots, X_t)$ is central-valued on R in general. The following provides such an example.

Example 1.4. Let $R = M_{2n}(F)$ be the $2n \times 2n$ matrix ring over F, a field of characteristic 2, where $n \ge 2$. We let $\{e_{ij} \mid 1 \le i, j \le 2n\}$ be the set of the usual matrix units in R, and let $\rho = eR$, where $e = e_{11} + \cdots + e_{nn}$. Choose $f(X_1, \ldots, X_t)$ to be a central polynomial for $M_n(F)$ (see, for instance, [13, p.315]). Let $d = \operatorname{ad}(p)$ and $\delta = \operatorname{ad}(q)$, where $p = \sum_{i=1}^n e_{2n+1-ii}$ and $q = \sum_{i=1}^n e_{i2n+1-i}$. Note that pe = p, eq = q, qe = 0, $pq = \sum_{i=n+1}^{2n} e_{ii} = 1 - e$ and $qp = \sum_{i=1}^n e_{ii} = e$. Let $x_1, \ldots, x_t \in \rho = eR$. Then $f(x_1, \ldots, x_t)e = \beta e$ with $\beta \in F$, depending on $\{x_i\}$. We set $b = f(x_1, \ldots, x_t)$ and hence eb = b and $be = \beta e$. Since char F = 2, we have

$$\delta d(f(x_1, \dots, x_t)) = qpb + qbp + pbq + bpq$$

= $eb + qebp + pbeq + b(1 + e)$
= $b + \beta(1 + e) + b + \beta e = \beta \in F.$

Since we can choose $x_i \in \rho$ such that $\beta \neq 0$, this implies that $0 \neq \delta d(f(\rho)) \subseteq F$. It is clear that $f(X_1, \ldots, X_t)$ is central-valued on *eRe*, but $f(X_1, \ldots, X_t)$ is not central-valued on *R*.

As an immediate consequence of the Main Theorem, we have the following:

Corollary 1.5. Let R be a prime ring and let δ , d be two nonzero derivations of R, $f(X_1, \ldots, X_t)$ a polynomial over C, and I a nonzero ideal of R.

(I) Suppose that $\delta d(f(I)) = 0$. Then either $\delta = \alpha d$ for some $\alpha \in C$ and $d^2 = 0$ or $f(X_1, \ldots, X_t)$ is central-valued on RC except when char R = 2 and $\dim_C eRCe = 4$.

(II) Suppose that $0 \neq \delta d(f(I)) \subseteq C$. Then $f(X_1, \ldots, X_t)$ is central-valued on RC except when char R = 2 and dim_C RC = 4.

We remark that the exceptional case indeed exists in Corollary 1.5 (II). For instance, let $R = M_2(C)$, where C is a field of characteristic 2. We set $\delta = \operatorname{ad}(e_{12}), d = \operatorname{ad}(e_{11}), \text{ and } f(X,Y) = XY - YX$. Then a direct computation proves that $0 \neq \delta d(f(R)) \subseteq C$. Of course, XY - YX cannot be central-valued on R.

2. Proof of Theorem 1.3

To prove Theorem 1.3 we need the following two results ([5, Theorems 1 and 2]): The first theorem investigates $f(\rho)$ the additive subgroup of RC generated by all elements $f(x_1, \ldots, x_t)$ for $x_i \in \rho$, where $f(X_1, \ldots, X_t)$ is a polynomial over C and where ρ is a right ideal of R. The second result concerns the case when ρ is an ideal of R.

Theorem 2.1. Let R be a centrally closed prime C-algebra, ρ a nonzero right ideal of R and $f(X_1, \ldots, X_t)$ a nonzero polynomial over C.

(I) If ρ is a non-PI right ideal of R, then there exists a non-PI right ideal ρ_0 of R contained in ρ such that $[\rho_0, \rho] \subseteq f(\rho)$ and $\rho\rho_0 \subseteq \rho_0$.

(II) If ρ is a PI right ideal of R, then there exists an idempotent e in the socle of R such that $\rho = eR$ and the following statements hold:

(i) $eR(1-e) \subseteq f(\rho)$ if $f(\rho) \neq 0$.

(ii) $[\rho, \rho] \subseteq f(\rho)$ except when either $f(X_1, \ldots, X_t)$ is central-valued on eRe or eRe \cong M₂(GF(2)).

Theorem 2.2. Let R be a prime ring with extended centroid C and I a nonzero ideal of R. Suppose that $f(X_1, \ldots, X_t)$ is a polynomial over C, which is not central-valued on RC. Then $[M, R] \subseteq f(I)$ for some nonzero ideal M of R except when $R \cong M_2 GF(2)$ and $f(R) = \{0, e_{12} + e_{21}, 1 + e_{12}, 1 + e_{21}\}$ or $\{0, 1, e_{11} + e_{12} + e_{21}, e_{22} + e_{12} + e_{21}\}.$

We are now in a position to give the proof of our main result:

Proof of Theorem 1.3. (I) By [11, Theorem 2], R and Q satisfy the same differential identities. Thus ρ , ρR and ρQ satisfy the same differential identities. By assumption, $\delta d(f(x_1, \ldots, x_t)) = 0$ for all $x_1, \ldots, x_t \in \rho$. Replacing R, ρ with RC, ρC respectively, we may assume that R is a centrally closed prime C-algebra, so now we can assume that $\rho C \subseteq \rho$.

Consider first the case that ρ is a non-PI right ideal of R. In view of Theorem 2.1, $[\rho_0, \rho] \subseteq f(\rho)$ for some non-PI right ideal ρ_0 of R contained in ρ and $\rho\rho_0 \subseteq \rho_0$. Since $\delta d(f(\rho)) = 0$, we have $\delta d([\rho_0, \rho_0]) = 0$. Since $[\rho_0, \rho_0]\rho_o \neq 0$, applying Theorem 1.1, we have that either $\delta = \alpha d$ for some $\alpha \in C$ and $d^2 = 0$, or there exist $p, q \in Q$ such that $\delta = \operatorname{ad}(q), d = \operatorname{ad}(p)$ with $p\rho_0 = 0 = q\rho_0$ and pq = 0. Since $\rho\rho_0 \subseteq \rho_0$, we see that $p\rho\rho_0 = 0 = q\rho\rho_0$, implying that $p\rho = 0 = q\rho$ by the primeness of R. This proves the case.

Suppose next that ρ is a PI right ideal of R. By Theorem 1.2, $\rho = eR$ for some idempotent e in the socle of R. Suppose that $f(X_1, \ldots, X_t)$ is not central-

valued on *eRe*. In particular, *eRe* is not commutative and so $[\rho, \rho]\rho \neq 0$. Moreover, we assume that either char $R \neq 2$ or dim_{*C*} *eRCe* > 4. In view of Theorem 2.1, $[\rho, \rho] \subseteq f(\rho)$ and hence $\delta d([\rho, \rho]) = 0$. Applying Theorem 1.1 we are done.

(II) By assumption, $\delta d(f(X_1, \ldots, X_t))$ is a central DI (see [4]) for ρ . It follows from [4, Theorem 1] that R is a prime PI-ring and so RC is a finite-dimensional central simple C-algebra by Posner's Theorem. By the Wedderburn-Artin theorem, $RC \cong M_n(D)$ for some n and some finite-dimensional central division C-algebra D. In view of [6, Theorem 1] or [11, Theorem 2], $0 \neq \delta d(f(\rho C)) \subseteq C$. By replacing R, ρ with RC, ρC respectively, we may assume that $R = M_n(D)$ and $\rho = eR$ for some idempotent $e \in R$. It follows from Theorems 2.1 and 2.2 that $[\rho, \rho] \subseteq f(\rho)$ except when either $f(X_1, \ldots, X_t)$ is central-valued on eRe, or $eRe \cong M_2(\text{GF}(2))$ such that $f(eRe) = \{0, e_{12} + e_{21}, e_{11} + e_{22} + e_{12}, e_{11} + e_{22} + e_{21}\}$ or $\{0, e_{11} + e_{22}, e_{11} + e_{12} + e_{21}, e_{22} + e_{12} + e_{21}\}$. Suppose that $f(X_1, \ldots, X_t)$ is not central-valued on eRe. Otherwise, we are done. In particular, $[\rho, \rho] \neq 0$.

Suppose that $eRe \not\cong M_2(GF(2))$. Thus $[\rho, \rho] \subseteq f(\rho)$ and so $\delta d([\rho, \rho]) \subseteq \delta d(f(\rho)) \subseteq C$. If $0 \neq \delta d([\rho, \rho]) \subseteq C$, then applying Theorem 1.2 yields char R = 2 and dim_C R = 4. We are done in this case. Suppose that $\delta d([\rho, \rho]) = 0$. By Theorem 1.1, either $\delta = \alpha d$ for some $\alpha \in C$ and $d^2 = 0$, or there exist $p, q \in Q$ such that $\delta = \operatorname{ad}(q), d = \operatorname{ad}(p)$ with $p\rho = 0 = q\rho$ and pq = 0, except when char R = 2 and $\rho C = eRC$ for some idempotent e in the socle of RC such that $\dim_C eRCe = 4$. For the first two cases, a direct computation proves $\delta d(f(\rho)) = 0$, contrary to our assumption. Thus char R = 2 and dim_C eRCe = 4. From the proof of Theorem 1.1 (see [2]), we see that both δ and d must be inner. In this case we have $[\rho, \rho] \subset f(\rho) \subseteq \rho$. Since dim_C $\rho = 1 + \dim_C[\rho, \rho]$, this implies that $Cf(\rho) = f(\rho)$. Hence $\delta d(\rho) = \delta d(Cf(\rho)) \subseteq C$. It follows from Theorem 1.2 that char R = 2 and dim_C R = 4.

Thus we see that $eRe \cong M_2(GF(2))$. In this case, we see C = GF(2). Moreover, D = C since $\dim_C D < \infty$, so now $R \cong M_2(GF(2))$. Now, $d(C) = 0 = \delta(C)$ and so δ and d are both inner. Suppose that $d = \operatorname{ad}(p)$ and $\delta = \operatorname{ad}(q)$ for some $p, q \in R$. We may assume, without loss of generality, that $e = e_{11} + e_{22}$. We describe $f(\rho)$. Using eR = eRe + eR(1 - e), a direct computation proves that $f(eR) \subseteq f(eRe) + eR(1 - e)$. On the other hand, applying Theorem 2.1 (II) (i) yields $eR(1 - e) \subseteq f(\rho)$ since $f(eR) \neq 0$. Thus we have

Chi-Ming Chang

 $\begin{array}{l} f(eR) = f(eRe) + eR(1-e). \mbox{ Also, in view of Theorem 2.2, } f(eRe) = \{0, e_{12} + e_{21}, e_{11} + e_{22} + e_{12}, e_{11} + e_{22} + e_{21}\} \mbox{ or } \{0, e_{11} + e_{22}, e_{11} + e_{12} + e_{21}, e_{22} + e_{12} + e_{21}\}. \mbox{ So we obtain that either } f(\rho) = C(e_{11} + e_{22} + e_{12}) + C(e_{11} + e_{22} + e_{21}) + \sum_{i \leq 2, j > 2} Ce_{ij} \mbox{ or } f(\rho) = C(e_{11} + e_{12} + e_{21}) + C(e_{12} + e_{21} + e_{22}) + \sum_{i \leq 2, j > 2} Ce_{ij}. \mbox{ We will derive a contradiction by proving } \delta d(f(\rho)) = 0 \mbox{ in either case. Since the two cases have analogous arguments, we only prove the second case. Suppose <math>n \geq 3$. Moreover, we may assume that $n \geq 4$ since char R = 2 and trace $(\delta d(f(\rho))) = 0$. Write $p = \sum_{1 \leq i, j \leq n} p_{ij}e_{ij}$ and $q = \sum_{1 \leq i, j \leq n} q_{ij}e_{ij}$, where $p_{ij}, q_{ij} \in C$.

If $p_{st} = 0 = q_{st}$ for all s > 2 and $t \le 2$, then $0 \ne \delta d(f(\rho)) \subseteq \rho \cap C$. So $\rho = R$, a contradiction. Thus we may assume that either $p_{st} \ne 0$ or $q_{st} \ne 0$ for some s > 2 and $t \le 2$. Without loss of generality, we may assume that s = 3 and t = 1. We separate the argument into three cases.

Case 1. $p_{31} \neq 0$ and $q_{31} = 0$. By replacing p, q with $p - p_{11}I_n, q - q_{11}I_n$ respectively, we may assume $p_{31} = 1$ and $p_{11} = q_{11} = 0$. For $j \neq 1$, the (j, 1)-entry of $\delta d(e_{13}) \in C$ equals $-q_{j1}p_{31} - p_{j1}q_{31}$, so $q_{j1} = 0$ since $q_{31} = 0$ and $p_{31} = 1$. For $j \neq 1, 2$, the (j, 1)-entry of $\delta d(e_{23}) \in C$ equals $-q_{j2}p_{31} - p_{j2}q_{31}$, so $q_{j2} = 0$. Computing the (3, 4)-entry of $\delta d(e_{13}) \in C$, we have $q_{34} = 0$. Now comparing the (1, 1)-entry and (4, 4)-entry of $\delta d(e_{23}) \in C$, we can get that $q_{12} = 0$. For $s \geq 3$, the (1, 1)-entry of $\delta d(e_{1s}) \in C$ equals 0, so $\delta d(e_{1s}) = 0$. Similarly, the (1, 1)-entry of $\delta d(e_{2s}) \in C$ equals 0, so $\delta d(e_{1s}) = 0$. We have showed that $\delta d(x) = 0$ for all $x \in \rho \cap \ell(\rho)$. The (3, 4)-entries of $\delta d(e_{11}+e_{12}+e_{21})$ and $\delta d(e_{12}+e_{21}+e_{22})$ are $p_{31}q_{14}+p_{31}q_{24}+p_{32}q_{14}=0$ and $p_{31}q_{24}+p_{32}q_{14}+p_{32}q_{24}=0$. Since $p_{32} = 0$ or $p_{32} = 1$, for any case we can get that $q_{14} = q_{24} = 0$. Now the (4, 4)-entries of $\delta d(e_{11} + e_{12} + e_{21})$ and $\delta d(e_{12} + e_{21} + e_{22})$ equal 0. Thus $\delta d(e_{11}+e_{12}+e_{21}) = \delta d(e_{12}+e_{21}+e_{22}) = 0$. Then $\delta d(f(\rho)) = 0$, a contradiction.

Case 2. $p_{31} = 0$ and $q_{31} \neq 0$. Applying the same argument given in Case 1, we can get that $\delta d(f(\rho)) = 0$. We omit its details.

Case 3. $p_{31} \neq 0$ and $q_{31} \neq 0$. By replacing p, q with $p - p_{11}I_n, q - q_{11}I_n$ respectively, we may assume that $p_{31} = q_{31} = 1, p_{11} = q_{11} = 0$. We can get that $p_{i1} = q_{i1}$ for all $i, p_{j2} = q_{j2}$ for all $j \neq 1, 2, p_{34} = q_{34}$ and $p_{12} = q_{12}$ as in Case 1. For $s \geq 3$, the (2, 2)-entry of $\delta d(e_{1s}) \in C$ equals $q_{21}p_{s2} + p_{21}q_{s2} = 0$, so $\delta d(e_{1s}) = 0$. Similarly, the (1, 1)-entry of $\delta d(e_{2s}) \in C$ equals $q_{12}p_{s1} + p_{12}q_{s1} = 0$, so $\delta d(e_{2s}) = 0$. We have showed that $\delta d(x) = 0$ for all $x \in \rho \cap \ell_R(\rho)$. The (3, 4)entries of $\delta d(e_{11} + e_{12} + e_{21})$ and $\delta d(e_{12} + e_{21} + e_{22})$ are $q_{31}p_{14} + q_{31}p_{24} + q_{32}p_{14} + p_{31}q_{14} + p_{32}q_{14} = 0$ and $q_{31}p_{24} + q_{32}p_{14} + q_{32}p_{24} + p_{32}q_{14} + p_{32}q_{24} = 0$. Since $p_{32} = q_{32} = 0$ or $p_{32} = q_{32} = 1$, in either case we can get that $p_{14} = q_{14}$ and $p_{24} = q_{24}$. Now the (4, 4)-entries of $\delta d(e_{11} + e_{12} + e_{21})$ and $\delta d(e_{12} + e_{21} + e_{21})$ and $\delta d(e_{12} + e_{21} + e_{21})$ equal 0, implying that $\delta d(e_{11} + e_{12} + e_{21}) = 0 = \delta d(e_{12} + e_{21} + e_{22})$. Hence $\delta d(f(\rho)) = 0$, a contradiction again. The theorem is thus proved.

References

- M. Brešar, One-sided Ideals and Derivations of Prime Rings, Proc. Amer. Math. Soc., 122(1994), 979-983.
- [2] C.-M. Chang, Compositions of Derivations in Prime Rings, Bull. Inst. Math. Acad. Sinica, 29 (2001), 211-223.
- [3] C. -M. Chang and T. -K. Lee, Derivations and Central Linear Generalized Polynomials in Prime Rings, Southeast Asian Bull. Math., 21(1997), 215-225.
- [4] C. -M. Chang and T. -K. Lee, Annihilators of Power Values of Derivations in Prime Rings, Comm. Algebra, 26(1998), 2091-2113.
- [5] C.-M. Chang and T.-K. Lee, Additive Subgroups Generated by Polynomial Values on Right Ideals, *Comm. Algebra*, 29(2001), 2977-2984.
- [6] C. -L. Chuang, On Compositions of Derivations of Prime Rings, Proc. Amer. Math. Soc., 108(1990), 647-652.
- [7] I.N. Herstein, A Note on Derivations II, Canad. Math. Bull., 22(1979), 509-511.
- [8] W. -F. Ke, On Derivations of Prime Rings of Characteristic 2, Chinese J. Math., 13(1985), 273-290.
- [9] P. -H. Lee and T. -K. Lee, On Derivations of Prime Rings, Chinese J. Math., 9(1981), 107-110.
- [10] P. -H. Lee and T. -K. Lee, Lie Ideals of Prime Rings with Derivations, Bull. Inst. Math. Acad. Sinica, 11(1983), 75-80.
- [11] T. -K. Lee, Semiprime Rings with Differential Identities, Bull. Inst. Math. Acad. Sinica, 20(1992), 27-38.

- [12] E. Posner, Derivations in Prime Rings, Proc. Amer. Math. Soc., 8(1957), 1093-1100.
- [13] L.H. Rowen, *Polynomial Identities in Ring Theory*, Academic Press, New York, 1980.