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Abstract

Let R be a prime ring with extended centroid C, ρ a nonzero right
ideal of R, f(X1, . . . , Xt) a non-central polynomial with zero constant
term over C, not necessarily multilinear, and δ, d two nonzero deriva-
tions ofR. We determine the structures ofR, δ and d when δd(f(X1, . . . , Xt))
is central-valued on ρ. The theorem gives a generalization of several re-
lated results in the literature.
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1. Results

Throughout this paper, let R be always a prime ring with center Z(R), ex-
tended centroid C, maximal ring of right quotients U and symmetric Martin-
dale ring of quotients Q. An additive map d : R → R is called a derivation if
d(xy) = d(x)y+xd(y) for all x, y ∈ R. We denote by ad(b) the inner derivation
of R induced by the element b ∈ R. That is, ad(b)(x) = [b, x] = bx − xb for
x ∈ R. In this note we will prove a result concerning a composition of two
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derivations on a prime ring. We recall some results that have motivated our
work.

Let d and δ be two derivations of R and let I be either a Lie ideal of R or a
right ideal of R. A number of authors have considered the following questions
in the literature: Determine the structures of R, I, δ and d when δd(I) = 0
or δd(I) ⊆ Z(R). For instance, Posner [12] proved that if δd(R) = 0 and
charR 6= 2, then either d = 0 or δ = 0. Other related results are [9, Theorem
4], [7, Theorem], [8, Theorem 1], [1, Theorem 2], [10, Theorem 4], [8, Main
Theorem], [3, Theorem 2], and so on. In a recent paper [2] Chang obtained
a common generalization of the theorems above by proving the following two
theorems:

Theorem 1.1. Let R be a prime ring, ρ a right ideal of R and δ, d two
nonzero derivations of R. Suppose that δd([ρ, ρ]) = 0 and [ρ, ρ]ρ 6= 0. Then
either δ = αd for some α ∈ C and d2 = 0, or there exist p, q ∈ Q such that
δ =ad(q), d =ad(p) with pρ = 0 = qρ and pq = 0, except when ρC = eRC for
some idempotent e in the socle of RC such that charR = 2 and dimC eRCe =
4.

Theorem 1.2. Let R be a prime ring, ρ a right ideal of R and δ, d two
derivations of R. If 0 6= δd([ρ, ρ]) ⊆ Z(R) and [ρ, ρ]ρ 6= 0, then charR = 2
and dimC RC = 4.

Since, in Theorems 1.1 and 1.2, [ρ, ρ] contains the elements xy− yx for all
x, y ∈ ρ. It is natural to consider the above theorems by replacing [ρ, ρ] with
a polynomial in noncommuting indeterminates with zero constant term over
C. For a right ideal ρ of R we denote by f(ρ) the additive subgroup of RC
generated by all elements f(x1, . . . , xt) for x1, . . . , xt ∈ ρ. The goal of this note
is to prove a common generalization of the above results:

Theorem 1.3. Let R be a prime ring, ρ a nonzero right ideal of R, f(X1, . . . , Xt)
a polynomial in noncommuting indeterminates with zero constant term over
C, and δ, d two nonzero derivations of R.

(I) Suppose that δd(f(ρ)) = 0. Then either δ = αd for some α ∈ C
and d2 = 0, or there exist p, q ∈ Q such that δ =ad(q), d =ad(p) with pρ =
0 = qρ and pq = 0, or ρC = eRC for some idempotent e in the socle of RC
such that either f(X1, . . . , Xt) is central-valued on eRCe or charR = 2 and
dimC eRCe = 4.

(II) Suppose that 0 6= δd(f(ρ)) ⊆ C. Then ρC = eRC for some idempotent
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e in the socle of RC such that f(X1, . . . , Xt) is central-valued on eRCe unless
charR = 2 and dimC RC = 4.

In Theorem 1.3 (II) we cannot conclude that f(X1, . . . , Xt) is central-valued
on R in general. The following provides such an example.

Example 1.4. Let R =M2n(F ) be the 2n × 2n matrix ring over F , a field
of characteristic 2, where n ≥ 2. We let {eij | 1 ≤ i, j ≤ 2n} be the set
of the usual matrix units in R, and let ρ = eR, where e = e11 + · · · + enn.
Choose f(X1, . . . , Xt) to be a central polynomial for Mn(F ) (see, for instance,
[13, p.315]). Let d =ad(p) and δ =ad(q), where p =

∑n
i=1 e2n+1−i i and q =∑n

i=1 ei 2n+1−i. Note that pe = p, eq = q, qe = 0, pq =
∑2n

i=n+1 eii = 1− e and
qp =

∑n
i=1 eii = e. Let x1, . . . , xt ∈ ρ = eR. Then f(x1, . . . , xt)e = βe with

β ∈ F , depending on {xi}. We set b = f(x1, . . . , xt) and hence eb = b and
be = βe. Since charF = 2, we have

δd(f(x1, . . . , xt)) = qpb+ qbp+ pbq + bpq

= eb+ qebp+ pbeq + b(1 + e)

= b+ β(1 + e) + b+ βe = β ∈ F.

Since we can choose xi ∈ ρ such that β 6= 0, this implies that 0 6=
δd(f(ρ)) ⊆ F . It is clear that f(X1, . . . , Xt) is central-valued on eRe, but
f(X1, . . . , Xt) is not central-valued on R.

As an immediate consequence of the Main Theorem, we have the following:

Corollary 1.5. Let R be a prime ring and let δ, d be two nonzero derivations
of R, f(X1, . . . , Xt) a polynomial over C, and I a nonzero ideal of R .

(I) Suppose that δd(f(I)) = 0. Then either δ = αd for some α ∈ C and
d2 = 0 or f(X1, . . . , Xt) is central-valued on RC except when charR = 2 and
dimC eRCe = 4.

(II) Suppose that 0 6= δd(f(I)) ⊆ C. Then f(X1, . . . , Xt) is central-valued
on RC except when charR = 2 and dimC RC = 4.

We remark that the exceptional case indeed exists in Corollary 1.5 (II).
For instance, let R =M2(C), where C is a field of characteristic 2. We set
δ =ad(e12), d =ad(e11), and f(X, Y ) = XY −Y X. Then a direct computation
proves that 0 6= δd(f(R)) ⊆ C. Of course, XY −Y X cannot be central-valued
on R.
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2. Proof of Theorem 1.3

To prove Theorem 1.3 we need the following two results ([5, Theorems 1 and
2]): The first theorem investigates f(ρ) the additive subgroup of RC generated
by all elements f(x1, . . . , xt) for xi ∈ ρ, where f(X1, . . . , Xt) is a polynomial
over C and where ρ is a right ideal of R. The second result concerns the case
when ρ is an ideal of R.

Theorem 2.1. Let R be a centrally closed prime C-algebra, ρ a nonzero right
ideal of R and f(X1, . . . , Xt) a nonzero polynomial over C.

(I) If ρ is a non-PI right ideal of R, then there exists a non-PI right ideal
ρ0 of R contained in ρ such that [ρ0, ρ] ⊆ f(ρ) and ρρ0 ⊆ ρ0.

(II) If ρ is a PI right ideal of R, then there exists an idempotent e in the
socle of R such that ρ = eR and the following statements hold:

(i) eR(1− e) ⊆ f(ρ) if f(ρ) 6= 0.
(ii) [ρ, ρ] ⊆ f(ρ) except when either f(X1, . . . , Xt) is central-valued on eRe

or eRe ∼=M2(GF(2)).

Theorem 2.2. Let R be a prime ring with extended centroid C and I a
nonzero ideal of R. Suppose that f(X1, . . . , Xt) is a polynomial over C, which
is not central-valued on RC. Then [M,R] ⊆ f(I) for some nonzero ideal M
of R except when R ∼=M2GF(2)) and f(R) = {0, e12 + e21, 1 + e12, 1 + e21} or
{0, 1, e11 + e12 + e21, e22 + e12 + e21}.

We are now in a position to give the proof of our main result:

Proof of Theorem 1.3. (I) By [11, Theorem 2], R and Q satisfy the same
differential identities. Thus ρ, ρR and ρQ satisfy the same differential identi-
ties. By assumption, δd(f(x1, . . . , xt)) = 0 for all x1, . . . , xt ∈ ρ. Replacing R,
ρ with RC, ρC respectively, we may assume that R is a centrally closed prime
C-algebra, so now we can assume that ρC ⊆ ρ.

Consider first the case that ρ is a non-PI right ideal of R. In view of
Theorem 2.1, [ρ0, ρ] ⊆ f(ρ) for some non-PI right ideal ρ0 of R contained
in ρ and ρρ0 ⊆ ρ0. Since δd(f(ρ)) = 0, we have δd([ρ0, ρ0]) = 0. Since
[ρ0, ρ0]ρo 6= 0, applying Theorem 1.1, we have that either δ = αd for some
α ∈ C and d2 = 0, or there exist p, q ∈ Q such that δ =ad(q), d =ad(p) with
pρ0 = 0 = qρ0 and pq = 0. Since ρρ0 ⊆ ρ0, we see that pρρ0 = 0 = qρρ0,
implying that pρ = 0 = qρ by the primeness of R. This proves the case.

Suppose next that ρ is a PI right ideal of R. By Theorem 1.2, ρ = eR for
some idempotent e in the socle of R. Suppose that f(X1, . . . , Xt) is not central-
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valued on eRe. In particular, eRe is not commutative and so [ρ, ρ]ρ 6= 0.
Moreover, we assume that either charR 6= 2 or dimC eRCe > 4. In view of
Theorem 2.1, [ρ, ρ] ⊆ f(ρ) and hence δd([ρ, ρ]) = 0. Applying Theorem 1.1 we
are done.

(II) By assumption, δd(f(X1, . . . , Xt)) is a central DI (see [4]) for ρ.
It follows from [4, Theorem 1] that R is a prime PI-ring and so RC is a
finite-dimensional central simple C-algebra by Posner’s Theorem. By the
Wedderburn-Artin theorem, RC ∼=Mn(D) for some n and some finite-dimensional
central division C-algebra D. In view of [6, Theorem 1] or [11, Theorem 2],
0 6= δd(f(ρC)) ⊆ C. By replacing R, ρ with RC, ρC respectively, we may
assume that R =Mn(D) and ρ = eR for some idempotent e ∈ R. It follows
from Theorems 2.1 and 2.2 that [ρ, ρ] ⊆ f(ρ) except when either f(X1, . . . , Xt)
is central-valued on eRe, or eRe ∼=M2(GF(2)) such that f(eRe) = {0, e12 +
e21, e11 +e22 +e12, e11 +e22 +e21} or {0, e11 +e22, e11 +e12 +e21, e22 +e12 +e21}.
Suppose that f(X1, . . . , Xt) is not central-valued on eRe. Otherwise, we are
done. In particular, [ρ, ρ]ρ 6= 0.

Suppose that eRe 6∼=M2(GF(2)). Thus [ρ, ρ] ⊆ f(ρ) and so δd([ρ, ρ]) ⊆
δd(f(ρ)) ⊆ C. If 0 6= δd([ρ, ρ]) ⊆ C, then applying Theorem 1.2 yields
charR = 2 and dimC R = 4. We are done in this case. Suppose that
δd([ρ, ρ]) = 0. By Theorem 1.1, either δ = αd for some α ∈ C and d2 = 0,
or there exist p, q ∈ Q such that δ =ad(q), d = ad(p) with pρ = 0 = qρ
and pq = 0, except when charR = 2 and ρC = eRC for some idempo-
tent e in the socle of RC such that dimC eRCe = 4. For the first two
cases, a direct computation proves δd(f(ρ)) = 0, contrary to our assump-
tion. Thus charR = 2 and dimC eRCe = 4. From the proof of Theorem
1.1 (see [2]), we see that both δ and d must be inner. In this case we
have [ρ, ρ] ⊂ f(ρ) ⊆ ρ. Since dimC ρ = 1 + dimC [ρ, ρ], this implies that
Cf(ρ) = f(ρ). Hence δd(ρ) = δd(Cf(ρ)) = Cδd(f(ρ)) ⊆ C as δ and d are
both inner. So we conclude that 0 6= δd(ρ) ⊆ C. It follows from Theorem 1.2
that charR = 2 and dimC R = 4.

Thus we see that eRe ∼=M2(GF(2)). In this case, we see C =GF(2). More-
over, D = C since dimC D < ∞, so now R ∼=M2(GF(2)). Now, d(C) = 0 =
δ(C) and so δ and d are both inner. Suppose that d =ad(p) and δ =ad(q) for
some p, q ∈ R. We may assume, without loss of generality, that e = e11 + e22.
We describe f(ρ). Using eR = eRe + eR(1− e), a direct computation proves
that f(eR) ⊆ f(eRe) + eR(1 − e). On the other hand, applying Theo-
rem 2.1 (II) (i) yields eR(1 − e) ⊆ f(ρ) since f(eR) 6= 0. Thus we have
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f(eR) = f(eRe)+eR(1−e). Also, in view of Theorem 2.2, f(eRe) = {0, e12 +
e21, e11+e22+e12, e11+e22+e21} or {0, e11+e22, e11+e12+e21, e22+e12+e21}. So
we obtain that either f(ρ) = C(e11+e22+e12)+C(e11+e22+e21)+

∑
i≤2,j>2Ceij

or f(ρ) = C(e11+e12+e21)+C(e12+e21+e22)+
∑

i≤2,j>2Ceij. We will derive a
contradiction by proving δd(f(ρ)) = 0 in either case. Since the two cases have
analogous arguments, we only prove the second case. Suppose n ≥ 3. More-
over, we may assume that n ≥ 4 since charR = 2 and trace(δd(f(ρ))) = 0.
Write p =

∑
1≤i,j≤n pijeij and q =

∑
1≤i,j≤n qijeij, where pij, qij ∈ C.

If pst = 0 = qst for all s > 2 and t ≤ 2, then 0 6= δd(f(ρ)) ⊆ ρ ∩ C. So
ρ = R, a contradiction. Thus we may assume that either pst 6= 0 or qst 6= 0 for
some s > 2 and t ≤ 2. Without loss of generality, we may assume that s = 3
and t = 1. We separate the argument into three cases.

Case 1. p31 6= 0 and q31 = 0. By replacing p, q with p − p11In, q − q11In
respectively, we may assume p31 = 1 and p11 = q11 = 0. For j 6= 1, the
(j, 1)-entry of δd(e13) ∈ C equals −qj1p31− pj1q31, so qj1 = 0 since q31 = 0 and
p31 = 1. For j 6= 1, 2, the (j, 1)-entry of δd(e23) ∈ C equals −qj2p31 − pj2q31,
so qj2 = 0. Computing the (3, 4)-entry of δd(e13) ∈ C, we have q34 = 0. Now
comparing the (1, 1)-entry and (4, 4)-entry of δd(e23) ∈ C, we can get that
q12 = 0. For s ≥ 3, the (1, 1)-entry of δd(e1s) ∈ C equals 0, so δd(e1s) = 0.
Similarly, the (1, 1)-entry of δd(e2s) ∈ C equals 0, so δd(e2s) = 0. We have
showed that δd(x) = 0 for all x ∈ ρ∩`(ρ). The (3, 4)-entries of δd(e11+e12+e21)
and δd(e12+e21+e22) are p31q14+p31q24+p32q14 = 0 and p31q24+p32q14+p32q24 =
0. Since p32 = 0 or p32 = 1, for any case we can get that q14 = q24 = 0. Now
the (4, 4)-entries of δd(e11 + e12 + e21) and δd(e12 + e21 + e22) equal 0. Thus
δd(e11+e12+e21) = δd(e12+e21+e22) = 0. Then δd(f(ρ)) = 0, a contradiction.

Case 2. p31 = 0 and q31 6= 0. Applying the same argument given in Case
1, we can get that δd(f(ρ)) = 0. We omit its details.

Case 3. p31 6= 0 and q31 6= 0. By replacing p, q with p − p11In, q − q11In
respectively, we may assume that p31 = q31 = 1, p11 = q11 = 0. We can get
that pi1 = qi1 for all i, pj2 = qj2 for all j 6= 1, 2, p34 = q34 and p12 = q12 as in
Case 1. For s ≥ 3, the (2, 2)-entry of δd(e1s) ∈ C equals q21ps2 + p21qs2 = 0, so
δd(e1s) = 0. Similarly, the (1, 1)-entry of δd(e2s) ∈ C equals q12ps1+p12qs1 = 0,
so δd(e2s) = 0. We have showed that δd(x) = 0 for all x ∈ ρ∩`R(ρ). The (3, 4)-
entries of δd(e11 +e12 +e21) and δd(e12 +e21 +e22) are q31p14 +q31p24 +q32p14 +
p31q14+p31q24+p32q14 = 0 and q31p24+q32p14+q32p24+p31q24+p32q14+p32q24 = 0.
Since p32 = q32 = 0 or p32 = q32 = 1, in either case we can get that p14 = q14
and p24 = q24. Now the (4, 4)-entries of δd(e11+e12+e21) and δd(e12+e21+e22)
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equal 0, implying that δd(e11 + e12 + e21) = 0 = δd(e12 + e21 + e22). Hence
δd(f(ρ)) = 0, a contradiction again. The theorem is thus proved.
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