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Abstract

Let R be a prime ring with extended centroid C'; p a nonzero right
ideal of R, f(Xi,...,X:) a non-central polynomial with zero constant
term over C', not necessarily multilinear, and §, d two nonzero deriva-
tions of R. We determine the structures of R, § and d when dd(f(X1,..., X))
is central-valued on p. The theorem gives a generalization of several re-
lated results in the literature.
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1. Results

Throughout this paper, let R be always a prime ring with center Z(R), ex-
tended centroid C', maximal ring of right quotients U and symmetric Martin-
dale ring of quotients (). An additive map d: R — R is called a derivation if
d(zy) = d(z)y+xd(y) for all z,y € R. We denote by ad(b) the inner derivation
of R induced by the element b € R. That is, ad(b)(x) = [b, 2] = bz — zb for
r € R. In this note we will prove a result concerning a composition of two
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derivations on a prime ring. We recall some results that have motivated our
work.

Let d and ¢ be two derivations of R and let I be either a Lie ideal of R or a
right ideal of R. A number of authors have considered the following questions
in the literature: Determine the structures of R, I, 6 and d when dd(I) = 0
or 0d(I) C Z(R). For instance, Posner [12] proved that if dd(R) = 0 and
charR # 2, then either d = 0 or § = 0. Other related results are [9, Theorem
4], [7, Theorem], [8, Theorem 1], [1, Theorem 2], [10, Theorem 4], [8, Main
Theorem], [3, Theorem 2], and so on. In a recent paper [2] Chang obtained
a common generalization of the theorems above by proving the following two
theorems:

Theorem 1.1. Let R be a prime ring, p a right ideal of R and d,d two
nonzero derivations of R. Suppose that éd([p, p]) = 0 and [p,plp # 0. Then
either & = ad for some o € C and d* = 0, or there exist p,q € Q such that
d =ad(q), d =ad(p) with pp =0 = qp and pq = 0, except when pC' = eRC' for
some idempotent e in the socle of RC' such that char R = 2 and dimg eRCe =
4.

Theorem 1.2. Let R be a prime ring, p a right ideal of R and d,d two
derivations of R. If 0 # dd([p, p]) € Z(R) and [p,plp # 0, then char R = 2
and dimg RC' = 4.

Since, in Theorems 1.1 and 1.2, [p, p] contains the elements zy — yx for all
x,y € p. It is natural to consider the above theorems by replacing [p, p] with
a polynomial in noncommuting indeterminates with zero constant term over
C'. For a right ideal p of R we denote by f(p) the additive subgroup of RC
generated by all elements f(xy,...,x;) for zy,...,z; € p. The goal of this note
is to prove a common generalization of the above results:

Theorem 1.3. Let R be a prime ring, p a nonzero right ideal of R, f(Xi,..., X})
a polynomaial in noncommuting indeterminates with zero constant term over
C, and 9, d two nonzero derivations of R.

(I)  Suppose that dd(f(p)) = 0. Then either 6 = ad for some a € C
and d* = 0, or there exist p,q € Q such that 6 =ad(q),d =ad(p) with pp =
0 =gqp and pg = 0, or pC = eRC for some idempotent e in the socle of RC
such that either f(Xi,...,X;) is central-valued on eRCe or char R = 2 and
dimg eRCe = 4.

(IT) Suppose that 0 # dd(f(p)) C C. Then pC = eRC' for some idempotent
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e in the socle of RC such that f(Xi,...,X;) is central-valued on eRCe unless
char R = 2 and dimgc RC' = 4.

In Theorem 1.3 (II) we cannot conclude that f(Xi, ..., X}) is central-valued
on R in general. The following provides such an example.

Example 1.4. Let R =My, (F') be the 2n x 2n matrix ring over F, a field
of characteristic 2, where n > 2. We let {e;; | 1 < i,j < 2n} be the set
of the usual matrix units in R, and let p = eR, where e = e11 + -+ + €.
Choose f(X1,...,X}:) to be a central polynomial for M,,(F') (see, for instance,
(13, p.315]). Let d =ad(p) and § =ad(q), where p = > | ept1-i; and ¢ =
> i1 €iant1—i- Note that pe =p, eq=¢q, qe =0, pg=3";", . i =1—eand
qp =Y e =e. Let xy,...,2; € p=eR. Then f(z1,...,2¢)e = fe with
B € F, depending on {z;}. We set b = f(z1,...,2;) and hence eb = b and
be = Pe. Since charF' = 2, we have

6d(f(z1,..., %)) = qpb + qbp + pbq + bpg
= eb + qebp + pbeq + b(1 + ¢€)
=b+p(l+e)+b+pe=pFcF.

Since we can choose z; € p such that § # 0, this implies that 0 #
dd(f(p)) € F. It is clear that f(Xy,...,X:) is central-valued on eRe, but
f(X1,...,X}) is not central-valued on R.

As an immediate consequence of the Main Theorem, we have the following:

Corollary 1.5. Let R be a prime ring and let §,d be two nonzero derivations
of R, f(X1,...,Xy) a polynomial over C, and I a nonzero ideal of R .

(I) Suppose that dd(f(I)) = 0. Then either § = ad for some a € C and
d> =0 or f(Xi,...,X;) is central-valued on RC except when char R = 2 and
dimg eRCe = 4.

(IT) Suppose that 0 # 6d(f(I)) C C. Then f(Xy,...,Xy) is central-valued
on RC' except when char R = 2 and dimg RC' = 4.

We remark that the exceptional case indeed exists in Corollary 1.5 (II).
For instance, let R =My(C'), where C is a field of characteristic 2. We set
d =ad(eq2), d =ad(e11), and f(X,Y) = XY —Y X. Then a direct computation
proves that 0 # 6d(f(R)) C C. Of course, XY —Y X cannot be central-valued
on R.
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2. Proof of Theorem 1.3

To prove Theorem 1.3 we need the following two results ([5, Theorems 1 and
2]): The first theorem investigates f(p) the additive subgroup of RC' generated
by all elements f(z1,...,x;) for x; € p, where f(Xy,...,X;) is a polynomial
over C' and where p is a right ideal of R. The second result concerns the case
when p is an ideal of R.

Theorem 2.1. Let R be a centrally closed prime C'-algebra, p a nonzero right
ideal of R and f(Xy,...,X:) a nonzero polynomial over C.

(I) If p is a non-PI right ideal of R, then there exists a non-PI right ideal
po of R contained in p such that [po, p] C f(p) and ppo C po.

(IT) If p is a PI right ideal of R, then there exists an idempotent e in the
socle of R such that p = eR and the following statements hold:

() eR(L—¢) C f(p) if f(p) 0.

(i) [p,p] C f(p) except when either f(Xi,...,X}) is central-valued on eRe
or eRe =M,y (GF(2)).

Theorem 2.2. Let R be a prime ring with extended centroid C and I a
nonzero ideal of R. Suppose that f(Xy,...,X}) is a polynomial over C, which
is not central-valued on RC. Then [M,R] C f(I) for some nonzero ideal M
of R except when R =MyGF(2)) and f(R) = {0,e12 + ea1,1 + €12, 1 + €91} or
{0, 1, €11 + €12 + €21, €22 + €12 + 621}.

We are now in a position to give the proof of our main result:

Proof of Theorem 1.3. (I) By [11, Theorem 2], R and @ satisfy the same
differential identities. Thus p, pR and pQ satisfy the same differential identi-
ties. By assumption, dd(f(x1,...,2,)) =0 for all xy,..., 2, € p. Replacing R,
p with RC', pC respectively, we may assume that R is a centrally closed prime
C-algebra, so now we can assume that pC' C p.

Consider first the case that p is a non-PI right ideal of R. In view of
Theorem 2.1, [po, p] C f(p) for some non-PI right ideal p, of R contained
in p and ppy C po. Since dd(f(p)) = 0, we have dd([po, po]) = 0. Since
[P0, polpo # 0, applying Theorem 1.1, we have that either 6 = ad for some
a € C and d* = 0, or there exist p,q € Q such that § =ad(q),d =ad(p) with
ppo = 0 = gpo and pg = 0. Since ppy C po, we see that pppy = 0 = gppo,
implying that pp = 0 = gp by the primeness of R. This proves the case.

Suppose next that p is a PI right ideal of R. By Theorem 1.2, p = eR for
some idempotent e in the socle of R. Suppose that f(Xj,..., X;) is not central-
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valued on eRe. In particular, eRe is not commutative and so [p,plp # 0.
Moreover, we assume that either char R # 2 or dimgeRCe > 4. In view of
Theorem 2.1, [p, p] C f(p) and hence dd([p, p]) = 0. Applying Theorem 1.1 we
are done.

(II) By assumption, 0d(f(Xi,...,X;)) is a central DI (see [4]) for p.
It follows from [4, Theorem 1] that R is a prime Pl-ring and so RC is a
finite-dimensional central simple C-algebra by Posner’s Theorem. By the
Wedderburn-Artin theorem, RC' =M, (D) for some n and some finite-dimensional
central division C-algebra D. In view of [6, Theorem 1] or [11, Theorem 2],
0 # 0d(f(pC)) C C. By replacing R, p with RC, pC' respectively, we may
assume that R =M, (D) and p = eR for some idempotent e € R. It follows
from Theorems 2.1 and 2.2 that [p, p] C f(p) except when either f(Xy,..., X;)
is central-valued on eRe, or eRe =My(GF(2)) such that f(eRe) = {0,e15 +
€21, €11+ €22+ €12, €11 + €22+ €21} or {0, €11+ €22, €11+ €12+ €91, €20+ €12+ €21}
Suppose that f(Xi,...,X;) is not central-valued on eRe. Otherwise, we are
done. In particular, [p, p|p # 0.

Suppose that eRe ¥My(GF(2)). Thus [p,p] C f(p) and so od([p,p]) C
dd(f(p)) € C. If 0 # dd(|p,p]) € C, then applying Theorem 1.2 yields
char R = 2 and dimg R = 4. We are done in this case. Suppose that
dd([p, p]) = 0. By Theorem 1.1, either § = ad for some o € C' and d* = 0,
or there exist p,q € @ such that 0 =ad(q),d = ad(p) with pp = 0 = ¢p
and pqg = 0, except when char R = 2 and pC' = eRC' for some idempo-
tent e in the socle of RC such that dimceRCe = 4. For the first two
cases, a direct computation proves dd(f(p)) = 0, contrary to our assump-
tion. Thus char R = 2 and dimgeRCe = 4. From the proof of Theorem
1.1 (see [2]), we see that both ¢ and d must be inner. In this case we
have [p,p] C f(p) € p. Since dimgp = 1 + dimg|p, p|, this implies that
Cf(p) = f(p). Hence dd(p) = 0d(Cf(p)) = Coéd(f(p)) € C as ¢ and d are
both inner. So we conclude that 0 # dd(p) C C. It follows from Theorem 1.2
that char R = 2 and dimg R = 4.

Thus we see that eRe =My (GF(2)). In this case, we see C =GF(2). More-
over, D = (' since dimg D < 00, so now R =My(GF(2)). Now, d(C) =0 =
d(C) and so § and d are both inner. Suppose that d =ad(p) and § =ad(q) for
some p,q € R. We may assume, without loss of generality, that e = e;; + e99.
We describe f(p). Using eR = eRe + eR(1 — e), a direct computation proves
that f(eR) C f(eRe) + eR(1 — e). On the other hand, applying Theo-
rem 2.1 (II) (i) yields eR(1 —e) C f(p) since f(eR) # 0. Thus we have
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f(eR) = f(eRe)+eR(1—e). Also, in view of Theorem 2.2, f(eRe) = {0, €12+
€21, €11+ex+€12, €11 +€2a+e€91} or {0, e11+€92, €11 +€12+€21, €22+€12+€21 }. So
we obtain that either f(p) = 0(611 +€22+612)+C(611 +622+621)+Zi<2,j>2 C’eij
or f(p) = Clenn+era+ea)+C(e1a+ea +622)+Zi§27j>2 Ce;j. We will derive a
contradiction by proving dd(f(p)) = 0 in either case. Since the two cases have
analogous arguments, we only prove the second case. Suppose n > 3. More-
over, we may assume that n > 4 since char R = 2 and trace(dd(f(p))) = 0.
Write p = Zlgi,jgn pijei; and ¢ = Zlgz‘,jgn gijeij, where p;;,q;; € C.

If po =0 = gq for all s > 2 and ¢ < 2, then 0 # dd(f(p)) C pNC. So
p = R, a contradiction. Thus we may assume that either py # 0 or gy # 0 for
some s > 2 and ¢t < 2. Without loss of generality, we may assume that s = 3
and t = 1. We separate the argument into three cases.

Case 1. p3; # 0 and ¢3; = 0. By replacing p,q with p — p111,,q9 — qi1 1,
respectively, we may assume ps; = 1 and p;; = ¢ = 0. For j # 1, the
(7, 1)-entry of dd(e13) € C equals —g;1p31 — Pj1¢31, S0 ¢j1 = 0 since g3 = 0 and
ps1 = 1. For j # 1,2, the (j,1)-entry of dd(ezs) € C equals —gjaps1 — pjagsi,
so ¢j2 = 0. Computing the (3,4)-entry of dd(e13) € C, we have g3, = 0. Now
comparing the (1,1)-entry and (4,4)-entry of dd(es3) € C, we can get that
q12 = 0. For s > 3, the (1,1)-entry of dd(e;s) € C equals 0, so dd(ers) = 0.
Similarly, the (1,1)-entry of dd(ezs) € C equals 0, so dd(ezs) = 0. We have
showed that dd(z) = 0 for all z € pnl(p). The (3,4)-entries of dd(e11+e12+€91)
and dd(eia+e91+€22) are P31qia+ps1gea+psaqia = 0 and p31goa+psaqia+psages =
0. Since p3s = 0 or p3s = 1, for any case we can get that ¢4 = go4 = 0. Now
the (4,4)-entries of dd(ej1 + e12 + e91) and dd(eqa + €91 + e22) equal 0. Thus
dd(er1+eratea) = dd(ea+ea1+es) = 0. Then dd(f(p)) = 0, a contradiction.

Case 2. p31 = 0 and ¢31 # 0. Applying the same argument given in Case
1, we can get that 0d(f(p)) = 0. We omit its details.

Case 3. p31 # 0 and ¢3; # 0. By replacing p,q with p — p111,,q — qi1 1,
respectively, we may assume that p3; = ¢33 = 1,p11 = ¢11 = 0. We can get
that p;1 = ¢;1 for all ¢, pjo = qjo for all j # 1,2, pss = ¢34 and pia = 12 as in
Case 1. For s > 3, the (2,2)-entry of dd(e15) € C equals ga1pso + p21gs2 = 0, s0
dd(e1s) = 0. Similarly, the (1, 1)-entry of dd(eqs) € C equals qropsi +p12gs1 = 0,
so dd(eas) = 0. We have showed that dd(x) = 0 for all z € pNlr(p). The (3,4)-
entries of dd(e11 +e12+e21) and dd(e1a + €91 + €92) are gs1p14 + q31P24 + qzap14 +
P31G14+P31q24+P32q1a = 0 and q31p24+qs2p14a+G32P24+D31G24+P32q1a+P32Gas = 0.
Since p3a = q32 = 0 or p3a = @32 = 1, in either case we can get that p;4 = quu
and pay = go4. Now the (4, 4)-entries of dd(e11 +e12+€21) and dd(e1o+e21 +e92)
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equal 0, implying that dd(e;; + e + €91) = 0 = dd(e12 + €91 + e€22). Hence
dd(f(p)) =0, a contradiction again. The theorem is thus proved.
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