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Abstract

In this paper, the authors introduce and investigate the various prop-
erties and characteristics of the subclass M+

n (α, β) of analytic functions
with positive coefficients. A characteristic, several inclusion relation-
ships, coefficient estimates, Hadamard products, distortion theorems,
covering theorems and (n, δ)-neighborhoods are proven here for this
function class. Furthermore, some interesting distortion theorems for
the Srivastava-Saigo-Owa fractional integral operator are also obtained.
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1. Introduction, Definitions and Preliminaries

Let An denote the class of functions f normalized by

f(z) = z +

∞
∑

k=n+1

akz
k, (n ∈ N := 1, 2, 3, ...), (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Denote
f ∈ A+

n if f ∈ An and ak ≥ 0(k ≥ n + 1). Suppose also that S∗(β) and
K denote the subclasses of A1 consisting of functions which are, respectively,
starlike of order β in U (0 ≤ β < 1) and convex in U. Set S∗

n(β) := S∗(β)∩An.
Then, we have

S∗(β) := {f ∈ A1; Re

(

zf ′(z)

f(z)

)

> β (z ∈ U)}.

For functions f ∈ A1 given by (1.1) and g given by

g(z) = z +

∞
∑

k=2

bkz
k,

the Hadamard product(or convolution) of f and g is defined by

(f ∗ g) := z +

∞
∑

k=2

akbkz
k =: (g ∗ f).

J. L. Li and S. Owa[3] proved the following theorem.

Theorem A. ( Li and Owa [3]) Suppose that α ≥ 0 and f ∈ A1. If

Re

(

αz2f ′′(z)

f(z)
+

zf ′(z)

f(z)

)

> −α

2
(z ∈ U),

then

f(z) ∈ S∗(0) = S∗.

Ravichandran et al. [6] gave the following modification of Theorem A.
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Theorem B. ( Ravichandran et al. [6]) Suppose that α ≥ 0 and 0 ≤ β < 1.
If f ∈ A1 and satisfies

Re

(

αz2f ′′(z)

f(z)
+

zf ′(z)

f(z)

)

> αβ(β +
n

2
− 1) + β − nα

2
(z ∈ U), (1.2)

then

f(z) ∈ S∗(β).

Assuming that α ≥ 0 , 0 ≤ β < 1 and f ∈ An, Liu et al. [4] introduced
the function classes Hn(α, β) and H+

n (α, β). That f(z) ∈ Hn(α, β) if and only
if f(z) satisfies condition (1.2), and H+

n (α, β) denotes the subset of Hn(α, β)
such that all functions f(z) ∈ Hn(α, β) have the following form:

f(z) = z −
∞
∑

k=n+1

akz
k (ak ≥ 0; k ≥ n + 1). (1.3)

Liu et al. [4] investigated the various properties and characteristics of these
two function classes. In particular, they obtained several inclusion relations,
Hadamard products, coefficient estimates, distortion theorems and covering
theorems of these two function classes.

S. Owa and J.Nishiwaki[5] introduced and investigated the coefficient esti-
mates and sufficient conditions for the class Mn(β) with β > 1. That Mn(β)
denote the subclass of An consisting of functions which satisfies

Re

(

zf ′(z)

f(z)

)

< β (z ∈ U, β > 1).

Now we introduce the function class M+
n (α, β).

Definition 1. Assuming that α ≥ 0, β > 1 and f ∈ A+
n , then f(z) ∈

M+
n (α, β) if and only if f(z) satisfies

Re

(

αz2f ′′(z)

f(z)
+

zf ′(z)

f(z)

)

< αβ(β +
n

2
− 1) + β − nα

2
(z ∈ U). (1.4)

It is evident that M+
n (0, β) = M+

n (β).
In this paper, we investigate several properties and characteristics of func-

tions belonging to the subclass M+
n (α, β) of analytic functions. In particular,
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their inclusion relationships, Hadamard products, coefficient estimates, distor-
tion theorems and covering theorems are proven here. The integral operator
and (n, δ)-neighborhood of the function class M+

n (α, β) are also considered.
Furthermore, some interesting distortion theorems for the Srivastava-Saigo-
Owa fractional integral operator are obtained.

In order to derive our main results, we need the following lemmas.

Lemma 1. ([2]) Let the function f ∈ A+
n given by (1.1), then for 0 ≤ η < 1,

f(z) ∈ S∗
n(η) if it satisfies

∞
∑

k=n+1

(k − η)ak ≤ 1− η.

Lemma 2. (Ruscheweyh and Sheil-small [7]). Let ϕ(z) be convex and g(z)
be starlike in U. Then, for each function F (z) analytic in U and satisfying the
following inequality:

Re(F (z)) > 0 (z ∈ U),

Re

(

(ϕ ∗ Fg)(z)

(ϕ ∗ g)(z)

)

> 0 (z ∈ U).

Lemma 3. (Ruscheweyh and Sheil-small [7]). Let ϕ(z) and g(z) be starlike
of order 1

2
in U. Then, for each function F (z) analytic in U and satisfying the

following inequality:

Re(F (z)) > 0 (z ∈ U),

Re

(

(ϕ ∗ Fg)(z)

(ϕ ∗ g)(z)

)

> 0 (z ∈ U).
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2. Properties of the Function Class M+
n (α, β)

We first derive the sufficient and necessary conditions for f(z) ∈ M+
n (α, β).

Theorem 1. Suppose that α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and

γn = γn(α, β) = αβ(β +
n

2
− 1) + β − nα

2
. (2.1)

If f(z) ∈ A+
n , then f(z) ∈ M+

n (α, β) if and only if

∞
∑

k=n+1

[k(1 + kα− α)− γn]ak ≤ γn − 1. (2.2)

Proof. First, we show that f(z) ∈ M+
n (α, β) if the inequality (2.2) holds

true. Since α ≥ 0 and β > 1, we have

γn − 1 = αβ(β +
n

2
− 1) + β − nα

2
− 1

=
nα

2
(β − 1) + (αβ + 1)(β − 1) > 0.

Now, for the function

p(z) =
αz2f ′′(z)

f(z)
+

zf ′(z)

f(z)
,

let q(z) = γn−p(z)
γn−1

. To the end, it suffices to prove that

∣

∣

∣

∣

q(z)− 1

q(z) + 1

∣

∣

∣

∣

< 1.
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By the coefficient inequality (2.2), we thus obtain

∣

∣

∣

∣

q(z)− 1

q(z) + 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1− p(z)

2γn − 1− p(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=n+1

[1− αk(k − 1)− k]akz
k−1

(2γn − 2) +
∞
∑

k=n+1

[2γn − 1− αk(k − 1)− k]akzk−1

∣

∣

∣

∣

∣

∣

∣

∣

<

∞
∑

k=n+1

[αk(k − 1) + k − 1]ak

2γn − 2−
∞
∑

k=n+1

[αk(k − 1) + k − 2γn + 1]ak

=

∞
∑

k=n+1

[αk(k − 1) + k − γn]ak +
∞
∑

k=n+1

(γn − 1)ak

2γn − 2−
∞
∑

k=n+1

[αk(k − 1) + k − γn]ak +
∞
∑

k=n+1

(γn − 1)ak

≤
γn − 1 +

∞
∑

k=n+1

(γn − 1)ak

2(γn − 1)− (γn − 1) +
∞
∑

k=n+1

(γn − 1)ak

= 1.

Hence we obtain

Re(p(z)) < γn, (z ∈ U),

that is, f(z) ∈ M+
n (α, β).

Conversely, we suppose that f(z) ∈ M+
n (α, β), then

Re(p(z)) ≤ γn (z ∈ U), (2.3)

where

p(z) =
αz2f ′′(z)

f(z)
+

zf ′(z)

f(z)
=

1 +
∞
∑

k=n+1

k(kα + 1− α)akz
k−1

1 +
∞
∑

k=n+1

akzk−1

.
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Now we choosing z = r(0 < r < 1) to be real, therefore, by (2.3) we obtain
that

1 +

∞
∑

k=n+1

k(kα + 1− α)akr
k−1 ≤ γn(1 +

∞
∑

k=n+1

akr
k−1).

That is,

∞
∑

k=n+1

[k(1 + kα− α)− γn]akr
k−1 ≤ γn − 1. (2.4)

Since α ≥ 0 and 1 < β < 2−n+
√
17n2+20n+4
4

< n + 1, we have

k(1 + kα− α)− γn

≥ (n + 1)(1 + nα)− [αβ(β +
n

2
− 1) + β − nα

2
]

= −α

[

β2 + (
n

2
− 1)β − (n2 +

3n

2
)

]

+ (n+ 1− β)

> −α

(

β − 2− n+
√
17n2 + 20n+ 4

4

)

(

β +
n− 2 +

√
17n2 + 20n+ 4

4

)

> 0 (k ≥ n + 1).

Hence, for every m ≥ n+ 1 and 0 < r < 1, we get

m
∑

k=n+1

[k(1 + kα− α)− γn]akr
k−1 ≤

∞
∑

k=n+1

[k(1 + kα− α)− γn]akr
k−1 ≤ γn − 1,

which, upon letting r → 1−, immediately yields

m
∑

k=n+1

[k(1 + kα− α)− γn]ak ≤ γn − 1.

It follows that the inequality (2.2) holds true. This completes the proof of
Theorem 1. �
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Corollary 1. Let α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn = γn(α, β) is
defined by (2.1). Suppose that f(z) ∈ M+

n (α, β), then

ak ≤
γn − 1

k(1 + kα− α)− γn
(k ≥ n + 1).

Each of these inequalities is sharp, with the extremal function given by

fk(z) = z +
γn − 1

k(1 + kα− α)− γn
zk (k ≥ n+ 1). (2.5)

Next, we prove the following inclusion relations. With the aid of Theorem
1, we have the following results.

Theorem 2. Let α1 > α2 ≥ 0 and 1 < β1 < β2 ≤ 1 + n
2
. Then

M+
n (α1, β1) ⊂ M+

n (α2, β2).

Proof. First, we show that

M+
n (α1, β1) ⊂ M+

n (α1, β2). (2.6)

Suppose that f ∈ M+
n (α1, β1), by Theorem 1, we have

∞
∑

k=n+1

[k(1 + kα1 − α1)− γn(α1, β1)]ak ≤ γn(α1, β1)− 1,

where γn(α1, β1) is defined in Theorem 1. Noting γn(α1, β1)− 1 > 0 for α ≥ 0
and 1 < β ≤ 1 + n

2
, it follows that

∞
∑

k=n+1

k(1 + kα1 − α1)− γn(α1, β1)

γn(α1, β1)− 1
ak ≤ 1. (2.7)

Since α1 ≥ 0, 1 < β1 < β2 ≤ 1 + n
2
and k ≥ n + 1, direct computation

yields

k(1 + kα1 − α1)− γn(α1, β2)

γn(α1, β2)− 1
− k(1 + kα1 − α1)− γn(α1, β1)

γn(α1, β1)− 1

=
(k − 1)(kα1 + 1)(β1 − β2)[(α1(β1 + β2 +

n
2
− 1) + 1]

[γn(α1, β1)− 1][γn(α1, β2)− 1]
≤ 0. (2.8)
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Hence, connecting (2.7) and (2.8), we conclude that

∞
∑

k=n+1

k(1 + kα1 − α1)− γn(α1, β2)

γn(α1, β2)− 1
ak

≤
∞
∑

k=n+1

k(1 + kα1 − α1)− γn(α1, β1)

γn(α1, β1)− 1
ak ≤ 1, (2.9)

which gives (2.6) by Theorem 1.
Next, it suffices to see that

M+
n (α1, β2) ⊂ M+

n (α2, β2). (2.10)

Since α1 > α2 ≥ 0, 1 < β1 < β2 ≤ 1 + n
2
, and k ≥ n+ 1, by computing easily,

we have

k(1 + kα2 − α2)− γn(α2, β2)

γn(α2, β2)− 1
− k(1 + kα1 − α1)− γn(α1, β2)

γn(α1, β2)− 1

=
(α1 − α2)(k − 1)(β2 − 1)(β2 +

n
2
− k)

[γn(α2, β2)− 1][γn(α1, β2)− 1]
≤ 0. (2.11)

By Theorem 1 and (2.11), we obtain that (2.10) holds true, and this completes
the proof. �

Corollary 2. Let α ≥ 0 and 1 < β ≤ 1 + n
2
. If f(z) ∈ M+

n (α, β) for z ∈ U ,
then f(z) ∈ M+

n (β).
By taking β = α/2 and n = 1 in Corollary 2, we have the following corol-

lary.

Corollary 3. If f(z) ∈ A+
1 and satisfies

Re

(

αz2f ′′(z)

f(z)
+

zf ′(z)

f(z)

)

<
α2

4
(α− 1), (z ∈ U)

for some α (2 < α ≤ 3), then f(z) ∈ M+
1 (α/2).

Theorem 3. Let α ≥ 0, 0 ≤ η < 1, and 1 < β < 1+ n(1−η)
n+2−2η

. If f ∈ M+
n (α, β),

then f ∈ S∗
n(η).
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Proof. Since 0 ≤ η < 1, we observe that

1 < β < 1 +
n(1− η)

n + 2− 2η
< 1 +

n

2
<

2− n+
√
17n2 + 20n+ 4

4
,

then by Theorem 1, we have

∞
∑

k=n+1

k(1 + kα− α)− γn
γn − 1

ak ≤ 1,

where γn is defined in Theorem 1. Using Lemma 1, it suffices to see that

k − η

1− η
− k(1 + kα− α)− γn

γn − 1
< 0. (2.12)

It is easy to know that

(k − η)(γn − 1)− [k(1 + kα− α)− γn](1− η)

= (k − η)[αβ(β +
n

2
− 1) + β − nα

2
− 1]

−[k(1 + kα− α)− αβ(β +
n

2
− 1)− β +

nα

2
](1− η)

= α[(k − 2η + 1)β2 + (
n

2
− 1)(k − 2η + 1)β − n

2
(k − 2η + 1)− k(k − 1)(1− η)]

+(k − 2η + 1)β − 2k + η + kη.

Since 1 < β < 1 + n(1−η)
n+2−2η

< 1 + n
2
, by some computation easily, for k ≥ n+ 1,

we have

(k − 2η + 1)β − 2k + η + kη = (k − 2η + 1)

[

β − 1− (k − 1)(1− η)

k + 1− 2η

]

< 0,

and

(k − 2η + 1)β2 + (
n

2
− 1)(k − 2η + 1)β − n

2
(k − 2η + 1)− k(k − 1)(1− η)

= (k − 2η + 1)(β − 1)(β +
n

2
)− k(k − 1)(1− η)

≤ (n + 2− 2η)(β − 1)(β +
n

2
)− n(n + 1)(1− η)

< n(1− η)(β +
n

2
− n− 1) = n(1 − η)(β − n

2
− 1) < 0.
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Hence, we obtain that

(k − η)(γn − 1)− [k(1 + kα− α)− γn](1− η) < 0,

which leads to (2.12). This completes the proof. �

Theorem 4. Let α ≥ 0, 0 ≤ η < 1, and 1 < β < 1 + n(1−η)
n+2−2η

. If

f(z) ∈ M+
n (α, β) and g ∈ K ∩A+

n ,

then

(f ∗ g)(z) ∈ M+
n (α, β).

Proof. Suppose that f(z) ∈ M+
n (α, β). Then, by Theorem 3, we have

f ∈ S∗
n(η) and Re(H(z)) > 0 (z ∈ U),

where

H(z) := αβ(β +
n

2
− 1) + β − nα

2
− αz2f ′′(z)

f(z)
− zf ′(z)

f(z)
.

If we set F (z) := (f∗g)(z), then F (z) ∈ A+
n . By Lemma 2, simple computation

yields

Re

(

αβ(β +
n

2
− 1) + β − nα

2
− αz2F ′′(z)

F (z)
− zF ′(z)

F (z)

)

= Re

(

(g ∗Hf)(z)

(g ∗ f)(z)

)

> 0 (z ∈ U).

Hence

F (z) := (f ∗ g)(z) ∈ M+
n (α, β),

which completes the proof of Theorem 4. �

With the aid of Lemma 3, if we apply the same method as in our proof of
Theorem 4, we obtain the following corollary.
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Corollary 4. Let α ≥ 0, 1
2
≤ η < 1, and 1 < β < 1 + n(1−η)

n+2−2η
. If

f(z) ∈ M+
n (α, β) and g ∈ S∗

n(
1

2
) ∩ A+

n ,

then

(f ∗ g)(z) ∈ M+
n (α, β).

Next, we consider the distortion theorems for the function class M+
n (α, β).

Theorem 5. Let α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn = γn(α, β) is
defined by (2.1). Suppose that f(z) ∈ M+

n (α, β), then

r − γn − 1

(n + 1)(1 + nα)− γn
rn+1 ≤ |f(z)| ≤ r +

γn − 1

(n + 1)(1 + nα)− γn
rn+1,

(|z| = r < 1), (2.13)

and

1− (n + 1)(γn − 1)

(n+ 1)(1 + nα)− γn
rn ≤ |f ′(z)| ≤ 1 +

(n+ 1)(γn − 1)

(n+ 1)(1 + nα)− γn
rn,

(|z| = r < 1). (2.14)

Each of these inequalities is sharp, with the extremal function given by

fn+1(z) = z +
γn − 1

(n+ 1)(1 + nα)− γn
zn+1. (2.15)

Proof. In view of Theorem 1, we get

∞
∑

k=n+1

ak ≤
γn − 1

(n + 1)(1 + nα)− γn
.

Therefore, the distortion inequalities in (2.13) follow from

r − rn+1

∞
∑

k=n+1

ak ≤ |f(z)| ≤ r + rn+1

∞
∑

k=n+1

ak, (|z| = r < 1).
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Furthermore, Theorem 1 also implies

∞
∑

k=n+1

kak ≤
(n+ 1)(γn − 1)

(n + 1)(1 + nα)− γn
,

the distortion inequalities in (2.14) follow from

1− rn
∞
∑

k=n+1

kak ≤ |f ′(z)| ≤ 1 + rn
∞
∑

k=n+1

kak, (|z| = r < 1).

The proof of Theorem 5 is thus completed. �

Corollary 5. Let α ≥ 0, 1 < β < 1+ n
2
and γn = γn(α, β) is defined by (2.1).

Suppose that f(z) ∈ M+
n (α, β), then the unit disk U is mapped by f(z) onto a

domain that contains the disk |w| < r0, where

r0 :=
(n + 1)(1 + nα)− 2γn + 1

(n + 1)(1 + nα)− γn
> 0.

The result is sharp, with the extremal function fn+1(z) given by (2.15).
With the aid of Theorem 1, we have the following results.

Theorem 6. Let α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn = γn(α, β) is
defined by (2.1). Then the class M+

n (α, β) is a convex set.

Theorem 7. Suppose that α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn = γn(α, β)
is defined by (2.1). Also let

fn(z) = z and fk(z) = z +
γn − 1

k(1 + kα− α)− γn
zk (k ≥ n + 1).

Then f(z) is in the class M+
n (α, β) if and only if is can be expressed in the

following form:

f(z) =
∞
∑

k=n

µkfk(z),

where

µk ≥ 0 (k ≥ n) and

∞
∑

k=n

µk = 1.



52 Ming-Sheng Liu, Ying-Ying Liu, and Zhi-Wen Liu

Corollary 6. Under the hypothesis of Theorem 7, the extreme points of the
class M+

n (α, β) are the functions fk(z)(k ≥ n) given in Theorem 7.
Next, we derive the integral operators for f(z) ∈ M+

n (α, β).

Theorem 8. Suppose that α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn = γn(α, β)
is defined by (2.1). Also let c be a real number such that c > −1. If f(z) ∈
M+

n (α, β), then the functions F (z) defined by

F (z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt (2.16)

also belongs to the class M+
n (α, β).

Proof. From the representation of F (z), it follows that

F (z) = z +

∞
∑

k=n+1

bkz
k,

where

bk =
c+ 1

c+ k
ak < ak.

Therefore

∞
∑

k=n+1

[k(1 + kα− α)− γn]bk ≤
∞
∑

k=n+1

[k(1 + kα− α)− γn]ak. (2.17)

Since f(z) ∈ M+
n (α, β), by Theorem 1 we have

∞
∑

k=n+1

[k(1 + kα− α)− γn]ak ≤ γn − 1. (2.18)

Then F (z) ∈ M+
n (α, β) follows from (2.17) and (2.18), and the proof of The-

orem 8 is thus completed. �
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Theorem 9. Suppose that α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn = γn(α, β)
is defined by (2.1). Also let c be a real number such that c > −1. If F (z) ∈
M+

n (α, β), then the function defined by (2.16) is univalent in |z| < R∗, where

R∗ := inf
k≥n+1

[

(c+ 1)[k(1 + kα− α)− γn]

k(c+ k)(γn − 1)

]
1

k−1

.

The result is sharp.

Proof. Let

F (z) = z +

∞
∑

k=n+1

akz
k.

It follows from (2.16) that

f(z) =
z1−c[zcF (z)]′

c+ 1
= z +

∞
∑

k=n+1

c+ k

c+ 1
akz

k, (c > −1).

In order to obtain the required result, it suffices to show that |f ′(z)−1| < 1
in |z| < R∗. Now

|f ′(z)− 1| ≤
∞
∑

k=n+1

k(c+ k)

c+ 1
ak|z|k−1.

Thus |f ′(z)− 1| < 1 if

∞
∑

k=n+1

k(c+ k)

c+ 1
ak|z|k−1 < 1. (2.19)

Since F (z) ∈ M+
n (α, β), we have

∞
∑

k=n+1

k(1 + kα− α)− γn
γn − 1

ak ≤ 1.

Hence, (2.19) will be satisfied if

k(c+ k)

c+ 1
|z|k−1 <

k(1 + kα− α)− γn
γn − 1

,
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or if

|z| <
[

(c+ 1)[k(1 + kα− α)− γn]

k(c+ k)(γn − 1)

]
1

k−1

(k ≥ n+ 1).

Therefore f(z) is univalent in |z| < R∗, sharpness follows if we taking

fk(z) = z +
k(1 + kα− α)− γn

γn − 1
zk (k ≥ n+ 1).

This completes the proof of Theorem 9. �

Now, we consider the neighborhood of the class M+
n (α, β).

O.Altintaş, Ö.Özkan and H.M.Srivastava [1] introduced the definition of
(n, δ)-neighborhood of a function f(z) ∈ An have the form (1.3). We give the
definition of (n, δ)-neighborhood of a function f(z) ∈ A+

n as follows.

Definition 2. Let f(z) ∈ A+
n and δ > 0, then the (n, δ)-neighborhood of a

function f(z) defined by

Nn, δ(f) = {g ∈ A+
n : g(z) = z +

∞
∑

k=n+1

bkz
k and

∞
∑

k=n+1

k|ak − bk| ≤ δ}.

In particular, for the identity of function

e(z) = z

immediately have

Nn, δ(e) = {g ∈ A+
n : g(z) = z +

∞
∑

k=n+1

bkz
k and

∞
∑

k=n+1

kbk ≤ δ}.

Theorem 10. Suppose that α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn =
γn(α, β) is defined by (2.1). Then

M+
n (α, β) ⊂ Nn, δ(e),

where

δ :=
(n+ 1)(γn − 1)

(n+ 1)(1 + nα)− γn
.
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Proof. For f(z) ∈ M+
n (α, β), by Theorem 1, we have

∞
∑

k=n+1

kak ≤
(n+ 1)(γn − 1)

(n + 1)(1 + nα)− γn
,

which, in view of definition 2, proves Theorem 10. �

Next, we discuss the neighborhood of the class M+
n (α, β) which is defined

as follows. A function f(z) ∈ A+
n is said to be in the class M+

n,γ(α, β) if there
exists a function g(z) ∈ M+

n (α, β) such that
∣

∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣

∣

< 1− γ, (z ∈ U; 0 ≤ γ < 1).

Theorem 11. Let α ≥ 0, 1 < β < 1 + n
2
and γn = γn(α, β) is defined by

(2.1). If g(z) ∈ M+
n (α, β) and δ > 0 such that

γ := 1− δ[(n + 1)(1 + nα)− γn]

(n+ 1)[(n+ 1)(1 + nα) + 1− 2γn]
≥ 0, (2.20)

then

Nn, δ(g) ⊂ M+
n,γ(α, β).

Proof. Suppose that f ∈ Nn, δ(g). From definition 2, we have

∞
∑

k=n+1

k|ak − bk| ≤ δ,

which readily implies the coefficient inequality

∞
∑

k=n+1

|ak − bk| ≤
δ

n+ 1
(n ∈ N).

Next, since g(z) ∈ M+
n (α, β) and 1 < β < 1+ n

2
, from Theorem 1, we have

∞
∑

k=n+1

bk ≤ γn − 1

(n + 1)(1 + nα)− γn
< 1,
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so that
∣

∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣

∣

<

∑∞
k=n+1 |ak − bk|

1−
∑∞

k=n+1 bk

≤ δ

n+ 1
· 1

1− γn−1
(n+1)(1+nα)−γn

=
δ[(n+ 1)(1 + nα)− γn]

(n+ 1)[(n+ 1)(1 + nα) + 1− 2γn]
= 1− γ,

provided that γ is given precisely by (2.20). Thus, by definition, f(z) ∈
M+

n, γ(α, β), which evidently completes the proof of Theorem 11. �

Srivastava et al.[9] introduced the following definition of a fractional in-
tegral operator, which is popularly referred to as the Srivastava-Saigo-Owa
fractional integral operator.

Definition 3. (See, for details, Srivastava et al.[9, 8]). For real numbers
η > 0, γ and δ, the fractional integral operator Iη,γ, δ0,z is defined by

Iη,γ, δ0, z f(z) :=
z−η−γ

Γ(η)

∫ z

0

(z − t)η−1
2F1(η + γ,−δ; η; 1− t

z
)f(t)dt, (2.21)

where f(z) is an analytic function in a simply-connected region of the complex
z-plane, containing the origin, with the following order:

f(z) = O(|z|ε) (z → 0; ε > max{0, γ − δ} − 1),

2F1(a, b; c; z) =
∞
∑

k=0

(a)k(b)k
(c)k

zk

k!

denotes the Gauss hypergeometric function in terms of the Pochhammer sym-
bol (λ)k given by

(λ)k =
Γ(λ+ k)

Γ(λ)
=

{

1 (k = 0),
λ(λ+ 1) · · · (λ+ k − 1) (k ∈ N),

and the multiplicity of (z − t)η−1 is removed by requiring log(z − t) to be real
when z − t > 0.
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Lemma 4. (See [9]). The following formula holds true for the Srivastava-
Saigo-Owa fractional integral operator Iη,γ, δ0,z is defined by (2.21):

Iη,γ, δ0, z zk =
Γ(k + 1)Γ(k − γ + δ + 1)

Γ(k − γ + 1)Γ(k + η + δ + 1)
zk−γ .

Theorem 12. Let

η > 0, γ < 2, η + δ > −2, γ − δ < 2 and γ(η + δ) ≤ η(n+ 2).

Suppose also that α ≥ 0, 1 < β < 2−n+
√
17n2+20n+4
4

and γn = γn(α, β) is defined
by (2.1). If the function f(z) is in the class M+

n (α, β), then

|Iη,γ, δ0, z f(z)| ≤ Γ(2− γ + δ)|z|1−γ

Γ(2− γ)Γ(2 + η + δ)

·
(

1 +
(2)n(2− γ + δ)n(γn − 1)

(2− γ)n(2 + η + δ)n[(n + 1)(1 + nα)− γn]
|z|n

)

, (z ∈ U0)

and

|Iη,γ, δ0, z f(z)| ≥ Γ(2− γ + δ)|z|1−γ

Γ(2− γ)Γ(2 + η + δ)

·
(

1− (2)n(2− γ + δ)n(γn − 1)

(2− γ)n(2 + η + δ)n[(n+ 1)(1 + nα)− γn]
|z|n

)

, (z ∈ U0)

where

U0 =

{

U (γ ≤ 1),
U− {0} (γ > 1).

Each of these inequalities is sharp, with the extremal function fn+1(z) given
by (2.15).

Proof. By Lemma 4, we have

Iη,γ, δ0, z f(z) :=
Γ(2− γ + δ)z1−γ

Γ(2− γ)Γ(2 + η + δ)
+

∞
∑

k=n+1

Γ(k + 1)Γ(k − γ + δ + 1)

Γ(k − γ + 1)Γ(k + η + δ + 1)
akz

k−γ .
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If we set

G(z) =
Γ(2− γ)Γ(2 + η + δ)

Γ(2− γ + δ)
zγIη,γ, δ0,z f(z) = z +

∞
∑

k=n+1

g(k)akz
k, (2.22)

where

g(k) =
k!(2− γ + δ)k−1

(2− γ)k−1(2 + η + δ)k−1
, (k ≥ n+ 1),

then, since

η > 0, γ < 2, η + δ > −2, γ − δ < 2 and γ(η + δ) ≤ η(n+ 2),

we find that

g(k + 1)

g(k)
=

(k + 1)(k + 1− γ + δ)

(k + 1− γ)(k + 1 + η + δ)

=
(k + 1)2 − (k + 1)(γ − δ)

(k + 1)2 − (k + 1)(γ − δ) + η(k + 1)− γ(η + δ)

≤ 1, (k ≥ n+ 1).

Therefore, g(k) is a non-increasing function for integers k ≥ n+ 1, and we
have

0 < g(k) ≤ g(n+ 1) =
(2)n(2− γ + δ)n

(2− γ)n(2 + η + δ)n
, (k ≥ n+ 1). (2.23)

Hence, applying Theorem 5 and (2.23), we obtain

|G(z)| ≤ |z|+ g(n+ 1)|z|n+1
∞
∑

k=n+1

ak

≤ |z|+ (2)n(2− γ + δ)n(γn − 1)

(2− γ)n(2 + η + δ)n[(n+ 1)(1 + nα)− γn]
|z|n+1(2.24)

and

|G(z)| ≥ |z| − g(n+ 1)|z|n+1
∞
∑

k=n+1

ak

≥ |z| − (2)n(2− γ + δ)n(γn − 1)

(2− γ)n(2 + η + δ)n[(n + 1)(1 + nα)− γn]
|z|n+1.(2.25)
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Now the inequalities in the above-mentioned assertions of Theorem 12 follows
when we make use of (2.24) and (2.25) in the definition (2.22).

The inequalities in the above-mentioned assertions of Theorem 12 are easily
seen to be attained by the function fn+1(z) defined by (2.15). This evidently
completes the proof of Theorem 12. �
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