Tamsui Oxford Journal of Information and Mathematical Sciences **27(1)** (2011) 21-37 Aletheia University

Some Contributions to the Theory of Generalized Orlicz Sequence Space *

Iqbal H. Jebril[†]

Department of Mathematics, King Faisal University, Saudi Arabia

B. Surender Reddy[‡]

Department of Mathematics, PGCS, Saifabad, Osmania University, Hyderabad-500004, A. P., India

and

Hemen Dutta[§]

Department of Mathematics, Gauhati University, Kokrajhar Campus, Assam, India

Received November 18, 2008, Accepted November 8, 2010.

Abstract

In this article a description of the Orlicz difference sequence space $\ell_M(\Delta_{(m)})$ generated by Orlicz function M and a new generalized difference operator $\Delta_{(m)}$ is presented. We investigate some topological structures relevant to this space. It is also shown that under certain

[†]E-mail: iqbal501@yahoo.com

^{*2000} Mathematics Subject Classification. Primary 40A05, 40C05, 46A45.

[‡]E-mail: bsrmathou@yahoo.com

[§]Corresponding author. E-mail: hemen_dutta08@rediffmail.com

condition $\ell_M(\Delta_{(m)})$ is topologically isomorphic to ℓ_{∞} . Furthermore we define a subspace $h_M(\Delta_{(m)})$ of $\ell_M(\Delta_{(m)})$ and it is shown that under certain condition $h_M(\Delta_{(m)})$ is topologically isomorphic to c_0 .

Keywords and Phrases: Difference sequence space, Orlicz function, AK-BK space, Topological isomorphism.

1. Introduction

Throughout this section w, ℓ_{∞} , ℓ_1 , c and c_0 denote the space of all, bounded, absolutely summable, convergent and null sequences $x = (x_k)$ with complex terms respectively. The notion of difference sequence space was introduced by Kizmaz [4], who studied the difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$.

For Z a given sequence space we have $Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$, where $\Delta x = (\Delta x_k) = (\Delta x_k - \Delta x_{k+1})$. For $Z = \ell_{\infty}$, c and c_0 , we have the spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ introduced and studied by Kizmaz [4].

Let *m* be a non-negative integer. Then Dutta [2] defined the following sequence spaces for *Z* a given sequence space $Z(\Delta_{(m)}) = \{x = (x_k) \in w : (\Delta_{(m)}x_k) \in Z\}$, where $\Delta_{(m)}x = (\Delta_{(m)}x_k) = (x_k - x_{k-m})$ and $\Delta_0x_k = x_k$ for all $k \in N$. For $Z = \ell_{\infty}$, *c* and c_0 , we have the spaces $\ell_{\infty}(\Delta_{(m)})$, $c(\Delta_{(m)})$ and $c_0(\Delta_{(m)})$ respectively.

Taking m = 1, we get the spaces $Z(\Delta_{(1)})$. It is obvious that $(x_k) \in Z(\Delta_{(1)})$ if and only if $(x_k) \in Z(\Delta)$.

An Orlicz function is a function $M : [0, \infty) \longrightarrow [0, \infty)$ which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \longrightarrow \infty$, as $x \longrightarrow \infty$.

An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_{0}^{x} p(t)dt$$

where p, known as kernel of M, is right differentiable for $t \ge 0$, p(0) = 0, p(t) > 0 for t > 0, p is non-decreasing, and $p(t) \longrightarrow \infty$ as $t \longrightarrow \infty$.

Consider the kernel p(t) associated with the Orlicz function M(t), and let $q(s) = \sup\{t : p(t) \le s\}$. Then q possesses the same properties as the function

p. Suppose now

$$\Phi(x) = \int_{0}^{x} q(s) ds$$

Then Φ is an Orlicz function. The functions M and Φ are called mutually complementary Orlicz functions.

Now we state the following well known results.

Let M and F are mutually complementary Orlicz functions. Then we have (Young's inequality)

(i) For
$$x, y \ge 0, xy \le M(x) + \Phi(y)$$
 (1.1)

We also have

(ii) For $x \ge 0$, $xp(x) = M(x) + \Phi(p(x))$ (1.2)

(iii) $M(\lambda x) < \lambda M(x)$ for all $x \ge 0$ and λ with $0 < \lambda < 1$.

An Orlicz function M is said to satisfy the Δ_2 -condition for all small xor at 0 if for each k > 0 there exists $R_k > 0$ and $x_k > 0$ such that $M(kx) \leq R_k M(x)$ for all $x \in (0, x_k]$.

Moreover an Orlicz function M is said to satisfy the Δ_2 -condition if and only if

$$\lim_{x \to 0} \sup \frac{M(2x)}{M(x)} < \infty$$

Two Orlicz functions M_1 and M_2 are said to be equivalent if there are positive constatus α , β and x_0 such that

$$M_1(\alpha x) \le M_2(x) \le M_1(\beta x) \text{ for all } x \text{ with } 0 \le x \le x_0.$$
(1.3)

Lindenstrauss and Tzafriri [7] used the Orlicz function and introduced the sequence space ℓ_M as follows:

$$\ell_M = \left\{ (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

Let m be a non-negative integer. Then we define the following spaces.

Definition 1.1. Let M be any Orlicz functions. Then we define

$$\tilde{\ell}_M(\Delta_{(m)}) = \left\{ x = (x_k) \in w : \delta(M, \Delta_{(m)}, x) = \sum_{k=1}^{\infty} M\left(|\Delta_{(m)} x_k| \right) < \infty \right\},\$$

where $\Delta_{(m)} x_k = x_k - x_{k-m}$ for all $k \ge 1$.

If m = 0, then we write $\tilde{\ell}_M(\Delta_{(m)}) = \tilde{\ell}_M$. If m = 1, the space reduced to the space studied by Dutta [1].

Definition 1.2. Let M and Φ be mutually complementary functions. Then we define

$$\ell_M(\Delta_{(m)}) = \left\{ x = (x_k) \in w : \sum_{k=1}^{\infty} \left(\Delta_{(m)} x_k \right) y_k \text{ converges for all } y \in \tilde{\ell}_{\Phi} \right\}$$

and we call this sequence space as Orlicz $\Delta_{(m)}$ -difference sequence space.

If m = 0, then we write $\ell_M(\Delta_{(m)}) = \ell_M$. If m = 1, the space reduced to the space studied by Dutta [1].

2. Main Results

The main aim of this section is to describe the space $\ell_M(\Delta_{(m)})$ and investigate some properties of this space as well as the subspace $h_M(\Delta_{(m)})$ of $\ell_M(\Delta_{(m)})$.

Proposition 2.1. For any Orlicz function M, $\tilde{\ell}_M(\Delta_{(m)}) \subset \ell_M(\Delta_{(m)})$.

Proof. Let $x \in \tilde{\ell}_M(\Delta_{(m)})$. Then $\sum_{k=1}^{\infty} M(|\Delta_{(m)}x_k|) < \infty$. Now using (1.1), we have

$$\left|\sum_{k=1}^{\infty} (\Delta_{(m)} x_k) y_k\right| \le \sum_{k=1}^{\infty} \left| (\Delta_{(m)} x_k) y_k \right| \le \sum_{k=1}^{\infty} M\left(\left| \Delta_{(m)} x_k \right| \right) + \sum_{k=1}^{\infty} \Phi(|y_k|) < \infty,$$

for every $y = (y_k)$ with $y \in \tilde{\ell}_{\Phi}$. Thus $x \in \ell_M(\Delta_{(m)})$.

Proposition 2.2. For each $x \in \ell_M(\Delta_{(m)})$,

$$\sup\left\{\left|\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) y_i\right| : \delta(\Phi, y) \le 1\right\} < \infty$$

Proof. Suppose the required result is not true. Then for each $n \ge 1$, there exists y^n with $\delta(\Phi, y^n) \le 1$ such that

$$\left|\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) y_i^n\right| > 2^n.$$

Without loss of generality we may assume that $(\Delta_{(m)}x_i), y^n \ge 0$. Now, we can define a sequence $z = \{z_i\}$, where

$$z_i = \sum_{n=1}^{\infty} \frac{1}{2^n} y_i^n.$$

By the convexity of Φ ,

$$\Phi\left(\sum_{n=1}^{l} \frac{1}{2^{n}} y_{i}^{n}\right) \leq \frac{1}{2} \left[\Phi(y_{i}^{1}) + \Phi\left(\frac{y_{i}^{2}}{2} + \dots + \frac{y_{i}^{l}}{2^{l-1}}\right)\right] \leq \dots \leq \sum_{n=1}^{l} \frac{1}{2^{n}} \Phi(y_{i}^{n})$$

and hence, using the continuity of Φ , we have

$$\delta(\Phi, z) = \sum_{i=1}^{\infty} \Phi(z_i) \le \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{2^n} \Phi(y_i^n) \le \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

But for every $l \ge 1$,

$$\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) z_i \ge \sum_{i=1}^{\infty} (\Delta_{(m)} x_i) \sum_{n=1}^{l} \frac{1}{2^n} y_i^n = \sum_{n=1}^{l} \sum_{i=1}^{\infty} (\Delta_{(m)} x_i) \frac{y_i^n}{2^n} \ge l.$$

Hence $\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) z_i$ diverges and this implies that $x \notin \ell_M(\Delta_{(m)})$. This contradiction leads us to the required result.

The preceding result encourages us to introduce the following norm $\|\bullet\|_M^{(m)}$ on $\ell_M(\Delta_{(m)})$.

Proposition 2.3. $\ell_M(\Delta^m, \Lambda)$ is a normed linear space under the norm $\|\bullet\|_M^{\Delta^m}$ defined by

$$\|x\|_M^{(m)} = \sup\left\{\left|\sum_{i=1}^\infty (\Delta_{(m)} x_i) y_i\right| : \delta(\Phi, y) \le 1\right\} < \infty$$

$$(2.1)$$

Proof. It easy to verify that $\ell_M(\Delta_{(m)})$ is a linear space. Now we show that $\|\bullet\|_M^{(m)}$ is a norm on $\ell_M(\Delta_{(m)})$.

Let $x = \theta$, then obviously $||x||_M^{(m)} = 0$. Conversely assume $||x||_M^{(m)} = 0$. Then using (2.1), we have

$$\sup\left\{\left|\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) y_i\right| : \delta(\Phi, y) \le 1\right\} = 0$$

This implies $\left|\sum_{i=1}^{\infty} (\Delta_{(m)}x_i)y_i\right| = 0$ for all y such that $\delta(\Phi, y) \leq 1$. Now we consider $y = \{e_i\}$ if $\Phi(1) \leq 1$ otherwise we consider $y = \{\frac{e_i}{\Phi(1)}\}$ so that $\Delta_{(m)}x_i = 0$ for all $i \geq 1$. Taking i = 1, we have $\Delta_{(m)}x_1 = x_1 - x_{1-m} = 0$. This implies $x_1 = 0$, by taking $x_{1-m} = 0$. Proceeding in this way we have $x_i = 0$ for all $i \geq 1$. Thus $x = \theta$. It is easy to show $\|\alpha x\|_M^{(m)} = |\alpha| \|x\|_M^{(m)}$ and $\|x + y\|_M^{(m)} \leq \|x\|_M^{(m)} + \|y\|_M^{(m)}$. This completes the proof.

Proposition 2.4. $\ell_M(\Delta_{(m)})$ is a Banach space under the norm $\|\bullet\|_M^{(m)}$ as defined in (2.1).

Proof. Let (x^i) be any Cauchy sequence in $\ell_M(\Delta_{(m)})$. Then any $\varepsilon > 0$, there exists a positive integer n_0 such that $||x^i - x^j||_M^{(m)} < \varepsilon$, for all $i, j > n_0$. Using the definition of norm, we get

$$\sup\left\{\left|\sum_{k=1}^{\infty} \left(\Delta_{(m)}(x_k^i - x_k^j)\right) y_k\right| : \delta(\Phi, y) \le 1\right\} < \varepsilon, \text{ for all } i, j > n_0$$

It follows that

$$\left|\sum_{k=1}^{\infty} \left(\Delta_{(m)}(x_k^i - x_k^j)\right) y_k\right| < \varepsilon, \text{ for all } y \text{ with } \delta(\Phi, y) \le 1 \text{ and } i, j > n_o.$$

Now considering $y = \{e_i\}$ if $\Phi(1) \leq 1$ otherwise considering $y = \{\frac{e_i}{\Phi(1)}\}$ we have $(\Delta_{(m)}x_k^i)$ is a Cauchy sequence in C for all $k \geq 1$ and hence it is a convergent sequence in C for all $k \geq 1$. Let $\lim_{i \to \infty} \Delta_{(m)} x_k^i = z_k$, say for all $k \geq 1$. Taking k = 1, 2, ..., m, ... we can easily conclude that $\lim_{i \to \infty} x_k^i = x_k$, say exists for each $k \geq 1$. Now can have

$$\sup\left\{\left|\sum_{k=1}^{\infty} \left(\Delta_{(m)}(x_k^i - x_k)\right) y_k\right| : \delta(\Phi, y) \le 1\right\} < \varepsilon, \text{ for all } i \ge n_0 \text{ as } j \longrightarrow \infty.$$

It follows that $(x^i - x) \in \ell_M(\Delta_{(m)})$ and $\ell_M(\Delta_{(m)})$ is a linear space and hence $x = (x_k) \in \ell_M(\Delta_{(m)})$.

From the above proof we can easily conclude that $||x^i||_M^{(m)} \longrightarrow 0$ implies that $x_k^i \longrightarrow 0$ for each $i \ge 1$. Hence we have the following Proposition.

Proposition 2.5. $\ell_M(\Delta_{(m)})$ is a BK spaces under the norm as defined in (2.1).

Our next aim is to show that $\ell_M(\Delta_{(m)})$ can be made BK space under a different but equivalent norm.

Proposition 2.6. $\ell_M(\Delta_{(m)})$ is a normed linear space under the norm $\|\bullet\|_{(M)}^{(m)}$ defined by

$$\|x\|_{(M)}^{(m)} = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\Delta_{(m)}x_k|}{\rho}\right) \le 1\right\}$$
(2.2)

Proof. Clearly $||x||_M^{(m)} = 0$ if $x = \theta$. Next suppose $||x||_{(M)}^{(m)} = 0$. Then using (2.2) we have

$$\inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\Delta_{(m)}x_k|}{\rho}\right) \le 1\right\} = 0.$$

This implies that for a given $\varepsilon > 0$, there exists some ρ_{ε} $(0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\sup_{k} M\left(\frac{|\Delta_{(m)}x_k|}{\rho_{\varepsilon}}\right) \le 1$$

This implies that

$$M\left(\frac{|\Delta_{(m)}x_k|}{\rho_{\varepsilon}}\right) \le 1 \text{ for all } k \ge 1.$$

Thus

$$M\left(\frac{|\Delta_{(m)}x_k|}{\varepsilon}\right) \le M\left(\frac{|\Delta_{(m)}x_k|}{\rho_{\varepsilon}}\right) \le 1 \text{ for all } k \ge 1.$$

Suppose $\Delta_{(m)} x_{n_i} \neq 0$, for some *i*. Let $\varepsilon \longrightarrow 0$ then $\frac{|\Delta_{(m)} x_{n_i}|}{\varepsilon} \longrightarrow \infty$. It follows that

$$M\left(\frac{|\Delta_{(m)}x_{n_i}|}{\varepsilon}\right) \longrightarrow \infty \text{ as } \varepsilon \longrightarrow 0 \text{ for some } n_i \in N.$$

This is a contradiction. Therefore $\Delta_{(m)}x_k = 0$ for all $k \ge 1$. Considering $k = 1, 2, \ldots, m, \ldots$ it follows that $x_k = 0$ for all $k \ge 1$. Hence $x = \theta$.

Let $x = (x_k)$ and $y = (y_k)$ be any two elements of $\|\bullet\|_{(M)}^{\Delta^m}$. Then there exist $\rho_1, \rho_2 > 0$ such that

$$\sup_{k} M\left(\frac{|\Delta_{(m)}x_{k}|}{\rho_{1}}\right) \leq 1 \quad \text{and} \quad \sup_{k} M\left(\frac{|\Delta_{(m)}y_{k}|}{\rho_{2}}\right) \leq 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by convexity of M, we have

$$\sup_{k} M\left(\frac{|\Delta_{(m)}(x_k+y_k)|}{\rho}\right) \le \frac{\rho_1}{\rho_1+\rho_2} \sup_{k} M\left(\frac{|\Delta_{(m)}x_k|}{\rho_1}\right) + \frac{\rho_2}{\rho_1+\rho_2} \sup_{k} M\left(\frac{|\Delta_{(m)}y_k|}{\rho_2}\right) \le 1$$

Hence we have

$$\|x+y\|_{(M)}^{(m)} = \inf\left\{\rho > 0 : \sup_{k} M\left(\frac{|\Delta_{(m)}(x_{k}+y_{k})|}{\rho}\right) \le 1\right\}$$
$$\le \inf\left\{\rho_{1} > 0 : \sup_{k} M\left(\frac{|\Delta_{(m)}x_{k}|}{\rho_{1}}\right) \le 1\right\} + \inf\left\{\rho_{2} > 0 : \sup_{k} M\left(\frac{|\Delta_{(m)}y_{k}|}{\rho_{2}}\right) \le 1\right\}$$

This implies that $||x + y||_{(M)}^{(m)} \le ||x||_{(M)}^{(m)} + ||y||_{(M)}^{(m)}$. Finally, let ν be any scalar. Then

$$\begin{aligned} \|\nu x\|_{(M)}^{(m)} &= \inf\left\{\rho > 0 : \sup_{k} M\left(\frac{|\Delta_{(m)}\nu x_{k}|}{\rho}\right) \le 1\right\} \\ &= \inf\left\{r|\nu| > 0 : \sup_{k} M\left(\frac{|\Delta_{(m)}x_{k}|}{r}\right) \le 1\right\} \quad \text{where} \ r = \frac{\rho}{|\nu|} \\ &= |\nu| \|x\|_{(M)}^{(m)}. \quad \text{This completes the proof.} \end{aligned}$$

Proposition 2.7. For $x \in \ell_M(\Delta_{(m)})$, we have

$$\sum_{k=1}^{\infty} M\left(\frac{|\Delta_{(m)}x_k|}{\|x\|_{(M)}^m}\right) \le 1.$$

Proof. Proof is immediate from (2.2).

Now we show that the norms $\|\bullet\|_{(M)}^{(m)}$ and $\|\bullet\|_M^{(m)}$ are equivalent. To prove this some other results are required. First we prove those results.

Proposition 2.8. Let $x \in \ell_M(\Delta_{(m)})$ with $||x||_M^{(m)} \leq 1$. Then $\{p(|\Delta_{(m)}x_n|)\} \in \tilde{\ell}_{\Phi} \text{ and } \delta(\Phi, \{p(|\Delta_{(m)}x_n|)\}) \leq 1.$

Proof. For any $z \in \tilde{\ell}_{\Phi}$, we may write

$$\left|\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) z_i\right| \le \|x\|_M^{(m)} \quad \text{if } \delta(\Phi, z) \le 1$$

$$= \delta(\Phi, z) \|x\|_M^{(m)} \quad \text{if } \delta(\Phi, z) > 1$$

$$(2.3)$$

Let now $x \in \ell_M(\Delta_{(m)})$ with $||x||_M^{(m)} \leq 1$. Also $x^{(n)} = (x_1, x_2, \dots, x_n, 0, 0, \dots) \in \ell_M(\Delta_{(m)})$ for $n \geq 1$. We observe that

$$||x||_M^{(m)} \ge \left|\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) y_i^{(n)}\right| = \left|\sum_{i=1}^{\infty} (\Delta_{(m)} x_i^{(n)}) y_i\right|,$$

 $n \geq 1$ for every $y \in \tilde{\ell}_{\Phi}$ with $\delta(\Phi, y) \leq 1$ and thus $||x^{(n)}||_M^{(m)} \leq ||x||_M^{(m)} \leq 1$. Since

$$\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\Delta_{(m)}x_{i}\right|\right)\right) = \sum_{i=1}^{\infty} \Phi\left(p\left(\left|\Delta_{(m)}x_{i}^{(n)}\right|\right)\right)$$

We find that $\left\{ p\left(\left| \Delta_{(m)} x_i^{(n)} \right| \right) \right\} \in \tilde{\ell}_{\Phi}$ for each $n \ge 1$. Let $l \ge 1$ be an integer such that

$$\sum_{i=1}^{l} \Phi\left(p\left(\left|\Delta_{(m)} x_{i}\right|\right)\right) > 1. \quad \text{Then} \quad \sum_{i=1}^{\infty} \Phi\left(p\left(\left|\Delta_{(m)} x_{i}^{(l)}\right|\right)\right) > 1$$

Using (1.2), we have

$$\Phi\left(p\left(\left|\Delta_{(m)}x_{i}^{(l)}\right|\right)\right) < M\left(\left|\Delta_{(m)}x_{i}^{(l)}\right|\right) + \Phi\left(p\left(\left|\Delta_{(m)}x_{i}^{(l)}\right|\right)\right)$$
$$= \left|\Delta_{(m)}x_{i}^{l}\right|p\left(\left|\Delta_{(m)}x_{i}^{l}\right|\right) \text{ for all } i, l \ge 1.$$

So by (2.3), we get

$$\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\Delta_{(m)} x_{i}^{(l)}\right|\right)\right) < \left\|x^{(l)}\right\|_{M}^{(m)} \delta\left(\Phi, \left\{p\left(\left|\Delta_{(m)} x_{i}^{l}\right|\right)\right\}\right)$$

This implies that $||x^{(l)}||_M^{(m)} > 1$, a contradiction. This contradiction implies that

$$\sum_{i=1}^{l} \Phi\left(p\left(\left|\Delta_{(m)} x_{i}\right|\right)\right) \leq 1 \quad \text{for all } l \geq 1.$$

Hence

$$\{p\left(\left|\Delta_{(m)}x_{n}\right|\right)\}\in\tilde{\ell}_{\Phi} \text{ and } \delta\left(\Phi,\left\{p\left(\left|\Delta_{(m)}x_{n}\right|\right)\right\}\right)\leq1.$$

Proposition 2.9. Let $x \in \ell_M(\Delta_{(m)})$ with $||x||_M^{(m)} \leq 1$. Then $x \in \tilde{\ell}_M(\Delta_{(m)})$ and $\delta(M, \Delta_{(m)}, x) \leq ||x||_M^{(m)}$ **Proof.** Let $y = \{p(|(\Delta_{(m)}x_i|)/sgn(\Delta_{(m)}x_i)\}$. Then the Proposition 2.8, $y \in \tilde{\ell}_{\Phi}$ and $\delta(\Phi, y) \leq 1$. By (1.2), we get

$$\sum_{i=1}^{\infty} M\left(\left|\Delta_{(m)} x_i\right|\right) \le \sum_{i=1}^{\infty} M\left(\left|\Delta_{(m)} x_i\right|\right) + \sum_{i=1}^{\infty} \Phi\left(p\left(\left|\Delta_{(m)} x_i\right|\right)\right)$$
$$= \sum_{i=1}^{\infty} \left|\Delta_{(m)} x_i\right| p\left(\left|\Delta_{(m)} x_i\right|\right) = \left|\sum_{i=1}^{\infty} (\Delta_{(m)} x_i) y_i\right| \le \|x\|_M^{(m)}$$

This implies that $\delta(M, \Delta_{(m)}, x) \leq ||x||_M^{(m)}$.

Proposition 2.10. For $x \in \ell_M(\Delta_{(m)})$, we have

$$\sum_{k=1}^{\infty} M\left(\frac{\left|\Delta_{(m)} x_k\right|}{\|x\|_M^{(m)}}\right) \le 1.$$

Proof. Proof is immediate from Proposition 2.9.

Theorem 2.11. For $x \in \ell_M(\Delta_{(m)})$,

$$\|x\|_{(M)}^{(m)} \le \|x\|_M^{(m)} \le 2 \|x\|_{(M)}^{(m)}.$$

Proof. We have

$$\|x\|_{(M)}^{(m)} = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|\Delta_{(m)}x_k|}{\rho}\right) \le 1\right\}.$$

Then using Proposition 2.10, we get $\|x\|_{(M)}^{(m)} \leq \|x\|_M^{(m)}$. Let us observe that if $x \in \ell_M(\Delta_{(m)})$ with $\|x\|_{(M)}^{(m)} \leq 1$. Then $x \in \tilde{\ell}_M(\Delta_{(m)})$ and $\delta(M, \Delta_{(m)}, x) \leq 1$. Indeed,

$$\frac{1}{\|x\|_{(M)}^{(m)}} \sum_{i=1}^{\infty} M\left(\left|\Delta_{(m)} x_i\right|\right) \le \sum_{i=1}^{\infty} M\left(\frac{|\Delta_{(m)} x_i|}{\|x\|_{(M)}^{(m)}}\right) \le 1,$$

by Proposition 2.7. Thus

$$\frac{1}{\|x\|_{(M)}^{(m)}} \in \tilde{\ell}_M(\Delta_{(m)}) \quad \text{with} \quad \delta\left(M, \frac{x}{\|x\|_{(M)}^{(m)}}\right) \le 1.$$

We further observe that for an arbitrary $z \in \tilde{\ell}_M(\Delta_{(m)})$,

$$\|z\|_M^{(m)} = \sup\left\{\left|\sum_{i=1}^\infty \left(\Delta_{(m)} z_i\right) y_i\right| : \delta(\Phi, y) \le 1\right\} < 1 + \delta\left(M, \Delta_{(m)}, z\right), \quad \text{using (1.1)}.$$

Hence taking $z = \frac{x}{\|x\|_{(M)}^{(m)}}$, we have

$$\left\|\frac{x}{\|x\|_{(M)}^{(m)}}\right\|_{M}^{(m)} \le 1 + \sum_{i=1}^{\infty} M\left(\frac{|x|}{\|x\|_{(M)}^{\Delta^{(m)}}}\right) \le 2, \text{ by Proposition 2.7.}$$

Thus $||x||_{M}^{(m)} \leq 2 ||x||_{(M)}^{(m)}$. This completes the proof. Hence we have the following Corollary.

Corollary 2.12. $\ell_M(\Delta_{(m)})$ is a BK space under both the norms $||x||_M^{(m)}$ and $||x||_{(M)}^{(m)}$.

Proposition 2.13. For any Orlicz function M, $\ell_M(\Delta_{(m)}) = \ell'_M(\Delta_{(m)})$, where

$$\ell'_{M}(\Delta_{(m)}) = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{\left|\Delta_{(m)}x_{k}\right|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

Proof. Proof follows from Proposition 2.10.

In view of above Proposition we give the following definition:

Definition 2.14. For any Orlicz function M,

$$h_M(\Delta_{(m)}) = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{\left|\Delta_{(m)} x_k\right|}{\rho}\right) < \infty, \text{ for each } \rho > 0 \right\}.$$

Clearly $h_M(\Delta_{(m)})$ is a subspace of $\ell_M(\Delta_{(m)})$.

Henceforth we shall write $\|\bullet\|$ instead of $\|\bullet\|_{(M)}^{(m)}$ provided it does not lead to any confusion. The topology of $h_M(\Delta_{(m)})$ is the one it inherits from $\|\bullet\|$.

Proposition 2.15. Let M be an Orlicz function. Then $(h_M(\Delta_{(m)}), \|\bullet\|)$ is an AK-BK space.

31

Proof. First we show that $h_M(\Delta_{(m)})$ is an AK-space. Let $x \in h_M(\Delta_{(m)})$. Then for each ε , $0 < \varepsilon < 1$, we can find an n_0 such that

$$\sum_{n \ge n_0} M\left(\frac{\left|\Delta_{(m)} x_i\right|}{\varepsilon}\right) \le 1$$

Hence for $n \ge n_0$,

$$\|x - x^{(n)}\| = \inf\left\{\rho > 0: \sum_{i \ge n+1} M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) \le 1\right\}$$
$$\le \inf\left\{\rho > 0: \sum_{i \ge n} M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) \le 1\right\}\varepsilon$$

Thus we can conclude that $h_M(\Delta_{(m)})$ is an AK space.

Next to show $h_M(\Delta_{(m)})$ is an BK-space it is enough to show $h_M(\Delta_{(m)})$ is a closed subspace of $\ell_M(\Delta_{(m)})$. For this let $\{x^n\}$ be a sequence in $h_M(\Delta_{(m)})$ such that $||x^n - x|| \longrightarrow 0$, where $x \in \ell_M(\Delta_{(m)})$. To complete the proof we need to show that $x \in h_M(\Delta_{(m)})$, i.e.,

$$\sum_{i\geq 1} M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) < \infty, \text{ for every } \rho > 0.$$

To $\rho>0$ there corresponds an l such that $\|x^l-x\|\leq \frac{\rho}{2}$. Then using the convexity of M,

$$\sum_{i\geq 1} M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) = \sum_{i\geq 1} M\left(\frac{2\left|\Delta_{(m)}x_i^l\right| - 2\left(\left|\Delta_{(m)}x_i^l\right| - \left|\Delta_{(m)}x_i^l\right|\right)}{2\rho}\right)$$
$$\leq \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2|\Delta_{(m)}x_i^l|}{\rho}\right) + \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2|\Delta_{(m)}(x_i^l - x_i)|}{\rho}\right)$$
$$\leq \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2|\Delta_{(m)}x_i^l|}{\rho}\right) + \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2|\Delta_{(m)}(x_i^l - x_i)|}{\|x^l - x\|}\right)$$

Thus $x \in h_M(\Delta_{(m)})$ and consequently $h_M(\Delta_{(m)})$ is a BK space.

Proposition 2.16. Let M be an Orlicz function. If M satisfies the Δ_2 condition at 0, then $\ell_M(\Delta_{(m)})$ is an AK space.

Proof. In fact we shall show that if M satisfies the Δ_2 -condition at 0, then $\ell_M(\Delta_{(m)}) = h_M(\Delta_{(m)})$ and the results follows. Therefore it is enough to show that $\ell_M(\Delta_{(m)}) \subset h_M(\Delta_{(m)})$. Let $x \in \ell_M(\Delta_{(m)})$, then $\rho > 0$,

$$\sum_{i\geq 1} M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) < \infty$$

This implies that

$$M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) \longrightarrow 0, \text{ as } i \longrightarrow \infty$$
 (2.4)

Choose an arbitrary l > 0. If $\rho \leq l$, then

$$\sum_{i\geq 1} M\left(\frac{|\Delta_{(m)}x_i|}{l}\right) < \infty$$

Let now $l < \rho$ and put $k = \frac{\rho}{l}$. Since M satisfies the Δ_2 -condition at 0, there exist $R = R_k > 0$ and $r = r_k > 0$ with $M(kx) \leq RM(x)$ for all $x \in (0, r]$. By (2.4) there exists a positive integer n_1 such that

$$M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) < \frac{1}{2}rp\left(\frac{r}{2}\right) \quad \text{for all} \ i \ge n_1$$

We claim that $\frac{|\Delta_{(m)}x_i|}{\rho} \leq r$ for all $i \geq n_1$. Otherwise, we can find $j > n_1$ with $\frac{|\Delta_{(m)}x_j|}{\rho} > r$, and thus

$$M\left(\frac{|\Delta_{(m)}x_j|}{\rho}\right) \ge \int_{\frac{r}{2}}^{|\Delta_{(m)}x_j|} p(t)dt > \frac{1}{2}rp\left(\frac{r}{2}\right), \quad \text{a contadiction}.$$

Hence our claim is true. Then we can find that

$$\sum_{i \ge n_1} M\left(\frac{|\Delta_{(m)}x_i|}{l}\right) \le \sum_{i \ge n_1} M\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right)$$

and hence

$$\sum_{i\geq 1} M\left(\frac{|\Delta_{(m)}x_i|}{l}\right) < \infty, \quad \text{for every} \ l > 0$$

This completes the proof.

Proposition 2.17. Let M_1 and M_2 be two Orlicz functions. If M_1 and M_2 are equivalent then $\ell_{M_1}(\Delta_{(m)}) = \ell_{M_2}(\Delta_{(m)})$ and the identity map

$$I: \left(\ell_{M_1}(\Delta_{(m)}), \|\bullet\|_{M_1}^{(m)}\right) \longrightarrow \left(\ell_{M_2}(\Delta_{(m)}), \|\bullet\|_{M_2}^{(m)}\right)$$

is a topological isomorphism.

Proof. Let M_1 and M_2 are equivalent and so satisfy (1.3). Suppose $x \in \ell_{M_2}(\Delta_{(m)})$, then

$$\sum_{i=1}^{\infty} M_2\left(\frac{|\Delta_{(m)}x_i|}{\rho}\right) < \infty \quad \text{for some } \rho > 0.$$

Hence for some $l \geq 1$,

$$\frac{|\Delta_{(m)}x_i|}{l\rho} \le x_0, \quad \text{for all} \ i \ge 1.$$

Therefore

$$\sum_{i=1}^{\infty} M_1\left(\frac{\alpha |\Delta_{(m)} x_i|}{l\rho}\right) \le \sum_{i=1}^{\infty} M_2\left(\frac{|\Delta_{(m)} x_i|}{\rho}\right) < \infty.$$

Thus $\ell_{M_2}(\Delta_{(m)}) \subset \ell_{M_1}(\Delta_{(m)})$. Similarly $\ell_{M_1}(\Delta_{(m)}) \subset \ell_{M_2}(\Delta_{(m)})$. Let us abbreviate here $\|\bullet\|_{M_1}^{(m)}$ and $\|\bullet\|_{M_2}^{(m)}$ respectively. For $x \in \ell_{M_2}(\Delta_{(m)})$,

$$\sum_{i=1}^{\infty} M_2\left(\frac{|\Delta_{(m)}x_i|}{\|x\|_2}\right) \le 1.$$

One can find $\mu > 1$ with

$$\left(\frac{x_0}{2}\right)\mu p_2\left(\frac{x_0}{2}\right) \ge 1,$$

where p_2 is the kernel associated with M_2 . Hence

$$M_2\left(\frac{|\Delta_{(m)}x_i|}{\|x\|_2}\right) \le \left(\frac{x_0}{2}\right)\mu p_2\left(\frac{x_0}{2}\right) \text{ for all } i \ge 1.$$

This implies that

$$\frac{|\Delta_{(m)}x_i|}{\mu \|x\|_2} \le x_0 \quad \text{for all} \quad i \ge 1.$$

Therefore

$$\sum_{i=1}^{\infty} M_1\left(\frac{\alpha |\Delta_{(m)} x_i|}{\mu \|x\|_2}\right) < 1$$

and so

$$\|x\|_1 \le \left(\frac{\mu}{\alpha}\right) \|x\|_2.$$

Similarly we can show $||x||_2 \leq \beta \gamma ||x||_1$ by choosing γ with $\gamma \beta > 1$ such that

$$\gamma \beta \left(\frac{x_0}{2}\right) p_1\left(\frac{x_0}{2}\right) \ge 1.$$

Thus $\alpha \mu^{-1} \|x\|_1 \leq \|x\|_2 \leq \beta \gamma \|x\|_1$ which establishes the topological isomorphism of I.

Proposition 2.18. Let M be an Orlicz function and p the corresponding kernel. If p(x) = 0 for all x in $[0, x_0]$ where x_0 is some positive number, then $\ell_M(\Delta_{(m)})$ is topologically isomorphic to $\ell_{\infty}(\Delta_{(m)})$ and $h_M(\Delta_{(m)})$ is topologically isomorphic to $c_0(\Delta_{(m)})$, where

$$\ell_{\infty}(\Delta_{(m)}) = \left\{ x = (x_k) : \sup_{k} \left| \Delta_{(m)} x_k \right| < \infty \right\}$$

and

$$c_0(\Delta_{(m)}) = \left\{ x = (x_k) : \lim_{k \to \infty} (\Delta_{(m)} x_k) = 0 \right\}.$$

Proof. Let p(x) = 0 for all x in $[0, x_0]$. If $y \in \ell_{\infty}(\Delta_{(m)})$, then we can find a $\rho > 0$ such that $\frac{|\Delta_{(m)}y_i|}{\rho} \le x_0$ for $i \ge 1$ and so $\sum_{i=1}^{\infty} M\left(\frac{|\Delta_{(m)}y_i|}{\rho}\right) < \infty$, giving thus $y \in \ell_M(\Delta_{(m)})$. On the other hand let $y \in \ell_M(\Delta_{(m)})$, then $\sum_{i=1}^{\infty} M\left(\frac{|\Delta_{(m)}y_i|}{\rho}\right) < \infty$, for some $\rho > 0$ and so $|\Delta_{(m)}y_i| < \infty$ for all $i \ge 1$, giving thus $y \in \ell_{\infty}(\Delta_{(m)})$. Hence $y \in \ell_{\infty}(\Delta_{(m)})$ if and only if $y \in \ell_M(\Delta_{(m)})$. We can easily find an x_1 with $M(x_1) \ge 1$. Let $y \in \ell_{\infty}(\Delta_{(m)})$ and $\alpha = ||y||_{\infty} = \sup_i \left(|\Delta^{(m)}\lambda_iy_i|\right) > 0$. (it is easy to show that $||y||_{\infty} = \sup_i \left(|\Delta_{(m)}y_i|\right)$ is a norm on $\ell_{\infty}(\Delta_{(m)})$). For every ε , $0 < \varepsilon < \alpha$, we can determine y_j with $|\Delta_{(m)}y_j| > \alpha - \varepsilon$ and so

$$\sum_{i=1}^{\infty} M\left(\frac{|\Delta_{(m)}y_i|x_i}{\alpha}\right) \ge M\left(\frac{(\alpha-\varepsilon)x_1}{\alpha}\right).$$

As M is continuous, we find

$$\sum_{i=1}^{\infty} M\left(\frac{|\Delta_{(m)}y_i|x_1}{\alpha}\right) \ge 1,$$

and so $||y||_{\infty} \leq x_1 ||y||$, for otherwise

$$\sum_{i=1}^{\infty} M\left(\frac{|\Delta_{(m)}y_i|}{\|y\|}\right) > 1, \quad \text{a contradiction by Proposition 2.7.}$$

Again

$$\sum_{i=1}^{\infty} M\left(\frac{|\Delta_{(m)}y_i|x_0}{\alpha}\right) = 0$$

and it follows that

$$\|y\| \le \left(\frac{1}{x_0}\right) \|y\|_{\infty}.$$

Thus the identity map

$$I: \left(\ell_M(\Delta_{(m)}), \|\bullet\|\right) \longrightarrow \left(\ell_\infty(\Delta_{(m)}), \|\bullet\|\right)$$

is a topological isomorphism.

For the last part, let $y \in h_M(\Delta_{(m)})$, then for any $\varepsilon > 0$, $|\Delta_{(m)}y_i| \le \varepsilon x_1$, for all sufficiently large, where x_1 is some positive number with $p(x_1) > 0$. Hence $y \in c_0(\Delta_{(m)})$. Next let $y \in c_0(\Delta_{(m)})$. Then for any $\rho > 0$, $\frac{|\Delta_{(m)}y_i|}{\rho} < \frac{1}{2}x_0$ for all sufficiently large *i*. Thus $M\left(\frac{|\Delta_{(m)}y_i|}{\rho}\right) < \infty$ for all $\rho > 0$ and $y \in h_M(\Delta_{(m)})$. Hence $h_M(\Delta_{(m)}) = c_0(\Delta_{(m)})$ and we are done.

Proposition 2.19. Let M be an Orlicz function and p the corresponding kernel. If p(x) = 0 for all x in $[0, x_0]$ where x_0 is some positive number, then $\ell_M(\Delta_{(m)})$ is topologically isomorphic to ℓ_{∞} and $h_M(\Delta_{(m)})$ is topologically isomorphic to c_0 .

Proof. For $Z = \ell_{\infty}$ and c_0 , $Z(\Delta_{(m)})$ and Z are equivalent as topological spaces, since $T : Z(\Delta_{(m)}) \longrightarrow Z$, defined by $Tx = y = (\Delta_{(m)}x_k)$, is a linear homeomorphism. This completes the proof.

References

- H. Dutta, On Orlicz Difference Sequence Spaces, SDU Journal of Science, 5 no. 1 (2010), 119-136.
- [2] H. Dutta, On Some Difference Sequence Spaces, Pacific Journal of Science and Technology, 10 no.2 (2009), 243-247.
- [3] Y. Gribanov, On the theory of ℓ_M -spaces(Russian), Uc. Zap. Kazansk un-ta, **117**(1957), 62-65.
- [4] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24 no.2 (1981), 169-176.
- [5] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York, 1981.
- [6] M. A. Krasnoselskii and Y. B. Rutitsky, Convex functions and Orlicz spaces, Groningen, Netherlands, 1961.
- [7] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [8] Mursaleen, A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, *Demonstratio Mathematica*, XXXII no.1 (1999), 145-150.