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Abstract

In this article a description of the Orlicz difference sequence space
`M (∆(m)) generated by Orlicz function M and a new generalized dif-
ference operator ∆(m) is presented. We investigate some topological
structures relevant to this space. It is also shown that under certain
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condition `M (∆(m)) is topologically isomorphic to `∞. Furthermore we
define a subspace hM (∆(m)) of `M (∆(m)) and it is shown that under
certain condition hM (∆(m)) is topologically isomorphic to c0.

Keywords and Phrases: Difference sequence space, Orlicz function, AK-BK
space, Topological isomorphism.

1. Introduction

Throughout this section w, `∞, `1, c and c0 denote the space of all, bounded,
absolutely summable, convergent and null sequences x = (xk) with complex
terms respectively. The notion of difference sequence space was introduced
by Kizmaz [4], who studied the difference sequence spaces `∞(∆), c(∆) and
c0(∆).

For Z a given sequence space we have Z(∆) = {x = (xk) ∈ w : (∆xk) ∈ Z},
where ∆x = (∆xk) = (∆xk − ∆xk+1). For Z = `∞, c and c0, we have the
spaces `∞(∆), c(∆) and c0(∆) introduced and studied by Kizmaz [4].

Let m be a non-negative integer. Then Dutta [2] defined the following
sequence spaces for Z a given sequence space Z(∆(m)) = {x = (xk) ∈ w :
(∆(m)xk) ∈ Z}, where ∆(m)x = (∆(m)xk) = (xk − xk−m) and ∆0xk = xk for
all k ∈ N . For Z = `∞, c and c0, we have the spaces `∞(∆(m)), c(∆(m)) and
c0(∆(m)) respectively.

Taking m = 1, we get the spaces Z(∆(1)). It is obvious that (xk) ∈ Z(∆(1))
if and only if (xk) ∈ Z(∆).

An Orlicz function is a function M : [0,∞) −→ [0,∞) which is continuous,
non-decreasing and convex withM(0) = 0, M(x) > 0 , for x > 0 andM(x) −→
∞, as x −→∞.

An Orlicz function M can always be represented in the following integral
form

M(x) =

x∫
0

p(t)dt

where p, known as kernel of M , is right differentiable for t ≥ 0, p(0) = 0,
p(t) > 0 for t > 0, p is non-decreasing, and p(t) −→∞ as t −→∞.

Consider the kernel p(t) associated with the Orlicz function M(t), and let
q(s) = sup{t : p(t) ≤ s}. Then q possesses the same properties as the function
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p. Suppose now

Φ(x) =

x∫
0

q(s)ds

Then Φ is an Orlicz function. The functions M and Φ are called mutually
complementary Orlicz functions.

Now we state the following well known results.
Let M and F are mutually complementary Orlicz functions. Then we have

(Young’s inequality)
(i) For x, y ≥ 0, xy ≤M(x) + Φ(y) (1.1)
We also have
(ii) For x ≥ 0, xp(x) = M(x) + Φ(p(x)) (1.2)
(iii) M(λx) < λM(x) for all x ≥ 0 and λ with 0 < λ < 1.

An Orlicz function M is said to satisfy the ∆2−condition for all small x
or at 0 if for each k > 0 there existsRk > 0 and xk > 0 such that M(kx) ≤
RkM(x) for all x ∈ (0, xk].

Moreover an Orlicz function M is said to satisfy the ∆2−condition if and
only if

lim
x−→0

sup
M(2x)

M(x)
<∞

Two Orlicz functions M1 and M2 are said to be equivalent if there are
positive constatns α, β and x0 such that

M1(αx) ≤M2(x) ≤M1(βx) for all x with 0 ≤ x ≤ x0. (1.3)

Lindenstrauss and Tzafriri [7] used the Orlicz function and introduced the
sequence space `M as follows:

`M =

{
(xk) ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
.

Let m be a non-negative integer. Then we define the following spaces.

Definition 1.1. Let M be any Orlicz functions. Then we define

˜̀
M(∆(m)) =

{
x = (xk) ∈ w : δ(M,∆(m), x) =

∞∑
k=1

M
(
|∆(m)xk|

)
<∞

}
,

where ∆(m)xk = xk − xk−m for all k ≥ 1.
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If m = 0, then we write ˜̀
M(∆(m)) = ˜̀

M . If m = 1, the space reduced to
the space studied by Dutta [1].

Definition 1.2. Let M and Φ be mutually complementary functions. Then
we define

`M(∆(m)) =

{
x = (xk) ∈ w :

∞∑
k=1

(
∆(m)xk

)
yk converges for all y ∈ ˜̀

Φ

}
and we call this sequence space as Orlicz ∆(m)-difference sequence space.

If m = 0, then we write `M(∆(m)) = `M . If m = 1, the space reduced to
the space studied by Dutta [1].

2. Main Results

The main aim of this section is to describe the space `M(∆(m)) and investigate
some properties of this space as well as the subspace hM(∆(m)) of `M(∆(m)).

Proposition 2.1. For any Orlicz function M , ˜̀
M(∆(m)) ⊂ `M(∆(m)).

Proof. Let x ∈ ˜̀
M(∆(m)). Then

∞∑
k=1

M
(
|∆(m)xk|

)
<∞. Now using (1.1), we

have∣∣∣∣∣
∞∑
k=1

(∆(m)xk)yk

∣∣∣∣∣ ≤
∞∑
k=1

∣∣(∆(m)xk)yk
∣∣ ≤ ∞∑

k=1

M
(
|∆(m)xk|

)
+
∞∑
k=1

Φ(|yk|) <∞,

for every y = (yk) with y ∈ ˜̀
Φ. Thus x ∈ `M(∆(m)).

Proposition 2.2. For each x ∈ `M(∆(m)),

sup

{∣∣∣∣∣
∞∑
i=1

(∆(m)xi)yi

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
<∞

Proof. Suppose the required result is not true. Then for each n ≥ 1, there
exists yn with δ(Φ, yn) ≤ 1 such that∣∣∣∣∣

∞∑
i=1

(∆(m)xi)y
n
i

∣∣∣∣∣ > 2n.
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Without loss of generality we may assume that (∆(m)xi), y
n ≥ 0. Now, we can

define a sequence z = {zi}, where

zi =
∞∑
n=1

1

2n
yni .

By the convexity of Φ,

Φ

(
l∑

n=1

1

2n
yni

)
≤ 1

2

[
Φ(y1

i ) + Φ

(
y2
i

2
+ · · ·+ yli

2l−1

)]
≤ · · · · · · ≤

l∑
n=1

1

2n
Φ(yni )

and hence, using the continuity of Φ, we have

δ(Φ, z) =
∞∑
i=1

Φ(zi) ≤
∞∑
i=1

∞∑
n=1

1

2n
Φ(yni ) ≤

∞∑
n=1

1

2n
= 1.

But for every l ≥ 1,

∞∑
i=1

(∆(m)xi)zi ≥
∞∑
i=1

(∆(m)xi)
l∑

n=1

1

2n
yni =

l∑
n=1

∞∑
i=1

(∆(m)xi)
yni
2n
≥ l.

Hence
∞∑
i=1

(∆(m)xi)zi diverges and this implies that x 6∈ `M(∆(m)). This con-

tradiction leads us to the required result.
The preceding result encourages us to introduce the following norm ‖•‖(m)

M

on `M(∆(m)).

Proposition 2.3. `M(∆m,Λ) is a normed linear space under the norm ‖•‖∆m

M

defined by

‖x‖(m)
M = sup

{∣∣∣∣∣
∞∑
i=1

(∆(m)xi)yi

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
<∞ (2.1)

Proof. It easy to verify that `M(∆(m)) is a linear space. Now we show that

‖•‖(m)
M is a norm on `M(∆(m)).

Let x = θ, then obviously ‖x‖(m)
M = 0. Conversely assume ‖x‖(m)

M = 0.
Then using (2.1), we have

sup

{∣∣∣∣∣
∞∑
i=1

(∆(m)xi)yi

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
= 0
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This implies

∣∣∣∣ ∞∑
i=1

(∆(m)xi)yi

∣∣∣∣ = 0 for all y such that δ(Φ, y) ≤ 1. Now we

consider y = {ei} if Φ(1) ≤ 1 otherwise we consider y = { ei
Φ(1)
} so that

∆(m)xi = 0 for all i ≥ 1. Taking i = 1, we have ∆(m)x1 = x1 − x1−m = 0.
This implies x1 = 0, by taking x1−m = 0. Proceeding in this way we have

xi = 0 for all i ≥ 1. Thus x = θ. It is easy to show ‖αx‖(m)
M = |α| ‖x‖(m)

M and

‖x+ y‖(m)
M ≤ ‖x‖(m)

M + ‖y‖(m)
M . This completes the proof.

Proposition 2.4. `M(∆(m)) is a Banach space under the norm ‖•‖(m)
M as

defined in (2.1).

Proof. Let (xi) be any Cauchy sequence in `M(∆(m)). Then any ε > 0, there

exists a positive integer n0 such that ‖xi − xj‖(m)
M < ε, for all i, j > n0. Using

the definition of norm, we get

sup

{∣∣∣∣∣
∞∑
k=1

(
∆(m)(x

i
k − x

j
k)
)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ε, for all i, j > n0.

It follows that∣∣∣∣∣
∞∑
k=1

(
∆(m)(x

i
k − x

j
k)
)
yk

∣∣∣∣∣ < ε, for all y with δ(Φ, y) ≤ 1 and i, j > no.

Now considering y = {ei} if Φ(1) ≤ 1 otherwise considering y = { ei
Φ(1)
} we have

(∆(m)x
i
k) is a Cauchy sequence in C for all k ≥ 1 and hence it is a convergent

sequence in C for all k ≥ 1. Let lim
i−→∞

∆(m)x
i
k = zk, say for all k ≥ 1. Taking

k = 1, 2, ...,m, . . . we can easily conclude that lim
i−→∞

xik = xk, say exists for

each k ≥ 1. Now can have

sup

{∣∣∣∣∣
∞∑
k=1

(
∆(m)(x

i
k − xk)

)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ε, for all i ≥ n0 as j −→∞.

It follows that (xi − x) ∈ `M(∆(m)) and `M(∆(m)) is a linear space and hence
x = (xk) ∈ `M(∆(m)).

From the above proof we can easily conclude that ‖xi‖(m)
M −→ 0 implies

that xik −→ 0 for each i ≥ 1. Hence we have the following Proposition.

Proposition 2.5. `M(∆(m)) is a BK spaces under the norm as defined in
(2.1).
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Our next aim is to show that `M(∆(m)) can be made BK space under a
different but equivalent norm.

Proposition 2.6. `M(∆(m)) is a normed linear space under the norm ‖•‖(m)
(M)

defined by

‖x‖(m)
(M) = inf

{
ρ > 0 :

∞∑
k=1

M

(
|∆(m)xk|

ρ

)
≤ 1

}
(2.2)

Proof. Clearly ‖x‖(m)
M = 0 if x = θ. Next suppose ‖x‖(m)

(M) = 0. Then using

(2.2) we have

inf

{
ρ > 0 :

∞∑
k=1

M

(
|∆(m)xk|

ρ

)
≤ 1

}
= 0.

This implies that for a given ε > 0, there exists some ρε (0 < ρε < ε) such
that

sup
k
M

(
|∆(m)xk|

ρε

)
≤ 1

This implies that

M

(
|∆(m)xk|

ρε

)
≤ 1 for all k ≥ 1.

Thus

M

(
|∆(m)xk|

ε

)
≤M

(
|∆(m)xk|

ρε

)
≤ 1 for all k ≥ 1.

Suppose ∆(m)xni
6= 0, for some i. Let ε −→ 0 then

|∆(m)xni |
ε

−→∞. It follows
that

M

(
|∆(m)xni

|
ε

)
−→∞ as ε −→ 0 for some ni ∈ N.

This is a contradiction. Therefore ∆(m)xk = 0 for all k ≥ 1. Considering
k = 1, 2, . . . ,m, . . . it follows that xk = 0 for all k ≥ 1. Hence x = θ.

Let x = (xk) and y = (yk) be any two elements of ‖•‖∆m

(M). Then there exist
ρ1, ρ2 > 0 such that

sup
k
M

(
|∆(m)xk|

ρ1

)
≤ 1 and sup

k
M

(
|∆(m)yk|

ρ2

)
≤ 1.
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Let ρ = ρ1 + ρ2. Then by convexity of M , we have

sup
k
M

( |∆(m)(xk + yk)|
ρ

)
≤ ρ1

ρ1 + ρ2
sup
k
M

( |∆(m)xk|
ρ1

)
+

ρ2

ρ1 + ρ2
sup
k
M

( |∆(m)yk|
ρ2

)
≤ 1.

Hence we have

‖x+ y‖(m)
(M) = inf

{
ρ > 0 : sup

k
M

(
|∆(m)(xk + yk)|

ρ

)
≤ 1

}

≤ inf

{
ρ1 > 0 : sup

k
M

(
|∆(m)xk|

ρ1

)
≤ 1

}
+inf

{
ρ2 > 0 : sup

k
M

(
|∆(m)yk|

ρ2

)
≤ 1

}
This implies that ‖x+ y‖(m)

(M) ≤ ‖x‖
(m)
(M) + ‖y‖(m)

(M). Finally,let ν be any scalar.
Then

‖νx‖(m)
(M) = inf

{
ρ > 0 : sup

k
M

(
|∆(m)νxk|

ρ

)
≤ 1

}
= inf

{
r|ν| > 0 : sup

k
M

(
|∆(m)xk|

r

)
≤ 1

}
where r =

ρ

|ν|

= |ν| ‖x‖(m)
(M) . This completes the proof.

Proposition 2.7. For x ∈ `M(∆(m)), we have

∞∑
k=1

M

(
|∆(m)xk|
‖x‖(m

(M))

)
≤ 1.

Proof. Proof is immediate from (2.2).

Now we show that the norms ‖•‖(m)
(M) and ‖•‖(m)

M are equivalent. To prove
this some other results are required. First we prove those results.

Proposition 2.8. Let x ∈ `M(∆(m)) with ‖x‖(m)
M ≤ 1. Then

{
p
(
|∆(m)xn|

)}
∈

˜̀
Φ and δ

(
Φ, {p

(
|∆(m)xn|)

})
≤ 1.

Proof. For any z ∈ ˜̀
Φ, we may write∣∣∣∣∣
∞∑
i=1

(∆(m)xi)zi

∣∣∣∣∣ ≤ ‖x||(m)
M if δ(Φ, z) ≤ 1 (2.3)

= δ(Φ, z)‖x||(m)
M if δ(Φ, z) > 1
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Let now x ∈ `M(∆(m)) with ‖x||(m)
M ≤ 1. Also x(n) = (x1, x2, . . . , xn, 0, 0, . . . ) ∈

`M(∆(m)) for n ≥ 1. We observe that

‖x||(m)
M ≥

∣∣∣∣∣
∞∑
i=1

(∆(m)xi)y
(n)
i

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
i=1

(∆(m)x
(n)
i )yi

∣∣∣∣∣ ,
n ≥ 1 for every y ∈ ˜̀

Φ with δ(Φ, y) ≤ 1 and thus ‖x(n)||(m)
M ≤ ‖x||(m)

M ≤ 1.
Since

∞∑
i=1

Φ
(
p
(∣∣∆(m)xi

∣∣)) =
∞∑
i=1

Φ
(
p
(∣∣∣∆(m)x

(n)
i

∣∣∣))
We find that

{
p
(∣∣∣∆(m)x

(n)
i

∣∣∣)} ∈ ˜̀
Φ for each n ≥ 1. Let l ≥ 1 be an integer

such that

l∑
i=1

Φ
(
p
(∣∣∆(m)xi

∣∣)) > 1. Then
∞∑
i=1

Φ
(
p
(∣∣∣∆(m)x

(l)
i

∣∣∣)) > 1

Using (1.2), we have

Φ
(
p
(∣∣∣∆(m)x

(l)
i

∣∣∣)) < M
(∣∣∣∆(m)x

(l)
i

∣∣∣)+ Φ
(
p
(∣∣∣∆(m)x

(l)
i

∣∣∣))
=
∣∣∆(m)x

l
i

∣∣ p (∣∣∆(m)x
l
i

∣∣) for all i, l ≥ 1.

So by (2.3), we get

∞∑
i=1

Φ
(
p
(∣∣∣∆(m)x

(l)
i

∣∣∣)) < ∥∥x(l)
∥∥(m)

M
δ
(
Φ,
{
p
(∣∣∆(m)x

l
i

∣∣)})
This implies that

∥∥x(l)
∥∥(m)

M
> 1, a contradiction. This contradiction implies

that
l∑

i=1

Φ
(
p
(∣∣∆(m)xi

∣∣)) ≤ 1 for all l ≥ 1.

Hence {
p
(∣∣∆(m)xn

∣∣)} ∈ ˜̀
Φ and δ

(
Φ,
{
p
(∣∣∆(m)xn

∣∣)}) ≤ 1.

Proposition 2.9. Let x ∈ `M(∆(m)) with ‖x‖(m)
M ≤ 1. Then x ∈ ˜̀

M(∆(m))

and δ
(
M,∆(m), x

)
≤ ‖x‖(m)

M
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Proof. Let y =
{
p
(∣∣(∆(m)xi

∣∣) /sgn(∆(m)xi)
}

. Then the Proposition 2.8,

y ∈ ˜̀
Φ and δ(Φ, y) ≤ 1. By (1.2), we get

∞∑
i=1

M
(∣∣∆(m)xi

∣∣) ≤ ∞∑
i=1

M
(∣∣∆(m)xi

∣∣)+
∞∑
i=1

Φ
(
p
(∣∣∆(m)xi

∣∣))

=
∞∑
i=1

∣∣∆(m)xi
∣∣ p (∣∣∆(m)xi

∣∣) =

∣∣∣∣∣
∞∑
i=1

(∆(m)xi)yi

∣∣∣∣∣ ≤ ‖x‖(m)
M

This implies that δ(M,∆(m), x) ≤ ‖x‖(m)
M .

Proposition 2.10. For x ∈ `M(∆(m)), we have

∞∑
k=1

M

(∣∣∆(m)xk
∣∣

‖x‖(m)
M

)
≤ 1.

Proof. Proof is immediate from Proposition 2.9.

Theorem 2.11. For x ∈ `M(∆(m)),

‖x‖(m)
(M) ≤ ‖x‖

(m)
M ≤ 2 ‖x‖(m)

(M) .

Proof. We have

‖x‖(m)
(M) = inf

{
ρ > 0 :

∞∑
k=1

M

(
|∆(m)xk|

ρ

)
≤ 1

}
.

Then using Proposition 2.10, we get ‖x‖(m)
(M) ≤ ‖x‖

(m)
M . Let us observe that if

x ∈ `M(∆(m)) with ‖x‖(m)
(M) ≤ 1. Then x ∈ ˜̀

M(∆(m)) and δ
(
M,∆(m), x

)
≤ 1.

Indeed,

1

‖x‖(m)
(M)

∞∑
i=1

M
(∣∣∆(m)xi

∣∣) ≤ ∞∑
i=1

M

(
|∆(m)xi|
‖x‖(m)

(M)

)
≤ 1,

by Proposition 2.7. Thus

1

‖x‖(m)
(M)

∈ ˜̀
M(∆(m)) with δ

(
M,

x

‖x‖(m)
(M)

)
≤ 1.
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We further observe that for an arbitrary z ∈ ˜̀
M(∆(m)),

‖z‖(m)
M = sup

{∣∣∣∣∣
∞∑
i=1

(
∆(m)zi

)
yi

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
< 1+δ

(
M,∆(m), z

)
, using (1.1).

Hence taking z =
x

‖x‖(m)
(M)

, we have

∥∥∥∥∥ x

‖x‖(m)
(M)

∥∥∥∥∥
(m)

M

≤ 1 +
∞∑
i=1

M

(
|x|

‖x‖∆(m)

(M)

)
≤ 2, by Proposition 2.7.

Thus ‖x‖(m)
M ≤ 2 ‖x‖(m)

(M). This completes the proof.
Hence we have the following Corollary.

Corollary 2.12. `M(∆(m)) is a BK space under both the norms ‖x‖(m)
M and

‖x‖(m)
(M).

Proposition 2.13. For any Orlicz function M , `M(∆(m)) = `′M(∆(m)), where

`′M(∆(m)) =

{
x ∈ w :

∞∑
k=1

M

(∣∣∆(m)xk
∣∣

ρ

)
<∞, for some ρ > 0

}
.

Proof. Proof follows from Proposition 2.10.
In view of above Proposition we give the following definition:

Definition 2.14. For any Orlicz function M ,

hM(∆(m)) =

{
x ∈ w :

∞∑
k=1

M

(∣∣∆(m)xk
∣∣

ρ

)
<∞, for each ρ > 0

}
.

Clearly hM(∆(m)) is a subspace of `M(∆(m)).

Henceforth we shall write ‖ • ‖ instead of ‖•‖(m)
(M) provided it does not lead

to any confusion. The topology of hM(∆(m)) is the one it inherits from ‖ • ‖.

Proposition 2.15. Let M be an Orlicz function. Then
(
hM(∆(m)), ‖ • ‖

)
is

an AK-BK space.
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Proof. First we show that hM(∆(m)) is an AK-space. Let x ∈ hM(∆(m)).
Then for each ε, 0 < ε < 1, we can find an n0 such that

∑
n≥n0

M

(∣∣∆(m)xi
∣∣

ε

)
≤ 1

Hence for n ≥ n0,

∥∥x− x(n)
∥∥ = inf

{
ρ > 0 :

∑
i≥n+1

M

(
|∆(m)xi|

ρ

)
≤ 1

}

≤ inf

{
ρ > 0 :

∑
i≥n

M

(
|∆(m)xi|

ρ

)
≤ 1

}
ε

Thus we can conclude that hM(∆(m)) is an AK space.
Next to show hM(∆(m)) is an BK-space it is enough to show hM(∆(m)) is

a closed subspace of `M(∆(m)). For this let {xn} be a sequence in hM(∆(m))
such that ‖xn − x‖ −→ 0, where x ∈ `M(∆(m)). To complete the proof we
need to show that x ∈ hM(∆(m)), i.e.,∑

i≥1

M

(
|∆(m)xi|

ρ

)
<∞, for every ρ > 0.

To ρ > 0 there corresponds an l such that ‖xl − x‖ ≤ ρ
2

. Then using the
convexity of M ,

∑
i≥1

M

(
|∆(m)xi|

ρ

)
=
∑
i≥1

M

(
2
∣∣∆(m)x

l
i

∣∣− 2
(∣∣∆(m)x

l
i

∣∣− ∣∣∆(m)xi
∣∣)

2ρ

)

≤ 1

2

∑
i≥1

M

(
2|∆(m)x

l
i|

ρ

)
+

1

2

∑
i≥1

M

(
2|∆(m)(x

l
i − xi)|
ρ

)

≤ 1

2

∑
i≥1

M

(
2|∆(m)x

l
i|

ρ

)
+

1

2

∑
i≥1

M

(
2|∆(m)(x

l
i − xi)|

‖xl − x‖

)
Thus x ∈ hM(∆(m)) and consequently hM(∆(m)) is a BK space.

Proposition 2.16. Let M be an Orlicz function. If M satisfies the ∆2-
condition at 0, then `M(∆(m)) is an AK space.
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Proof. In fact we shall show that if M satisfies the ∆2-condition at 0, then
`M(∆(m)) = hM(∆(m)) and the results follows. Therefore it is enough to show
that `M(∆(m)) ⊂ hM(∆(m)). Let x ∈ `M(∆(m)), then ρ > 0,∑

i≥1

M

(
|∆(m)xi|

ρ

)
<∞

This implies that

M

(
|∆(m)xi|

ρ

)
−→ 0, as i −→∞ (2.4)

Choose an arbitrary l > 0. If ρ ≤ l, then∑
i≥1

M

(
|∆(m)xi|

l

)
<∞.

Let now l < ρ and put k = ρ
l
. Since M satisfies the ∆2-condition at 0, there

exist R = Rk > 0 and r = rk > 0 with M(kx) ≤ RM(x) for all x ∈ (0, r]. By
(2.4) there exists a positive integer n1 such that

M

(
|∆(m)xi|

ρ

)
<

1

2
rp
(r

2

)
for all i ≥ n1

We claim that
|∆(m)xi|

ρ
≤ r for all i ≥ n1. Otherwise, we can find j > n1 with

|∆(m)xj |
ρ

> r, and thus

M

(
|∆(m)xj|

ρ

)
≥

|∆(m)xj |∫
r
2

p(t)dt >
1

2
rp
(r

2

)
, a contadiction.

Hence our claim is true. Then we can find that∑
i≥n1

M

(
|∆(m)xi|

l

)
≤
∑
i≥n1

M

(
|∆(m)xi|

ρ

)
and hence ∑

i≥1

M

(
|∆(m)xi|

l

)
<∞, for every l > 0

This completes the proof.
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Proposition 2.17. Let M1 and M2 be two Orlicz functions. If M1 and M2

are equivalent then `M1(∆(m)) = `M2(∆(m)) and the identity map

I :
(
`M1(∆(m)), ‖•‖(m)

M1

)
−→

(
`M2(∆(m)), ‖•‖(m)

M2

)
is a topological isomorphism.

Proof. Let M1 and M2 are equivalent and so satisfy (1.3). Suppose x ∈
`M2(∆(m)), then

∞∑
i=1

M2

(
|∆(m)xi|

ρ

)
<∞ for some ρ > 0.

Hence for some l ≥ 1,

|∆(m)xi|
lρ

≤ x0, for all i ≥ 1.

Therefore

∞∑
i=1

M1

(
α|∆(m)xi|

lρ

)
≤

∞∑
i=1

M2

(
|∆(m)xi|

ρ

)
<∞.

Thus `M2(∆(m)) ⊂ `M1(∆(m)). Similarly `M1(∆(m)) ⊂ `M2(∆(m)). Let us ab-

breviate here ‖•‖(m)
M1

and ‖•‖(m)
M2

respectively. For x ∈ `M2(∆(m)),

∞∑
i=1

M2

(
|∆(m)xi|
‖x‖2

)
≤ 1.

One can find µ > 1 with (x0

2

)
µp2

(x0

2

)
≥ 1,

where p2 is the kernel associated with M2. Hence

M2

(
|∆(m)xi|
‖x‖2

)
≤
(x0

2

)
µp2

(x0

2

)
for all i ≥ 1.

This implies that
|∆(m)xi|
µ‖x‖2

≤ x0 for all i ≥ 1.
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Therefore
∞∑
i=1

M1

(
α|∆(m)xi|
µ‖x‖2

)
< 1

and so
‖x‖1 ≤

(µ
α

)
‖x‖2.

Similarly we can show ‖x‖2 ≤ βγ‖x‖1 by choosing γ with γβ > 1 such that

γβ
(x0

2

)
p1

(x0

2

)
≥ 1.

Thus αµ−1‖x‖1 ≤ ‖x‖2 ≤ βγ‖x‖1 which establishes the topological isomor-
phism of I.

Proposition 2.18. Let M be an Orlicz function and p the corresponding ker-
nel. If p(x) = 0 for all x in [0, x0] where x0 is some positive number, then
`M(∆(m)) is topologically isomorphic to `∞(∆(m)) and hM(∆(m)) is topologi-
cally isomorphic to c0(∆(m)), where

`∞(∆(m)) =

{
x = (xk) : sup

k

∣∣∆(m)xk
∣∣ <∞}

and
c0(∆(m)) =

{
x = (xk) : lim

k−→∞
(∆(m)xk) = 0

}
.

Proof. Let p(x) = 0 for all x in [0, x0]. If y ∈ `∞(∆(m)), then we can find a

ρ > 0 such that
|∆(m)yi|

ρ
≤ x0 for i ≥ 1 and so

∞∑
i=1

M
(
|∆(m)yi|

ρ

)
<∞, giving thus

y ∈ `M(∆(m)). On the other hand let y ∈ `M(∆(m)), then
∞∑
i=1

M
(
|∆(m)yi|

ρ

)
<

∞, for some ρ > 0 and so |∆(m)yi| <∞ for all i ≥ 1, giving thus y ∈ `∞(∆(m)).
Hence y ∈ `∞(∆(m)) if and only if y ∈ `M(∆(m)). We can easily find an x1

with M(x1) ≥ 1. Let y ∈ `∞(∆(m)) and α = ‖y‖∞ = sup
i

(
|∆(m)λiyi|

)
> 0.

( it is easy to show that ‖y‖∞ = sup
i

(
|∆(m)yi|

)
is a norm on `∞(∆(m)) ). For

every ε, 0 < ε < α, we can determine yj with |∆(m)yj| > α− ε and so

∞∑
i=1

M

(
|∆(m)yi|xi

α

)
≥M

(
(α− ε)x1

α

)
.
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As M is continuous, we find

∞∑
i=1

M

(
|∆(m)yi|x1

α

)
≥ 1,

and so ‖y‖∞ ≤ x1‖y‖, for otherwise

∞∑
i=1

M

(
|∆(m)yi|
‖y‖

)
> 1, a contradiction by Proposition 2.7.

Again
∞∑
i=1

M

(
|∆(m)yi|x0

α

)
= 0

and it follows that

‖y‖ ≤
(

1

x0

)
‖y‖∞.

Thus the identity map

I :
(
`M(∆(m)), ‖•‖

)
−→

(
`∞(∆(m)), ‖•‖

)
is a topological isomorphism.

For the last part, let y ∈ hM(∆(m)), then for any ε > 0, |∆(m)yi| ≤ εx1, for
all sufficiently large, where x1 is some positive number with p(x1) > 0. Hence

y ∈ c0(∆(m)). Next let y ∈ c0(∆(m)). Then for any ρ > 0,
|∆(m)yi|

ρ
< 1

2
x0 for all

sufficiently large i. Thus M
(
|∆(m)yi|

ρ

)
< ∞ for all ρ > 0 and y ∈ hM(∆(m)).

Hence hM(∆(m)) = c0(∆(m)) and we are done.

Proposition 2.19. Let M be an Orlicz function and p the corresponding ker-
nel. If p(x) = 0 for all x in [0, x0] where x0 is some positive number, then
`M(∆(m)) is topologically isomorphic to `∞ and hM(∆(m)) is topologically iso-
morphic to c0.

Proof. For Z = `∞ and c0, Z(∆(m)) and Z are equivalent as topological
spaces, since T : Z(∆(m)) −→ Z, defined by Tx = y = (∆(m)xk), is a linear
homeomorphism. This completes the proof.
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