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Abstract

In this paper generalized linear fuzzy numbers are used in redun-
dancy allocation for optimum reliability of series-parallel system. Here
reliability and cost of components of the system, system cost, and sys-
tem weight are fuzzy numbers. We use geometric programming to solve
redundancy allocation problem. The redundancy allocation problem
whose aim is to find out the optimal allocation of redundancy compo-
nents in such a way that maximizes the system reliability subjected to
available total system cost and weight. Here it demonstrates to find a
set of optimal solutions that help the decision maker to take the right
decisions from the optimal solution set. Examples are displayed to il-
lustrate the model utilizing generalized fuzzy numbers.
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1. Introduction

Reliability optimization provides a means to help the reliability engineer to
achieve such an aim to find the best way to increase the systems reliability.
Most methods of reliability optimization assume that systems have redun-
dancy components in series-parallel or parallel system and that alternative
designs achieve the goal of optimal system reliability by optimal allocation of
redundancy components. Reliability of a multi-stage system can be improved
by adding similar components as redundancy to each subsystem, may be some
different components that can be considered as design alternatives in a sub-
system. Thus the problem is to improve system’s reliability associated with
a system design under the limited available resources. Kim and Yum [8] ex-
plained how to increase the component reliability. Tian and Zuo [18] proposed
multi-objective optimization model for redundancy allocation for multi-state
series-parallel systems using physical programming approach and solved it by
genetic algorithm. Yun and Kim [21] presented multi-level redundancy opti-
mization in series system as a mixed integer-programming model and solved
it by genetic algorithm and heuristic algorithm. Hsiesh [6] investigated the
series parallel redundant reliability problems with multiple component choices
by linear approximation. Zhao and Liu [24] illustrated parallel redundant and
standby redundant system by the stochastic programming. Misra and Sharma
[14] presented redundant components in various subsystems in the system by
geometric programming formulation. Charles Elegbede et al. [2] considered
the allocation of reliability and redundancy to each subsystem of parallel-series
system for target reliability maintaining the minimum system cost. Tillman
et al. [19] presented a comprehensive survey of previous works for system re-
liability with redundancy. Sinha and Misra [17], Prasad et al. [16], Kuo and
Prasad [9], Kuo et al. [10], etc illustrated allocation of redundant component
in a system to enhance the system reliability, which is important in reliability
engineering.

In general, reliability optimization problem is solved with the assumption
that the reliability, cost and weight of components are specified in an exact
mode. In real life, due to hesitation in judgments, lack of confirmation or
otherwise, sometimes it is not possible to get significant exact data for the
reliability system. This type of imprecise data is always well represented by
fuzzy number, so fuzzy reliability optimization model is needed in real life
problem. Also for making a decision, decision-makers have to review the al-



Optimal Redundancy Allocation in Series-Parallel System 3

ternatives with fuzzy numbers. It can be seen that fuzzy numbers have a
very important role to describe fuzzy parameters in several fuzzy reliability
optimization model from the different viewpoints of decision makers. In reli-
ability apportionment problem for a two-component series system subjecting
to a single constraint, Park [15] used fuzzy set theory. Mahapatra and Roy
[12] introduced fuzzy multi-objective mathematical programming technique
based on generalized fuzzy set and they applied it in multi-objective reliability
optimization models.

The non-linear optimization problems have been solved by different non-
linear optimization techniques. Geometric Programming (GP) is an effective
method among those to solve a meticulous type of non-linear programming
problem. Zener [23] introduced GP technique, and Duffin et al [3] further
developed the GP method. There are various mathematical programming and
heuristic methods been developed to solve the single and multi-objective reli-
ability optimization problem. GP method is rare used to solve the reliability
optimization problem. Federowicz and Mazumdar [4] first used GP on relia-
bility optimization problem. Govil [5] used GP for a 3-stage series reliability
system. Now-a-days GP in fuzzy environments, a competent optimization
method, is used to solve a typical fuzzy optimization problem which is called
as Fuzzy Geometric Programming (FGP). In 1987, Cao [1] first introduced
FGP. Mahapatra and Roy [13] used FGP with cost constraint to find opti-
mal reliability for a series system. Fuzzy reliability optimization models with
redundancy through FGP are very rare in literature.

For many practical problems, most of the parameters of an optimization
model are not known exactly. Due to this imperfect and unreliability of in-
put information, fuzzy numbers become an important aspect in the reliability
design of the engineering systems.

Here we consider the problem as to find the optimum number of redundan-
cies of similar components, which maximize the system reliability subjecting
to the available system cost and weight. This paper regards the problem of
geometric programming in the context of reliability and redundancy appor-
tionment of multistage, multi-component system subject to cost and weight
constraints. Here reliability, cost and weight of the components, system cost
and weight are in fuzzy environment, so they are taken as generalized fuzzy
number.
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Figure 1: A schematic diagram of the n-stage series-parallel system

2. Notations

Reliability optimization model is developed and worked out under the following
notations.

Ri reliability of each component of the system in the ith stage,
Qi unreliability of each component of the system in the ith stage,
Ci cost of each component of the system in the ith stage,
Wi weight of each component of the system in the ith stage,
C available system cost of the reliability model,
W available system weight of the reliability model,
xi number of redundancy components in the ith stage,
Rs (x1, x2, ..., xn) function of system reliability,
Cs (x1, x2, ..., xn) function of system cost,
Ws (x1, x2, ..., xn) function of system weight,
ÃTFN Triangular Fuzzy Number (TFN) Ã,
ÃGTFN Generalized Triangular Fuzzy Number (GTFN) Ã,
ÃTrFN Trapezoidal Fuzzy Number (TrFN) Ã,
ÃGTrFN Generalized Trapezoidal Fuzzy Number (GTrFN) Ã.

3. Mathematical Formulation of the Model

3.1 Crisp model

Consider an n stage series system and at each stage added (xi − 1) redundant
components in parallel, as shown in Figure 1, our aim is to determine the
number of redundant components at each stage so as the system reliability
will be maximum subjecting to related cost and weight constraints.
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Therefore we have to find the maximization of Rs (x1, x2, ..., xn) having
subject to the limited available cost C and weight W .

So the problem becomes

Max Rs (x1, x2, ..., xn) =

n
∏

i=1

{1− (1− Ri)
xi} (3.1)

subject to

Cs (x1, x2, ..., xn) =

n
∑

i=1

Cixi ≤ C

Ws (x1, x2, ..., xn) =
n
∑

i=1

Wixi ≤ W

xi > 1 for i = 1, 2, ..., n.

3.2 Fuzzy model

Undoubtedly, in practical sense expressing the reliability, cost and weight of
system components in the reliability optimization problem (3.1) are not trans-
parent. While determining the system reliability; reliability, cost, weight of
the components and objective goal as well as goal of the constraints can be
involved in many non-stochastic uncertain factors. To make the model more
flexible and adoptable to human decision process, the reliability optimization
model (3.1) can be represented as fuzzy non-linear programming problems
with fuzzy numbers.

Therefore in fuzzy environment the system reliability optimization problem
becomes

Max Rs (x1, x2, ..., xn) =

n
∏

i=1

{

1−
(

1− R̃i

)xi
}

(3.2)

subject to

Cs (x1, x2, ..., xn) =

n
∑

i=1

C̃ixi ≤ C̃

Ws (x1, x2, ..., xn) =
n
∑

i=1

W̃ixi ≤ W̃
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xi > 1 for i = 1, 2, ..., n.

Here R̃i, C̃i, W̃i (i = 1, 2, . . . , n), C̃ and W̃ are taken as generalized fuzzy
numbers.

4. Fuzzy Mathematics Prerequisites

Zadeh [22] introduced fuzzy set in 1965 as a mathematical way of representing
impreciseness or vagueness in everyday life.

Definition 1. Fuzzy Set: A fuzzy set Ã in a universe of discourse X is defined
as the following set of pairs Ã = (x, µÃ(x) : x ∈ X) . Here µÃ : X −→ [0, 1]
is a mapping called the membership function of the fuzzy set Ã and µÃ(x) is
called the membership value or degree of membership of x ∈ X in the fuzzy
set Ã.

Definition 2. Height: The height h(Ã), of a fuzzy set Ã = (x, µÃ(x) : x ∈
X), is the largest membership grade obtained by any element in that set i.e.
h(Ã) = sup

x∈X

µÃ(x).

Definition 3. α-Level Set or α-cut of a Fuzzy Set: The α-level set (or
interval of confidence at level α or α-cut) of the fuzzy set Ã of X is a crisp
set Aα that contains all the elements of X that have membership values in Ã

greater than or equal to α i.e. Ã = {x, µÃ(x) ≥ α, x ∈ X,α ∈ [0, 1]}.

Definition 4. Generalized Fuzzy Number (GFN): Generalized Fuzzy
Number Ã as Ã = (a1, a2, a3, a4;w), where 0 < w ≤ 1, and a1, a2, a3 and a4
(a1 < a2 < a3 < a4) are real numbers. The generalized fuzzy number Ã is a
fuzzy subset of real line R, whose membership function µÃ(x) satisfies the
following conditions:

1) µÃ : R → [0, 1]

2) µÃ(x) = 0 for −∞ < x ≤ a1
3) µÃ(x) is strictly increasing function for a1 ≤ x ≤ a2
4) µÃ(x) = w for a2 ≤ x ≤ a3
5) µÃ(x) is strictly decreasing function for a3 ≤ x ≤ a4
6) µÃ(x) = 0 for a4 ≤ x < ∞
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Figure 2: Generalized Fuzzy Number

Note: 4.1. Ã is a convex fuzzy set and it is a non-normalized fuzzy number
till w 6= 1. It is normalized fuzzy number for w = 1.

i) If a1 = a2 = a3 = a4 = a (say) and w = 1, then Ã is called a real number
a

Here Ã = (x, µÃ(x)) with membership function µÃ(x) =

{

1 if x = a

0 if x 6= a

ii) If a1 = a2, a3 = a4 and w = 1 then Ã is called crisp interval [a1, a4]

Here Ã= (x, µÃ(x)) with membership function µÃ(x) =

{

1 if a1 ≤ x ≤ a4
0 otherwise

iii) and a2 = a3 then Ã is called a GTFN as Ã = (a1, a2, a4;w) or (a1, a3, a4;w)

iv) and a2 = a3, w = 1 then Ã is called a TFN as Ã = (a1, a2, a4) or (a1, a3, a4)

Here Ã= (x, µÃ(x)) with membership function µÃ(x) =







w x−a1
a2−a1

if a1 ≤ x ≤ a2
w a4−x

a4−a2
if a2 ≤ x ≤ a4

0 otherwise

v) and a2 6= a3 then Ã is called a GTrFN as Ã = (a1, a2, a3, a4;w)

vi) and a2 6= a3, w = 1 then Ã is called a TrFN as Ã = (a1, a2, a3, a4)

Here Ã= (x, µÃ(x)) with membership function µÃ(x) =















w x−a1
a2−a1

if a1 ≤ x ≤ a2
w if a2 ≤ x ≤ a3
w a4−x

a4−a3
if a3 ≤ x ≤ a4

0 otherwise
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Figure 3: TrFN and GTrFN

Figure 3 shows TrFN Ã = (a1, a2, a3, a4) and GTrFN Ã = (a1, a2, a3, a4;w)
which indicate different decision maker’s opinions for different values of w (0 < w ≤ 1) .
The value of w represents the degree of confidence of the opinion of the decision
maker.

4.1 Different methods for defuzzification of fuzzy num-

bers:

In real life, bulk of the information is assimilated as fuzzy numbers but there
will be a need to defuzzify the fuzzy number. Actually defuzzification is the
conversion of the fuzzy number to precise or crisp number. Several processes
are used for such conversion. Here we have discussed three types of defuzzi-
fication, first two methods are followed by Yager [20] and later by Kaufman
and Gupta [7].

4.1.1 Type-I: Center of Mass (COM) Method

Let Ã be a fuzzy number then the defuzzification of Ã is given by Â =∫ au
al

xµ
Ã
(x)dx

∫ au
al

µ
Ã
(x)dx

where al and au are the lower and upper limits of the support

of Ã. The value Â represents the centroid of the fuzzy number Ã.

4.1.1.a. Defuzzification of ÃGTFN = (a1, a2, a3;w) by COM method Â =
1
3
(a1 + a2 + a3)

4.1.1.b. Defuzzification of ÃGTrFN = (a1, a2, a3, a4;w) by COM method

Â = 1
3

a2
4
+a2

3
−a2

2
−a2

1
−a4a3−a2a1

a4+a3−a2−a1
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Note: 4.2. For COM method, defuzzification of GTFN and GTrFN does not
depend on w. In this case, defuzzification of generalized fuzzy number and
normalized fuzzy number (w=1) will be same.

4.1.2 Type-II: Mean of α-Cut (MC) Method

Let Ã be a fuzzy number then the defuzzification of Ã is given by Â =
∫ αmax

0
m[aLα, a

R
α ]dα where αmax is the height of Ã , Aα = [aLα, a

R
α ] is an α−cut,

α ∈ (0, 1] and m[aLα, a
R
α ] is the mean value of the elements of that α−cut, i.e.

m[aLα, a
R
α ] =

aLα+aRα
2

where aLα and aRα are the left and right limits of the α-cut

of the fuzzy number Ã.

4.1.2.a. Defuzzification of ÃGTFN = (a1, a2, a3;w) by MC method Â =
w
4
(a1 + 2a2 + a3). Here aLα = a1 +

α
w
(a2 − a1) and aRα = a3 −

α
w
(a3 − a2)

4.1.2.b. Defuzzification of ÃGTrFN = (a1, a2, a3, a4;w) by MC method Â =
w
4
(a1 + a2 + a3 + a4). Here aLα = a1 +

α
w
(a2 − a1) and aRα = a4 −

α
w
(a4 − a3)

Note: 4.3. For MC method, defuzzification of TFN and TrFN (normalized
fuzzy number (w = 1)) obtained by putting w = 1 in the defuzzification rule
of GTFN (4.1.2.a) and GTrFN (4.1.2.b) respectively.

4.1.3 Type-III: Removal Area (RA) Method

According to Kaufman and Gupta [7], an ordinary number k ∈ R, the left

side removal of Ã with respect to k, Rl

(

Ã, k
)

, is define as the area bounded

by x = k and the left side of the fuzzy number Ã. Similarly, the right side

removal is Rr

(

Ã, k
)

. The removal of the fuzzy number with respect to x = k

is define as the mean of Rl

(

Ã, k
)

and Rr

(

Ã, k
)

.

Thus R
(

Ã, k
)

= 1
2

(

Rl

(

Ã, k
)

+Rr

(

Ã, k
))

.

For example here we take k = 0 for the trapezoidal fuzzy number Ã =
(a1, a2, a3, a4), left and right removal area are shown in figure 4(a) and 4(b).

4.1.3.a. Defuzzification of ÃGTFN = (a1, a2, a3;w) by RA method
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Figure 4: (a): Left removal area of Rl

(

Ã, 0
)

of Ã (b): Right removal area

of Rr

(

Ã, 0
)

of Ã

The removal number of Ã with respect to origin is defined as the mean of

two areas, Rl

(

Ã, 0
)

= w a1+a2
2

and Rr

(

Ã, 0
)

= w a2+a3
2

So Â = R
(

Ã, 0
)

=
w
4
(a1 + 2a2 + a3).

4.1.3.b. Defuzzification of ÃGTrFN = (a1, a2, a3, a4;w) by RA method
The removal number of Ã with respect to origin is defined as the mean of

two areas, Rl

(

Ã, 0
)

= w a1+a2
2

and Rr

(

Ã, 0
)

= w a4+a3
2

So Â = R
(

Ã, 0
)

=
w
4
(a1 + a2 + a3 + a4).

Note:4.4. For RA method, defuzzification of TFN and TrFN are obtained by
putting w=1 in the defuzzification rule of GTFN (4.1.3.a), GTrFN (4.1.3.b)
respectively.
Note: 4.5. Defuzzification of GTFN and GTrFN by type-II and type-III
method are same but these are different with type-I

5. Geometric Programming

Geometric programming (GP) had its beginning in 1961 by Zener [23]. Later
Duffin, Peterson and Zener [3] developed the theory with its application.

Primal Geometric Programming (PGP):

Min g0 (t) =

T0
∑

k=1

c0k

m
∏

j=1

t
α0kj

j (5.1)
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subject to gr (t) =
Tr
∑

k=1+Tr−1

crk

m
∏

j=1

t
αrkj

j ≤ 1

tj > 0, j = 1, 2, . . . , m
where crk(> 0) and αrkj(k = 1, 2, ..., l + Tr−1, .., Tr; r = 0, 1, 2, ..., l; j =

1, 2, . . . , m) are real numbers.
It is a constrained posynomial PGP problem. The number of terms in

each posynomial constraint function varies and it is denoted by Tr for each
r = 0, 1, 2, . . . , l. Let T = T0+T1+T2+ . . . .+Tl be the total number of terms
in the primal program. The Degree of Difficulty (DD) = T − (m+ 1).

Dual Program (DP):
The dual programming of (5.1) is as follows:

Max v(δ) =
l
∏

r=0

Tr
∏

k=1

(

crk

δrk

)δrk





Tr
∑

s=1+Tr−1

δrs





δrk

(5.2)

subject to

T0
∑

k=1

δ0k = 1, (Normality condition)

l
∑

r=0

Tr
∑

k=1

αrkjδrk = 0, j = 1, 2, ..., m, (Orthogonality conditions)

δrk > 0, (r = 0, 1, 2, . . . , l; k = 1, 2, ..., Tr). (Non-negativity conditions)
Ones optimal dual variable vector δ∗ is known, the corresponding values of

the primal variable vector t is found from the following relations:

ck

n
∏

j=1

t
αkj

j = δ∗kv
∗(δ∗), (k = 1, 2, . . . , T0) (5.3)

Taking logarithms in (5.3), T0 log-linear simultaneous equations are trans-
formed as

n
∑

j=1

αkj (log tj) =
δ∗kv

∗(δ∗)

ck
, (k = 1, 2, . . . , T0) (5.4)

It is a system of T0 linear equations in xj (= logtj) for j = 1, 2, ..., n.
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Note: 5.1. If there are more primal variables tj than the number of terms
T0 (> 1), many solutions tj (j = 1, 2, ..., n) may exist. Therefore to find
the optimal primal variables tj (j = 1, 2, ..., n), it remains to minimize the
primal objective function with respect to reduced n−T0( 6= 0) variables. When
n − T0 = 0 i.e. number of primal variables = number of log-linear equations,
primal variables can be determined uniquely from log-linear equations.

6. Solution Procedure of Fuzzy Reliability Model

through Geometric Programming

The problem (3.2) can be written as follows taking logarithm of the objective
function

M̃ax log (Rs (x1, x2, ..., xn)) = Max

n
∏

i=1

log
(

1−
(

1− R̃i

)xi
)

(6.1)

The above problem (6.1) can be reduced by the approximation (see Appendix–
I) where as log (Rs (x1, x2, ..., xn)) = −R

′

s as follows

M̃ax R
′

s (x1, x2, ..., xn) =

n
∑

i=1

(

1− R̃i

)xi

(6.2)

subject to

n
∑

i=1

C̃ixi ≤ C̃

n
∑

i=1

W̃ixi ≤ W̃

xi > 1 for i = 1, 2, ..., n.

After defuzzification of the fuzzy parameters (6.2) reduces to

Max R
′

s (x1, x2, ..., xn) =
n
∑

i=1

(

1− R̂i

)xi
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subject to

n
∑

i=1

Ĉixi ≤ Ĉ

n
∑

i=1

Ŵixi ≤ Ŵ

xi > 1 for i = 1, 2, ..., n.
The above problem reduced (Tillman et al [19]) as

Min R
′

s =

n
∑

i=1

Qxi

i =

n
∑

i=1

qi where 1− R̂i = Qi and Qxi

i = qi

subject to

n
∑

i=1

Ĉi log qi
logQi

≤ Ĉ

n
∑

i=1

Ŵi log qi
logWi

≤ Ŵ

Where qi > 0 for i = 1, 2, . . . , n.
The above problem can be reduced as

Min R
′

s =

n
∑

i=1

qi

subject to

e−1
n
∏

i=1

q−k1i
i ≤ 1

e−1
n
∏

i=1

q−k2i
i ≤ 1

Where qi > 0 for i = 1, 2, . . . , n.

Where k1i = − Ĉi

Ĉ logQi
and k2i = − Ŵi

Ŵ logQi
for i = 1, 2, . . . , n.
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This is the primal form of the GP with DD = n + 2− n− 1 = 1
Now the DP of this PGP is

Max v(δ) =

(

e−1

δ11

)δ11 (e−1

δ21

)δ21

(δ11)
δ11 (δ21)

δ21

n
∏

i=1

(

1

δ0i

)δ0i

subject to

n
∑

i=1

δ0i = 1,

δ0i − (k1iδ11 + k2iδ21) = 0 for j = 1, 2, ..., n,

δ0i, δ1i, δ2i > 0 for i = 1, 2, . . . , n
Solving the above equations in terms of δ11 we get
δ21 = 1− 1

B
(1− Aδ11) , δ0i = k1iδ11 +

k2i
B

(1− Aδ11) for i = 1, 2, . . . , n

where A =
n
∑

i=1

k1i and B =
n
∑

i=1

k2i

substituting the dual variables into the dual function we get

Max v(δ) =

n
∏

i=1

(

1

k1iδ11 +
k2i
B

(1−Aδ11)

)k1iδ11+
k2i
B

(1−Aδ11)
(

e−1
)δ11(1− 1

B
(1−Aδ11))

To obtain the optimal values first differentiate the log dual function with
respect to δ11 and then set to zero, we get

n
∏

i=1

(

k1iδ11 +
k2i
B

(1− Aδ11)
)k1i−

Ak2i
B = e

A
B
−1

Solving the equation by Newton Raphson or any other method we get the
optimal value δ∗11 and hence, we get the optimal value of δ∗01, δ

∗
02, ..., δ

∗
0n and δ∗21

by the relations
δ∗21 = 1− 1

B
(1− Aδ∗11) , δ∗0i = k1iδ

∗
11 +

k2i
B

(1− Aδ∗11) for i = 1, 2, . . . , n
Then we get the optimal value of the objective function of DP v∗(δ∗)
Now we can find the solution of PGP according to primal-dual relation
q∗i = δ∗0iv

∗(δ∗) for i = 1, 2, ..., n

i.e. x∗
i = log(1−R̂i) δ

∗
0iv

∗(δ∗) for i = 1, 2, ..., n (6.3)

Hence we get the number of optimal redundancy components for each ith-
stage from (6.3)
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7. Numerical Expose

For numerical explanation here we consider the four stages of reliability opti-
mization model and assume that reliability and cost of each component, system
cost and system weight of the DP (6.2) are fuzzy in nature. We take two types
of fuzzy generalized, GTFN, GTrFN as input data instead of crisp coefficient.

Table-1
Input data table for fuzzy model (3.2) as TFN
R1 (0.75, 0.80, 0.85;w) C1 (1, 1.15, 1.30;w) W1 (0.95, 1, 1.2;w)
R2 (0.60, 0.75, 0.90;w) C2 (2, 2.2, 2.5;w) W2 (0.9, .95, 1.5;w)
R3 (0.70, 0.80, 0.85;w) C3 (3, 3.3, 3.6;w) W3 (0.9, 1, 1.3;w)
R4 (0.75, 0.80, 0.90;w) C4 (4, 4.4, 4.8;w) W4 (0.95, 1.2, 1.5;w)

C (50, 55, 60;w) W (26, 32, 38;w)

Table-2
Input data table for fuzzy model (3.2) as TrFN

R1 (0.70, 0.75, 0.80, 0.85;w) C1 (1, 1.15, 1.20, 1.30;w) W1 (0.92, 0.98, 1, 1.3;w)
R2 (0.60, 0.70, 0.85, 0.90;w) C2 (2, 2.2, 2.4, 2.6;w) W2 (0.95, 0.98, 1.2, 1.4;w)
R3 (0.65, 0.73, 0.80, 0.84;w) C3 (3, 3.2, 3.35, 3.5;w) W3 (0.94, 1, 1.2, 1.3;w)
R4 (0.72, 0.78, 0.85, 0.90;w) C4 (4, 4.25, 4.4, 4.6;w) W4 (0.95, 0.98, 1, 1.2;w)

C (50, 54, 58, 62;w) W (26, 30, 32, 38;w)

Numerical result by GP technique for different weights of generalized fuzzy
numbers which are exhibited in the table-3 and 5. As redundancy must be
integer, so after approximating the optimal fractional value of the number of
redundancy for the optimal system reliability as follows

Table-3
Optimal redundancy for model (3.2) by GP method when input data are

GTFN
Weights x∗

1 x∗
2 x∗

3 x∗
4 R∗

s Defuzzification Type
w = 1 5 6 5 4 0.997830 Type-I
w = 0.2 11 7 5 3 0.133367 Type-II&III
w = 0.5 7 6 5 4 0.725076 Type-II&III
w = 0.8 6 6 5 4 0.972085 Type-II&III
w = 1 5 6 5 4 0.997768 Type-II&III
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The table 3 gives the result of redundancy for optimum system reliability
using generalized triangular fuzzy number by the defuzzification rule of COM
method, MC method and RA method. For MC method and RA method the
outcome are same.

Table-4

Optimal redundancy for model (3.2) by INLP method when input data are
GTFN

Weights x∗
1 x∗

2 x∗
3 x∗

4 R∗
s Defuzzification Type

w = 1 5 6 5 4 0.996493 Type-I
w = 0.2 9 6 4 4 0.124312 Type-II&III
w = 0.5 6 6 5 4 0.720801 Type-II&III
w = 0.8 6 6 5 4 0.972036 Type-II&III
w = 1 6 6 5 4 0.998023 Type-II&III

Table 4 displays the result of series-parallel model by integer non-linear
programming (INLP) by Lingo [11] software. It is notice that GP method
gives better result for some case otherwise almost same. So our approximation
of the model (3.2) to the model (6.2) does not diverge from the original result.

Table-5

Optimal redundancy for model (3.2) by GP method when input data are
GTrFN

Weights x∗
1 x∗

2 x∗
3 x∗

4 R∗
s Defuzzification Type

w = 1 5 5 5 4 0.996493 Type-I
w = 0.2 11 7 5 3 0.133367 Type-II&III
w = 0.5 7 6 5 4 0.725076 Type-II&III
w = 0.8 6 5 5 4 0.963690 Type-II&III
w = 1 6 5 5 4 0.996999 Type-II&III

The table 5 gives the result of redundancy for optimum system reliability
using generalized trapezoidal triangular fuzzy number by the defuzzification
rule of center of mass method, mean of α− cut method and removal area
method. Here also the outcome are same for mean of α− cut method and
removal area method.



Optimal Redundancy Allocation in Series-Parallel System 17

8. Conclusion

Here we have considered the problem so as to find out the optimum number of
redundancies, which maximizes the system reliability subject to the available
system cost and system weight. Geometric programming technique is used
to solve the problem with the coefficients, which are fuzzy number for relia-
bility and cost of components. Here the system cost and system weight are
taken as fuzzy number also. In many situations, problem parameters are more
competent to take as GFN for real life examples. Hence this work gives more
significant for reliability engineer for decision-making. For practical situation,
based on decision maker’s choice, several combination of different type of fuzzy
number may be considered in the reliability model.

Acknowledgement: This research is supported by CSIR research scheme No.
25(0151)/06/EMR-II in the Department of Mathematics, Bengal Engineering
and Science University, Shibpur

Appendix-I
The explanation of approximation of the model (3.2) for the standard form

of the primal geometric programming problem is given below as fellows

Max Rs (x1, x2, ..., xn) =

n
∏

i=1

{

1−
(

1− R̃i

)xi
}

Let R̃i = (Ri1, Ri2, ..., Ri3;wi), so its α−cut is

Ri (α) =
[

Ri1 +
α
wi

(Ri2 − Ri1) , Ri3 −
α
wi

(Ri3 − Ri2)
]

So Rs (α) =
[

RL
s (α) , R

U
s (α)

]

where

RL
s (α) = min

{

n
∏

i=1

(1− (1−Ri)
xi) : Ri ∈

[

RL
i

(

α
w

)

, RU
i

(

α
w

)]

}

and

RU
s (α) = max

{

n
∏

i=1

(1− (1− Ri)
xi) : Ri ∈

[

RL
i

(

α
w

)

, RU
i

(

α
w

)]

}

Here ∂
∂Rk

n
∏

i=1

(1− (1− Ri)
xi) =

n
∏

i=1
i 6=k

(1− (1−Ri)
xi) xk (1− Rk)

xk > 0 for

0 < Ri < 1, i = 1, 2, ..., n.

Therefore Rs (α) =
[

RL
s (α) , R

U
s (α)

]

where RL
s (α) =

n
∏

i=1

(

1−
(

1− RL
i

(

α
w

))xi
)

and RU
s (α) =

n
∏

i=1

(

1−
(

1−RU
i

(

α
w

))xi
)

and w = min
∀i

{wi} for i=1,2,. . . ,n.
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So R̃s is an approximate GTFN as

R̃s =

(

n
∏

i=1

(1− (1−Ri1)
xi) ,

n
∏

i=1

(1− (1−Ri2)
xi) ,

n
∏

i=1

(1− (1−Ri3)
xi) ;w

)

w = min
∀i

{wi} for i=1,2,. . . ,n. log R̃s is approximated to a GTFN (Kaufmann

and Gupta [7] page-61) as
(

log

(

n
∏

i=1
(1− (1−Ri1)

xi)

)

, log

(

n
∏

i=1
(1− (1−Ri2)

xi)

)

, log

(

n
∏

i=1
(1− (1−Ri3)

xi)

)

;w

)

w = min
∀i

{wi} for i=1,2,. . . ,n.

Again log

(

n
∏

i=1

(1− (1−Rij)
xi)

)

=
n
∑

i=1

(1− (1−Rij)
xi) for j = 1, 2, 3.

= −

n
∑

i=1

(

(1−Rij)
xi +

1

2
(1−Rij)

2xi +
1

3
(1−Rij)

3xi ...

)

=̃ −
n
∑

i=1

(1− Rij)
xi for j = 1, 2, 3.

[In general 0.5 << Rij < 1 so that 0 < 1 − Rij << 0.5 therefore higher
power of (1− Rij)

xi are neglected for j=1,2,3]

Therefore log R̃s is approximate GTFN as
(

−
n
∑

i=1

(1− Ri1)
xi ,−

n
∑

i=1

(1−Ri2)
xi ,−

n
∑

i=1

(1− Ri3)
xi

)

So log R̃s=̃−
n
∑

i=1

(1−Ri)
xi

Hence the approximation has significance to reduce the problem in to the
standard form of primal GP.
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