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Abstract

In this article we introduce a new sequence space h(F ) called the
Hahn sequence space of fuzzy numbers. It is proved that the β-dual
and γ-dual of h(F ) is the Cesaro space of the set of all Fuzzy bounded
sequences.

1. Introduction

In recent years there has been an increasing interest in mathematical aspects
of operations defined on fuzzy sets. The concept of fuzzy sets and fuzzy set
operations was first introduced by Zadeh [1] and subsequently several authors
have discussed various aspects of theory and applications of fuzzy sets, such
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as topological spaces, similarity relations and fuzzy orderings, fuzzy measures
of fuzzy events and fuzzy mathematical programming. The theory of fuzzy
numbers is not only the foundation of fuzzy analysis, but it also has important
applications in fuzzy optimization, fuzzy decision making etc. [2, 3]. Many
authors have found interest in the study of theory of fuzzy numbers [4, 5].
Matloka [6] introduced bounded and convergent sequences of fuzzy numbers.
In addition sequences of fuzzy numbers have been discussed by Aytar and
Pehlian [7], Basarir and Mursaleen [8] Nanda [9] and many others.

The idea of difference sequence space of fuzzy numbers was introduced
by Savas [10] and further generalized by Rifat Colak [11] and many others.
Recently Talo and Basar [12] introduced and studied the space bp(F ) of se-
quences of p-bounded variation of fuzzy numbers. The study of Hahn-sequence
space was initiated by Chandrasekhara Rao [13] with certain specific purpose
in Banach space theory. Indeed, he got interested in finding a semi Hahn
space and proved that the intersection of all semi Hahn spaces is the Hahn
space [14]. This idea motivates us to study fuzzy Hahn sequence space. Talo
and Basar [15] gave the idea of determining the dual of sequence space of fuzzy
numbers by using the concept of convergence of a series of fuzzy numbers [16].
The present paper is devoted to the study of Hahn sequence space of fuzzy
numbers. In Section 2 we recall some basic definitions and results about fuzzy
numbers. In Section 3 we proved the completeness of the space h(F ) and
showed that the β-dual and γ-dual of h(F ) is the Cesaro space of the set of
all Fuzzy bounded sequences.

2. Definitions and Preliminaries

We begin with giving some required definitions and statements of theorems,
propositions and lemmas. A fuzzy number is a fuzzy set on the real axis i.e.
a mapping u : R→ [0, 1] which satisfies the following four conditions.

(i) u is normal i.e. there exists an x0 ∈ R such that u(x0) = 1.

(ii) u is fuzzy convex i.e. u[λx+ (1−λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R
and for all λ ∈ [0, 1].

(iii) u is upper semi continuous

(iv) The set [u]0 = {x ∈ R : u(x) > 0} is compact [1] where {x ∈ R : u(x) > 0}
denotes the closure of the set {x ∈ R : u(x) > 0} in the usual topology
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of R. We denote the set of all fuzzy numbers on R by E ′ and called it
as the space of fuzzy numbers. The λ-level set [u]λ of u ∈ E ′ is defined

by [u]λ =

{
{t ∈ R : u(t) ≥ λ}, (0 < λ ≤ 1)

{t ∈ R : u(t) > λ}, (λ = 0).

The set [u]λ is a closed bounded and non-empty interval for each λ ∈ [0, 1]
which is defined by [u]λ = [u−(λ), u+(λ)]. R can be embedded in E ′.
Since each r ∈ R can be regarded as a fuzzy number r defined by

r =

{
1, (x = r)

0, (x 6= r).

Let u,w ∈ E ′ and k ∈ R. The operations addition, scalar multiplication and
product defined on E ′ by

u+ v = w ⇔ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]

⇔ [w]−(λ) = [u−(λ), v−(λ)] and [w]+(λ) = [u+(λ), v+(λ)]

for all λ ∈ [0, 1]

[ku]λ = k[u]λ for all λ ∈ [0, 1] and uv = w ⇔ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1]
where it is immediate that

[w]−(λ) = min{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}
and [w]+(λ) = max{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}

for all λ ∈ [0, 1].
Let W be the set of all closed and bounded intervals A of real numbers

with endpoints A and A i.e., A = [A,A ]. Define the relation d on W by

d(A,B) = max{|A−B|, |A−B|}.

Then it can be observed that d is a metric on W [10] and (W,d) is a complete
metric space [11]. Now we can define the metric D on E ′ by means of a
Hausdroff metric d as

D(u, v) = sup
λ∈[0,1]

d([u]λ, [v]λ) = sup
λ∈[0,1]

{|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|}.

(E ′, D) is a complete metric space [17] one can extend the natural order relation
on the real line to intervals as follows.

A ≤ B if and only if A ≤ B and A ≤ B.
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The partial order relation on E ′ is defined as follows.

u ≤ v ⇔ [u]λ ≤ [v]λ ⇔ u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ) for all λ ∈ [0, 1].

An absolute value |u| of a fuzzy number u is defined by

|u|(t) =

{
max{u(t), u(−t)}, (t ≥ 0)

0, (t < 0)

λ-level set [|u|]λ of the absolute value of u ∈ E ′ is in the form [|u|]λ where
|u|−(λ) = max{0, u−(λ), u+(λ)} and |u|+(λ) = max{|u−(λ)|, |u+(λ)|}. The
absolute value |uv| of u, v ∈ E ′ satisfies the inequalities [15]

|uv|−(λ) ≤ |uv|+(λ)

≤ max
{
|u|−(λ)| |v|−(λ), |u|−(λ)| |v|+(λ), |u|+(λ)| |v|−(λ), |u|+(λ)| |v|+(λ),

}
In the sequel, we require the following definitions and lemmas.

Definition 2.1. A sequence u = (uk) of fuzzy numbers is a function u from
the set N into the set E ′. The fuzzy number uk denotes the value of the
function at k ∈ N and is called the kth term of the sequence. Let w(F ) denote
the set of all sequences.

Lemma 2.2. The following statements hold

1. D(uv, 0) ≤ D(u, 0)D(v, 0) for all u, v ∈ E ′.

2. If uk → u as k → ∞ then D(uk, 0) → D(u, 0) as k → ∞ where (uk) ∈
w(F ).

Definition 2.3. A sequence (uk) ∈ w(F ) is called convergent with limit u ∈ E ′
if and only if for every ε > 0 there exists an n0 = n0(ε) ∈ N such that

D(uk, u) < ε for all k ≥ n0.

If the sequence (uk) ∈ w(F ) converges to a fuzzy number u then by the
definition of D the sequences of functions {u−k (λ)} and {u+k (λ)} are uniformly
convergent to u−(λ) and u+(λ) in [0, 1] respectively.
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Definition 2.4. A sequence (uk) ∈ w(F ) is called bounded if and only if
the set of all fuzzy numbers consisting of the terms of the sequence (uk) is a
bounded set.

That is to say that a sequences (uk) ∈ w(F ) is said to be bounded if and
only if there exist two fuzzy numbers m and M such that m ≤ uk ≤M for all
k ∈ N .

Definition 2.5. Let (uk) ∈ w(F ). Then the expression
∑
uk is called a series

of fuzzy numbers. Denote Sn =
∑n

k=0 uk for all n ∈ N , if the sequences
(Sn) converges to a fuzzy number u then we say that the series

∑
uk of fuzzy

numbers converges to u and write
∑n

k=0 uk = u which implies as n → ∞
that

∑n
k=0 u

−
k (λ) → u−k (λ) and

∑n
k=0 u

+
k (λ) → u+k (λ) uniformly in λ ∈ [0, 1].

Conversely, if the fuzzy numbers uk = {[u−k (λ), u+k (λ)] : λ ∈ [0, 1]},
∑
u−k (λ)

and
∑
u+k (λ) converge uniformly in λ then u =

{
[u−(λ), u+(λ)] : λ ∈ [0, 1]

}
defines a fuzzy number such that u =

∑
uk.

We say otherwise the series of fuzzy numbers diverges. Additionally if the
sequence (Sn) is bounded then we say that the series

∑
uk of fuzzy numbers

is bounded. By cs(F ) and bs(F ) we denote the sets of all convergent and
bounded series of fuzzy numbers respectively.

Lemma 2.6. Let for the series of functions
∑

k uk(x) and
∑

k vk(x) there
exists an n0 ∈ N such that |uk(x)| ≤ vk(x) for all k ≥ n0 and for all x ∈ [a, b]
with uk : [a, b] → R and vk : [a, b] → R. If the series converges uniformly
in [a, b] then the series

∑
k |uk(x)| and

∑
k vk(x) are uniformly convergent in

[a, b].

Weierstrass M test

Let uk : [a, b]→ R be given. If there exists an Mk ≥ 0 such that |uk(x)| ≤Mk

for all k ∈ N and the series
∑

kMk converges then the series
∑

k uk(x) is
uniformly and absolutely convergent in [a, b].

Definition 2.7. A mapping T from X1 into X2 is said to be fuzzy isometric
if d2(Tx, Ty) = d1(x, y) for all x, y ∈ X1. The space X1 is said to be fuzzy
isometric with the space X2 if there exists a bijective fuzzy isometry from X1

onto X2 and write X1
∼= X2 .The spaces X1 and X2 are then called fuzzy

isometric spaces.

Definition 2.8. Let S1 and S2 are two sequence spaces and A = (ank) be
an infinite matrix of real or complex numbers ank where n, k ∈ N . Then
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the matrix A defines a transformation from S1 into S2, if for every sequence
x = (xk) ∈ S1 the sequence Ax =

(
(Ax)n

)
, the A-transform of x, exists and is

in S2 where (Ax)n =
∑

k ankxk.

For a sequence space S, the matrix domain SA of an infinite matrix A is
defined by SA = {x = (xk) ∈ w : Ax ∈ S}.

The Hahn sequence space is the space of all sequences x = (xk) such that∑∞
k=1 k|xk − xk−1| converges and limk→∞ xk = 0.

The following spaces are needed for our work

`∞(F ) =
{

(uk) ∈ w(F ) : sup
k∈N

D(uk, 0) <∞)
}
,

c(F ) =
{

(uk) ∈ w(F ) : ∃` ∈ E ′ lim
k→∞

D(uk, `) = 0
}
,

c0(F ) =
{

(uk) ∈ w(F ) : lim
k→∞

D(uk, 0) = 0
}
,

`p(F ) =
{

(uk) ∈ w(F ) :
∑
k

D(uk, 0) <∞
}
.

3. Main Results

Let A denote the matrix A = (ank) defined by

ank
=

{
n(−1)n−k, n− 1 ≤ k ≤ n

0, 1 ≤ k ≤ n− 1 or k > n
(1)

Define the sequence y = (yk) which will be frequently used as the A-transform
of a sequence x = (xk),

i.e., yk = (Ax)k = k(xk − xk−1)k ≥ 1. (2)

We introduce the sequence spaces h(F ) as the set of all sequences such that
the A-transforms of them are in `(F ) that is

h(F ) =
{
u = (uk) ∈ w(F ) :

∑
k

D[(Au)k, 0 ] <∞ and lim
k→∞

D[uk, 0 ] = 0
}

and h∞(F ) =
{
u = (uk) ∈ w(F ) : sup

k
D[(Au)k, 0 ] <∞

}
.
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Example 3.1. Consider the sequence u = {uk} defined by

uk =

{
1, 1 ≤ k ≤ n

0, k > n

∑
Db(Au)k, 0c =

∑
Dbk(uk − uk−1), 0c

= 0 which is convergent

Also lim
k→∞

D (uk, 0) = 0. Hence u ∈ h(F ).

Now we proceed to prove the completeness of h(F ) and h∞(F ).

Theorem 3.2. h(F ) and h∞(F ) are complete metric spaces with the metrics
dh and dh∞ defined by

dh(u, v) =
∑
k

D[(Au)k, (Av)k]

and dh∞(u, v) = sup
k∈N

D[(Au)k, (Av)k]

respectively, where u = (uk) and v = (vk) are the elements of the spaces h(F )
or h∞(F ).

Proof. Let {ui} be any Cauchy sequence in the space h(F ), where ui =

{u(i)0 , u
(i)
1 , u

(i)
2 . . .}. Then for a given ε > 0 there exists a positive integer n0(ε)

such that
dh(ui, uj) =

∑
n

D[(Au)in, (Au)jn] < ε (3)

for i, j ≥ n0(ε). We obtain for each fixed n ∈ N from (3) that

D[(Au)in, (Au)jn] < ε (4)

for every i, j ≥ n0(ε). We obtain for each fixed n ∈ N from (3) that

m∑
k=0

D[(Au)in, (Au)jn] ≤ dh(ui, uj) < ε. (5)

Take any i ≥ n0(ε) and taking limit as j → ∞ first and next m → ∞ in (3)
we obtain

dh(ui, u) < ε. (6)
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Finally we proceed to prove u ∈ h(F ). Since {ui} is a Cauchy sequence in
h(F ), we have ∑

k

D[(Au)ik, 0 ] ≤ ε and lim
k→∞

[(Au)ik, 0 ] = 0.

Now

D[(Au)k, 0 ] ≤ D[(Au)k, (Au)ik] +D[(Au)ik, (Au)jk] +D[(Au)jk, 0 ]. (7)

Hence

D[(Au)k, 0 ] ≤
∑
k

D[(Au)k, (Au)ik]+
∑
k

D[(Au)ik, (Au)jk]+
∑
k

D[(Au)jk, 0 ] < ε.

Also from (5) limk→∞D[(Au)k, 0 ] = 0. Hence u ∈ h(F ). Since {ui} is an
arbitrary Cauchy sequence, the space h(F ) is complete.

Definition 3.3. The space h(F ) is isomorphic to the space `(F ).

Proof. Consider the transformation T defined from h(F ) to `(F ) by x →
y = T (x). To prove the fact h(F ) ∼= `(F ), we should show the existence of
a bijection between the spaces h(F ) and `(F ). We can find that only one
x ∈ h(F ) with Tx = y. This means that T is injective.
Let y ∈ `(F ). Define the sequence x = (xk) such that (Ax)k = yk for all
k ∈ N .

Then dh(x, 0) =
∑

kD[(Ax)k, 0 ] =
∑

kD[yk, 0 ] <∞. Thus x ∈ h(F ).
Consequently T is bijective and is isometric. Therefore h(F ) and `(F ) are

isomorphic.

Theorem 3.4. Let d denote the set of all sequences of fuzzy numbers defined
as follows

d = {x = (xk) ∈ w(F ) :
∑
k

k|xk − xk−1| <∞ and x ∈ c0(F )}

Then the set d is identical with the set h(F ).

Proof. Let x ∈ h(F ). Then∑
k

D((Ax)k, 0) <∞ and lim
k→∞

D(xk, 0) = 0. (8)
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Using (2), ∑
k

D(yk, 0) <∞ and lim
k→∞

D(xk, 0) = 0. (9)

We have
∑

kD(yk, 0) = supλ∈[0,1] max{|y−k (λ)|, |y+k (λ)|}.
Now max{|y−k (λ)|, |y+k (λ)|} ≤

∑
kD(yk, 0) <∞.

This implies that
∑

k |yk| <∞. That is
∑

k k|xk − xk−1| <∞.
Also from (8), x ∈ c0(F ). Thus x ∈ d. Conversely suppose x ∈ d. Then∑
k k|xk − xk−1| <∞.
That is

∑
k |yk| <∞. Therefore

∑
k kmax{|y−k (λ)|, |y+k (λ)|}. converges for

λ ∈ [0, 1]. This gives for λ = 0,
∑

kD(yk, 0) <∞.
Also (xk) ∈ c0(F ) implies limk→∞D(xk, 0) = 0. This completes the proof.
Now we define the duals of the sequence space of fuzzy numbers.

Definition 3.5. The α-dual, β-dual and γ-dual of a set S(F ) ⊂ w(F ) which
are respectively denoted and defined by

{S(F )}α = {(uk) ∈ w(F ) : (uk vk) ∈ `1(F ) for all (vk) ∈ S(F )},
{S(F )}β = {(uk) ∈ w(F ) : (ukvk) ∈ cs(F ) for all (vk) ∈ S(F )}

and

{S(F )}γ = {(uk) ∈ w(F ) : (ukvk) ∈ bs(F ) for all (vk) ∈ S(F )}.

Definition 3.6. Let B denote the matrix B = (bnk
) defined by

bnk
=

{
1/n, if 1 ≤ k ≤ n

0, otherwise

Define the sequence y = (yk) which will be frequently used as the B-transform

of a sequence x = (xk) i.e., yk = (Bx)k = 1
k

k∑
i=1

xi.

The Cesaro space of `∞(F ) is the set of all sequences such that the B-
transforms of them are in `∞(F ). That is

σ(`∞(F )) =

{
x = (xk) : sup

k
D
[
(Bx)k, 0

]
<∞

}
.



222 T. Balasubramanian and A. Pandiarani

Theorem 3.7. σ(`∞(F )) is a complete metric space with the metric.

dσ(u, v) = sup
k
D [(Bu)k, (Bv)k]

where u = (uk) and v = (vk) are the elements of the space σ (`∞(F ))

Theorem 3.8. The β- and γ-dual of the set h(F ) of sequences of fuzzy number
is the set σ (`∞(F )).

Proof. Let (uk) ∈ h(F ) and (vk) ∈ σ (`∞(F )).

(uk) ∈ h(F )⇒ limk→∞D
[
uk, 0

]
= 0.

Therefore for given ε > 0 there exist n0 such that D(uk, 0) < ε.

(vk) ∈ σ(`∞(F ))⇒ supkD
[
(Bv)k0

]
<∞.

Then D(vk, 0) <∞ for all k and n.

Hence there exist a M > 0 such that D(vk, 0) < M for all k and n.

Now,

|(uk)−(λ)| ≤ D(uk, 0) ≤ D(uk, 0)D(vk, 0) < εM.

Weierstras Test yields that
∑
k

(uk)
−(λ) and

∑
k

(uk)
+(λ) converge uniformly

and hence
∑
k

uk converges.

Thus σ (`∞(F )) ⊂ hβ(F ).

Conversely suppose that (vk) ∈ hβ(F ). Then the series
∑
k

ukvk converges

for all (uk) ∈ h(F ). This also holds for the sequence (uk) of fuzzy numbers
defined by uk = χ[−1, 1] for all k ∈ N . Then since u−k (λ) = −1 and u+k (λ) = 1
for all λ ∈ [0, 1] the series∑
k

(ukvk)
+(λ) =

∑
k

max{u−k (λ)v−k (λ), u−k (λ)v+k (λ), u+k (λ)v−k (λ), u+k (λ)v+k (λ)}

=
∑
k

max{−v−k (λ),−v+k (λ), v−k (λ), v+k (λ)}

=
∑
k

max{|v−k (λ)|, |v+k (λ)|}

converges uniformly. Thus supkD
[
(Bv)k, 0

]
< ∞. Hence (vk) ∈ σ

(
l∞(F )

)
and hβ(F ) = σ

(
l∞(F )

)
. This completes the proof.



The Hahn Sequence Space of Fuzzy Numbers 223

4. Conclusions

In this paper we introduced Hahn sequence space of fuzzy numbers and we
discussed some of its topological properties. We can further proceed the work
to find the matrix transformations between this space and some of the known
spaces of sequences of fuzzy numbers.
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