The Hahn Sequence Space of Fuzzy Numbers *

T. Balasubramanian ${ }^{\dagger}$
Department of Mathematics, Kamaraj College, Tuticorin-6280002, Tamil Nadu, India
and
A. Pandiarani ${ }^{\ddagger}$
Department of Mathematics, G. Venkadaswamy Naidu College, Koilpatti 628502, Tamil Nadu, India

Received April 7, 2010, Accepted July 16, 2010.

Abstract

In this article we introduce a new sequence space $h(F)$ called the Hahn sequence space of fuzzy numbers. It is proved that the β-dual and γ-dual of $h(F)$ is the Cesaro space of the set of all Fuzzy bounded sequences.

1. Introduction

In recent years there has been an increasing interest in mathematical aspects of operations defined on fuzzy sets. The concept of fuzzy sets and fuzzy set operations was first introduced by Zadeh [1] and subsequently several authors have discussed various aspects of theory and applications of fuzzy sets, such

[^0]as topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events and fuzzy mathematical programming. The theory of fuzzy numbers is not only the foundation of fuzzy analysis, but it also has important applications in fuzzy optimization, fuzzy decision making etc. [2, 3]. Many authors have found interest in the study of theory of fuzzy numbers $[4,5]$. Matloka [6] introduced bounded and convergent sequences of fuzzy numbers. In addition sequences of fuzzy numbers have been discussed by Aytar and Pehlian [7], Basarir and Mursaleen [8] Nanda [9] and many others.

The idea of difference sequence space of fuzzy numbers was introduced by Savas [10] and further generalized by Rifat Colak [11] and many others. Recently Talo and Basar [12] introduced and studied the space $b_{p}(F)$ of sequences of p-bounded variation of fuzzy numbers. The study of Hahn-sequence space was initiated by Chandrasekhara Rao [13] with certain specific purpose in Banach space theory. Indeed, he got interested in finding a semi Hahn space and proved that the intersection of all semi Hahn spaces is the Hahn space [14]. This idea motivates us to study fuzzy Hahn sequence space. Talo and Basar [15] gave the idea of determining the dual of sequence space of fuzzy numbers by using the concept of convergence of a series of fuzzy numbers [16]. The present paper is devoted to the study of Hahn sequence space of fuzzy numbers. In Section 2 we recall some basic definitions and results about fuzzy numbers. In Section 3 we proved the completeness of the space $h(F)$ and showed that the β-dual and γ-dual of $h(F)$ is the Cesaro space of the set of all Fuzzy bounded sequences.

2. Definitions and Preliminaries

We begin with giving some required definitions and statements of theorems, propositions and lemmas. A fuzzy number is a fuzzy set on the real axis i.e. a mapping $u: R \rightarrow[0,1]$ which satisfies the following four conditions.
(i) u is normal i.e. there exists an $x_{0} \in R$ such that $u\left(x_{0}\right)=1$.
(ii) u is fuzzy convex i.e. $u[\lambda x+(1-\lambda) y] \geq \min \{u(x), u(y)\}$ for all $x, y \in R$ and for all $\lambda \in[0,1]$.
(iii) u is upper semi continuous
(iv) The set $[u]_{0}=\{\overline{x \in R: u(x)>0}\}$ is compact [1] where $\{\overline{x \in R: u(x)>0}\}$ denotes the closure of the set $\{x \in R: u(x)>0\}$ in the usual topology
of R. We denote the set of all fuzzy numbers on R by E^{\prime} and called it as the space of fuzzy numbers. The λ-level set $[u]_{\lambda}$ of $u \in E^{\prime}$ is defined by $[u]_{\lambda}= \begin{cases}\{t \in R: u(t) \geq \lambda\}, & (0<\lambda \leq 1) \\ \{t \in R: u(t)>\lambda\}, & (\lambda=0) .\end{cases}$
The set $[u]_{\lambda}$ is a closed bounded and non-empty interval for each $\lambda \in[0,1]$ which is defined by $[u]_{\lambda}=\left[u^{-}(\lambda), u^{+}(\lambda)\right] . \mathbb{R}$ can be embedded in E^{\prime}. Since each $r \in \mathbb{R}$ can be regarded as a fuzzy number \bar{r} defined by

$$
\bar{r}= \begin{cases}1, & (x=r) \\ 0, & (x \neq r)\end{cases}
$$

Let $u, w \in E^{\prime}$ and $k \in \mathbb{R}$. The operations addition, scalar multiplication and product defined on E^{\prime} by

$$
\begin{aligned}
u+v=w & \Leftrightarrow[w]_{\lambda}=[u]_{\lambda}+[v]_{\lambda} \quad \text { for all } \lambda \in[0,1] \\
& \Leftrightarrow[w]^{-}(\lambda)=\left[u^{-}(\lambda), v^{-}(\lambda)\right] \text { and }[w]^{+}(\lambda)=\left[u^{+}(\lambda), v^{+}(\lambda)\right] \\
& \text { for all } \lambda \in[0,1]
\end{aligned}
$$

$[k u]_{\lambda}=k[u]_{\lambda}$ for all $\lambda \in[0,1]$ and $u v=w \Leftrightarrow[w]_{\lambda}=[u]_{\lambda}[v]_{\lambda}$ for all $\lambda \in[0,1]$ where it is immediate that

$$
\begin{aligned}
{[w]^{-}(\lambda) } & =\min \left\{u^{-}(\lambda) v^{-}(\lambda), u^{-}(\lambda) v^{+}(\lambda), u^{+}(\lambda) v^{-}(\lambda), u^{+}(\lambda) v^{+}(\lambda)\right\} \\
\text { and } \quad[w]^{+}(\lambda) & =\max \left\{u^{-}(\lambda) v^{-}(\lambda), u^{-}(\lambda) v^{+}(\lambda), u^{+}(\lambda) v^{-}(\lambda), u^{+}(\lambda) v^{+}(\lambda)\right\}
\end{aligned}
$$

for all $\lambda \in[0,1]$.
Let W be the set of all closed and bounded intervals A of real numbers with endpoints \underline{A} and \bar{A} i.e., $A=[\underline{A}, \bar{A}]$. Define the relation d on W by

$$
d(A, B)=\max \{|\underline{A}-\underline{B}|,|\bar{A}-\bar{B}|\} .
$$

Then it can be observed that d is a metric on $W[10]$ and (W, d) is a complete metric space [11]. Now we can define the metric D on E^{\prime} by means of a Hausdroff metric d as

$$
D(u, v)=\sup _{\lambda \in[0,1]} d\left([u]_{\lambda},[v]_{\lambda}\right)=\sup _{\lambda \in[0,1]}\left\{\left|u^{-}(\lambda)-v^{-}(\lambda)\right|,\left|u^{+}(\lambda)-v^{+}(\lambda)\right|\right\} .
$$

$\left(E^{\prime}, D\right)$ is a complete metric space [17] one can extend the natural order relation on the real line to intervals as follows.

$$
A \leq B \quad \text { if and only if } \underline{A} \leq \underline{B} \quad \text { and } \quad \bar{A} \leq \bar{B}
$$

The partial order relation on E^{\prime} is defined as follows.
$u \leq v \Leftrightarrow[u]_{\lambda} \leq[v]_{\lambda} \Leftrightarrow u^{-}(\lambda) \leq v^{-}(\lambda) \quad$ and $\quad u^{+}(\lambda) \leq v^{+}(\lambda) \quad$ for all $\lambda \in[0,1]$.
An absolute value $|u|$ of a fuzzy number u is defined by

$$
|u|(t)= \begin{cases}\max \{u(t), u(-t)\}, & (t \geq 0) \\ 0, & (t<0)\end{cases}
$$

λ-level set $[|u|]_{\lambda}$ of the absolute value of $u \in E^{\prime}$ is in the form $[|u|]_{\lambda}$ where $|u|^{-}(\lambda)=\max \left\{0, u^{-}(\lambda), u^{+}(\lambda)\right\}$ and $|u|^{+}(\lambda)=\max \left\{\left|u^{-}(\lambda)\right|,\left|u^{+}(\lambda)\right|\right\}$. The absolute value $|u v|$ of $u, v \in E^{\prime}$ satisfies the inequalities [15]

$$
\begin{aligned}
& |u v|^{-}(\lambda) \leq|u v|^{+}(\lambda) \\
& \quad \leq \max \left\{\left.|u|^{-}(\lambda)| | v\right|^{-}(\lambda),\left.|u|^{-}(\lambda)| | v\right|^{+}(\lambda),\left.|u|^{+}(\lambda)| | v\right|^{-}(\lambda),\left.|u|^{+}(\lambda)| | v\right|^{+}(\lambda),\right\}
\end{aligned}
$$

In the sequel, we require the following definitions and lemmas.
Definition 2.1. A sequence $u=\left(u_{k}\right)$ of fuzzy numbers is a function u from the set N into the set E^{\prime}. The fuzzy number u_{k} denotes the value of the function at $k \in \mathbb{N}$ and is called the k th term of the sequence. Let $w(F)$ denote the set of all sequences.

Lemma 2.2. The following statements hold

1. $D(u v, \overline{0}) \leq D(u, \overline{0}) D(v, \overline{0})$ for all $u, v \in E^{\prime}$.
2. If $u_{k} \rightarrow u$ as $k \rightarrow \infty$ then $D\left(u_{k}, \overline{0}\right) \rightarrow D(u, 0)$ as $k \rightarrow \infty$ where $\left(u_{k}\right) \in$ $w(F)$.

Definition 2.3. A sequence $\left(u_{k}\right) \in w(F)$ is called convergent with limit $u \in E^{\prime}$ if and only if for every $\varepsilon>0$ there exists an $n_{0}=n_{0}(\varepsilon) \in N$ such that

$$
D\left(u_{k}, u\right)<\varepsilon \text { for all } k \geq n_{0} .
$$

If the sequence $\left(u_{k}\right) \in w(F)$ converges to a fuzzy number u then by the definition of D the sequences of functions $\left\{u_{k}^{-}(\lambda)\right\}$ and $\left\{u_{k}^{+}(\lambda)\right\}$ are uniformly convergent to $u^{-}(\lambda)$ and $u^{+}(\lambda)$ in $[0,1]$ respectively.

Definition 2.4. A sequence $\left(u_{k}\right) \in w(F)$ is called bounded if and only if the set of all fuzzy numbers consisting of the terms of the sequence $\left(u_{k}\right)$ is a bounded set.

That is to say that a sequences $\left(u_{k}\right) \in w(F)$ is said to be bounded if and only if there exist two fuzzy numbers m and M such that $m \leq u_{k} \leq M$ for all $k \in N$.

Definition 2.5. Let $\left(u_{k}\right) \in w(F)$. Then the expression $\sum u_{k}$ is called a series of fuzzy numbers. Denote $S_{n}=\sum_{k=0}^{n} u_{k}$ for all $n \in N$, if the sequences $\left(S_{n}\right)$ converges to a fuzzy number u then we say that the series $\sum u_{k}$ of fuzzy numbers converges to u and write $\sum_{k=0}^{n} u_{k}=u$ which implies as $n \rightarrow \infty$ that $\sum_{k=0}^{n} u_{k}^{-}(\lambda) \rightarrow u_{k}^{-}(\lambda)$ and $\sum_{k=0}^{n} u_{k}^{+}(\lambda) \rightarrow u_{k}^{+}(\lambda)$ uniformly in $\lambda \in[0,1]$. Conversely, if the fuzzy numbers $u_{k}=\left\{\left[u_{k}^{-}(\lambda), u_{k}^{+}(\lambda)\right]: \lambda \in[0,1]\right\}, \sum u_{k}^{-}(\lambda)$ and $\sum u_{k}^{+}(\lambda)$ converge uniformly in λ then $u=\left\{\left[u^{-}(\lambda), u^{+}(\lambda)\right]: \lambda \in[0,1]\right\}$ defines a fuzzy number such that $u=\sum u_{k}$.

We say otherwise the series of fuzzy numbers diverges. Additionally if the sequence $\left(S_{n}\right)$ is bounded then we say that the series $\sum u_{k}$ of fuzzy numbers is bounded. By $\operatorname{cs}(F)$ and $\operatorname{bs}(F)$ we denote the sets of all convergent and bounded series of fuzzy numbers respectively.

Lemma 2.6. Let for the series of functions $\sum_{k} u_{k}(x)$ and $\sum_{k} v_{k}(x)$ there exists an $n_{0} \in N$ such that $\left|u_{k}(x)\right| \leq v_{k}(x)$ for all $k \geq n_{0}$ and for all $x \in[a, b]$ with $u_{k}:[a, b] \rightarrow \mathbb{R}$ and $v_{k}:[a, b] \rightarrow \mathbb{R}$. If the series converges uniformly in $[a, b]$ then the series $\sum_{k}\left|u_{k}(x)\right|$ and $\sum_{k} v_{k}(x)$ are uniformly convergent in $[a, b]$.

Weierstrass M test

Let $u_{k}:[a, b] \rightarrow \mathbb{R}$ be given. If there exists an $M_{k} \geq 0$ such that $\left|u_{k}(x)\right| \leq M_{k}$ for all $k \in N$ and the series $\sum_{k} M_{k}$ converges then the series $\sum_{k} u_{k}(x)$ is uniformly and absolutely convergent in $[a, b]$.

Definition 2.7. A mapping T from X_{1} into X_{2} is said to be fuzzy isometric if $d_{2}(T x, T y)=d_{1}(x, y)$ for all $x, y \in X_{1}$. The space X_{1} is said to be fuzzy isometric with the space X_{2} if there exists a bijective fuzzy isometry from X_{1} onto X_{2} and write $X_{1} \cong X_{2}$. The spaces X_{1} and X_{2} are then called fuzzy isometric spaces.

Definition 2.8. Let S_{1} and S_{2} are two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$ where $n, k \in N$. Then
the matrix A defines a transformation from S_{1} into S_{2}, if for every sequence $x=\left(x_{k}\right) \in S_{1}$ the sequence $A x=\left((A x)_{n}\right)$, the A-transform of x, exists and is in S_{2} where $(A x)_{n}=\sum_{k} a_{n k} x_{k}$.

For a sequence space S, the matrix domain S_{A} of an infinite matrix A is defined by $S_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in S\right\}$.

The Hahn sequence space is the space of all sequences $x=\left(x_{k}\right)$ such that $\sum_{k=1}^{\infty} k\left|x_{k}-x_{k-1}\right|$ converges and $\lim _{k \rightarrow \infty} x_{k}=0$.

The following spaces are needed for our work

$$
\begin{aligned}
\ell_{\infty}(F) & \left.=\left\{\left(u_{k}\right) \in w(F): \sup _{k \in N} D\left(u_{k}, \overline{0}\right)<\infty\right)\right\} \\
c(F) & =\left\{\left(u_{k}\right) \in w(F): \exists \ell \in E^{\prime} \lim _{k \rightarrow \infty} D\left(u_{k}, \ell\right)=0\right\}, \\
c_{0}(F) & =\left\{\left(u_{k}\right) \in w(F): \lim _{k \rightarrow \infty} D\left(u_{k}, 0\right)=0\right\} \\
\ell_{p}(F) & =\left\{\left(u_{k}\right) \in w(F): \sum_{k} D\left(u_{k}, \overline{0}\right)<\infty\right\} .
\end{aligned}
$$

3. Main Results

Let A denote the matrix $A=\left(a_{n k}\right)$ defined by

$$
a_{n_{k}}= \begin{cases}n(-1)^{n-k}, & n-1 \leq k \leq n \tag{1}\\ 0, & 1 \leq k \leq n-1 \text { or } k>n\end{cases}
$$

Define the sequence $y=\left(y_{k}\right)$ which will be frequently used as the A-transform of a sequence $x=\left(x_{k}\right)$,

$$
\begin{equation*}
\text { i.e., } \quad y_{k}=(A x)_{k}=k\left(x_{k}-x_{k-1}\right) k \geq 1 . \tag{2}
\end{equation*}
$$

We introduce the sequence spaces $h(F)$ as the set of all sequences such that the A-transforms of them are in $\ell(F)$ that is

$$
h(F)=\left\{u=\left(u_{k}\right) \in w(F): \sum_{k} D\left[(A u)_{k}, \overline{0}\right]<\infty \text { and } \lim _{k \rightarrow \infty} D\left[u_{k}, \overline{0}\right]=0\right\}
$$

and $\quad h_{\infty}(F)=\left\{u=\left(u_{k}\right) \in w(F): \sup _{k} D\left[(A u)_{k}, \overline{0}\right]<\infty\right\}$.

Example 3.1. Consider the sequence $u=\left\{u_{k}\right\}$ defined by

$$
\begin{gathered}
u_{k}= \begin{cases}\overline{1}, & 1 \leq k \leq n \\
\overline{0}, & k>n\end{cases} \\
\sum D\left\lfloor(A u)_{k}, \overline{0}\right\rfloor
\end{gathered} \begin{aligned}
& =\sum D\left\lfloor k\left(u_{k}-u_{k-1}\right), \overline{0}\right\rfloor \\
& \\
& =0 \quad \text { which is convergent }
\end{aligned}
$$

Also $\lim _{k \rightarrow \infty} D\left(u_{k}, \overline{0}\right)=0$. Hence $u \in h(F)$.
Now we proceed to prove the completeness of $h(F)$ and $h_{\infty}(F)$.
Theorem 3.2. $h(F)$ and $h_{\infty}(F)$ are complete metric spaces with the metrics $d h$ and $d h_{\infty}$ defined by

$$
\begin{aligned}
d h(u, v) & =\sum_{k} D\left[(A u)_{k},(A v)_{k}\right] \\
\text { and } \quad d h_{\infty}(u, v) & =\sup _{k \in N} D\left[(A u)_{k},(A v)_{k}\right]
\end{aligned}
$$

respectively, where $u=\left(u_{k}\right)$ and $v=\left(v_{k}\right)$ are the elements of the spaces $h(F)$ or $h_{\infty}(F)$.
Proof. Let $\left\{u^{i}\right\}$ be any Cauchy sequence in the space $h(F)$, where $u^{i}=$ $\left\{u_{0}^{(i)}, u_{1}^{(i)}, u_{2}^{(i)} \ldots\right\}$. Then for a given $\varepsilon>0$ there exists a positive integer $n_{0}(\varepsilon)$ such that

$$
\begin{equation*}
d h\left(u^{i}, u^{j}\right)=\sum_{n} D\left[(A u)_{n}^{i},(A u)_{n}^{j}\right]<\varepsilon \tag{3}
\end{equation*}
$$

for $i, j \geq n_{0}(\varepsilon)$. We obtain for each fixed $n \in N$ from (3) that

$$
\begin{equation*}
D\left[(A u)_{n}^{i},(A u)_{n}^{j}\right]<\varepsilon \tag{4}
\end{equation*}
$$

for every $i, j \geq n_{0}(\varepsilon)$. We obtain for each fixed $n \in \mathbb{N}$ from (3) that

$$
\begin{equation*}
\sum_{k=0}^{m} D\left[(A u)_{n}^{i},(A u)_{n}^{j}\right] \leq d h\left(u^{i}, u^{j}\right)<\varepsilon \tag{5}
\end{equation*}
$$

Take any $i \geq n_{0}(\varepsilon)$ and taking limit as $j \rightarrow \infty$ first and next $m \rightarrow \infty$ in (3) we obtain

$$
\begin{equation*}
d h\left(u^{i}, u\right)<\varepsilon . \tag{6}
\end{equation*}
$$

Finally we proceed to prove $u \in h(F)$. Since $\left\{u^{i}\right\}$ is a Cauchy sequence in $h(F)$, we have

$$
\sum_{k} D\left[(A u)_{k}^{i}, \overline{0}\right] \leq \varepsilon \quad \text { and } \quad \lim _{k \rightarrow \infty}\left[(A u)_{k}^{i}, \overline{0}\right]=0
$$

Now

$$
\begin{equation*}
D\left[(A u)_{k}, \overline{0}\right] \leq D\left[(A u)_{k},(A u)_{k}^{i}\right]+D\left[(A u)_{k}^{i},(A u)_{k}^{j}\right]+D\left[(A u)_{k}^{j}, \overline{0}\right] . \tag{7}
\end{equation*}
$$

Hence
$D\left[(A u)_{k}, \overline{0}\right] \leq \sum_{k} D\left[(A u)_{k},(A u)_{k}^{i}\right]+\sum_{k} D\left[(A u)_{k}^{i},(A u)_{k}^{j}\right]+\sum_{k} D\left[(A u)_{k}^{j}, \overline{0}\right]<\varepsilon$.
Also from (5) $\lim _{k \rightarrow \infty} D\left[(A u)_{k}, \overline{0}\right]=0$. Hence $u \in h(F)$. Since $\left\{u^{i}\right\}$ is an arbitrary Cauchy sequence, the space $h(F)$ is complete.

Definition 3.3. The space $h(F)$ is isomorphic to the space $\ell(F)$.
Proof. Consider the transformation T defined from $h(F)$ to $\ell(F)$ by $x \rightarrow$ $y=T(x)$. To prove the fact $h(F) \cong \ell(F)$, we should show the existence of a bijection between the spaces $h(F)$ and $\ell(F)$. We can find that only one $x \in h(F)$ with $T x=y$. This means that T is injective.
Let $y \in \ell(F)$. Define the sequence $x=\left(x_{k}\right)$ such that $(A x)_{k}=y_{k}$ for all $k \in N$.

Then $d h(x, 0)=\sum_{k} D\left[(A x)_{k}, \overline{0}\right]=\sum_{k} D\left[y_{k}, \overline{0}\right]<\infty$. Thus $x \in h(F)$.
Consequently T is bijective and is isometric. Therefore $h(F)$ and $\ell(F)$ are isomorphic.

Theorem 3.4. Let d denote the set of all sequences of fuzzy numbers defined as follows

$$
d=\left\{x=\left(x_{k}\right) \in w(F): \sum_{k} k\left|x_{k}-x_{k-1}\right|<\infty \quad \text { and } \quad x \in c_{0}(F)\right\}
$$

Then the set d is identical with the set $h(F)$.
Proof. Let $x \in h(F)$. Then

$$
\begin{equation*}
\sum_{k} D\left((A x)_{k}, \overline{0}\right)<\infty \quad \text { and } \quad \lim _{k \rightarrow \infty} D\left(x_{k}, \overline{0}\right)=0 \tag{8}
\end{equation*}
$$

Using (2),

$$
\begin{equation*}
\sum_{k} D\left(y_{k}, \overline{0}\right)<\infty \quad \text { and } \quad \lim _{k \rightarrow \infty} D\left(x_{k}, \overline{0}\right)=0 \tag{9}
\end{equation*}
$$

We have $\sum_{k} D\left(y_{k}, \overline{0}\right)=\sup _{\lambda \in[0,1]} \max \left\{\left|y_{k}^{-}(\lambda)\right|,\left|y_{k}^{+}(\lambda)\right|\right\}$.
Now max $\left\{\left|y_{k}^{-}(\lambda)\right|,\left|y_{k}^{+}(\lambda)\right|\right\} \leq \sum_{k} D\left(y_{k}, \overline{0}\right)<\infty$.
This implies that $\sum_{k}\left|y_{k}\right|<\infty$. That is $\sum_{k} k\left|x_{k}-x_{k-1}\right|<\infty$.
Also from (8), $x \in c_{0}(F)$. Thus $x \in d$. Conversely suppose $x \in d$. Then $\sum_{k} k\left|x_{k}-x_{k-1}\right|<\infty$.

That is $\sum_{k}\left|y_{k}\right|<\infty$. Therefore $\sum_{k} k \max \left\{\left|y_{k}^{-}(\lambda)\right|,\left|y_{k}^{+}(\lambda)\right|\right\}$. converges for $\lambda \in[0,1]$. This gives for $\lambda=0, \sum_{k} D\left(y_{k}, \overline{0}\right)<\infty$.

Also $\left(x_{k}\right) \in c_{0}(F)$ implies $\lim _{k \rightarrow \infty} D\left(x_{k}, \overline{0}\right)=0$. This completes the proof. Now we define the duals of the sequence space of fuzzy numbers.

Definition 3.5. The α-dual, β-dual and γ-dual of a set $S(F) \subset w(F)$ which are respectively denoted and defined by

$$
\begin{aligned}
& \{S(F)\}^{\alpha}=\left\{\left(u_{k}\right) \in w(F):\left(u_{k} v_{k}\right) \in \ell_{1}(F) \quad \text { for all } \quad\left(v_{k}\right) \in S(F)\right\} \\
& \{S(F)\}^{\beta}=\left\{\left(u_{k}\right) \in w(F):\left(u_{k} v_{k}\right) \in \operatorname{cs}(F) \quad \text { for all } \quad\left(v_{k}\right) \in S(F)\right\}
\end{aligned}
$$

and

$$
\{S(F)\}^{\gamma}=\left\{\left(u_{k}\right) \in w(F):\left(u_{k} v_{k}\right) \in \operatorname{bs}(F) \quad \text { for all } \quad\left(v_{k}\right) \in S(F)\right\}
$$

Definition 3.6. Let B denote the matrix $B=\left(b_{n_{k}}\right)$ defined by

$$
b_{n_{k}}= \begin{cases}1 / n, & \text { if } 1 \leq k \leq n \\ 0, & \text { otherwise }\end{cases}
$$

Define the sequence $y=\left(y_{k}\right)$ which will be frequently used as the B-transform of a sequence $x=\left(x_{k}\right)$ i.e., $y_{k}=(B x)_{k}=\frac{1}{k} \sum_{i=1}^{k} x_{i}$.

The Cesaro space of $\ell_{\infty}(F)$ is the set of all sequences such that the B transforms of them are in $\ell_{\infty}(F)$. That is

$$
\sigma\left(\ell_{\infty}(F)\right)=\left\{x=\left(x_{k}\right): \sup _{k} D\left[(B x)_{k}, \overline{0}\right]<\infty\right\}
$$

Theorem 3.7. $\sigma\left(\ell_{\infty}(F)\right)$ is a complete metric space with the metric.

$$
d_{\sigma}(u, v)=\sup _{k} D\left[(B u)_{k},(B v)_{k}\right]
$$

where $u=\left(u_{k}\right)$ and $v=\left(v_{k}\right)$ are the elements of the space $\sigma\left(\ell_{\infty}(F)\right)$
Theorem 3.8. The β - and γ-dual of the set $h(F)$ of sequences of fuzzy number is the set $\sigma\left(\ell_{\infty}(F)\right)$.

Proof. Let $\left(u_{k}\right) \in h(F)$ and $\left(v_{k}\right) \in \sigma\left(\ell_{\infty}(F)\right)$.
$\left(u_{k}\right) \in h(F) \Rightarrow \lim _{k \rightarrow \infty} D\left[u_{k}, \overline{0}\right]=0$.
Therefore for given $\varepsilon>0$ there exist n_{0} such that $D\left(u_{k}, \overline{0}\right)<\varepsilon$.
$\left(v_{k}\right) \in \sigma\left(\ell_{\infty}(F)\right) \Rightarrow \sup _{k} D\left[(B v)_{k} \overline{0}\right]<\infty$.
Then $D\left(v_{k}, \overline{0}\right)<\infty$ for all k and n.
Hence there exist a $M>0$ such that $D\left(v_{k}, \overline{0}\right)<M$ for all k and n.
Now,

$$
\left|\left(u_{k}\right)^{-}(\lambda)\right| \leq D\left(u_{k}, \overline{0}\right) \leq D\left(u_{k}, \overline{0}\right) D\left(v_{k}, \overline{0}\right)<\varepsilon M .
$$

Weierstras Test yields that $\sum_{k}\left(u_{k}\right)^{-}(\lambda)$ and $\sum_{k}\left(u_{k}\right)^{+}(\lambda)$ converge uniformly and hence $\sum_{k} u_{k}$ converges.

Thus $\sigma\left(\ell_{\infty}(F)\right) \subset h^{\beta}(F)$.
Conversely suppose that $\left(v_{k}\right) \in h^{\beta}(F)$. Then the series $\sum_{k} u_{k} v_{k}$ converges for all $\left(u_{k}\right) \in h(F)$. This also holds for the sequence $\left(u_{k}\right)$ of fuzzy numbers defined by $u_{k}=\chi[-1,1]$ for all $k \in N$. Then since $u_{k}^{-}(\lambda)=-1$ and $u_{k}^{+}(\lambda)=1$ for all $\lambda \in[0,1]$ the series

$$
\begin{aligned}
\sum_{k}\left(u_{k} v_{k}\right)^{+}(\lambda) & =\sum_{k} \max \left\{u_{k}^{-}(\lambda) v_{k}^{-}(\lambda), u_{k}^{-}(\lambda) v_{k}^{+}(\lambda), u_{k}^{+}(\lambda) v_{k}^{-}(\lambda), u_{k}^{+}(\lambda) v_{k}^{+}(\lambda)\right\} \\
& =\sum_{k} \max \left\{-v_{k}^{-}(\lambda),-v_{k}^{+}(\lambda), v_{k}^{-}(\lambda), v_{k}^{+}(\lambda)\right\} \\
& =\sum_{k} \max \left\{\left|v_{k}^{-}(\lambda)\right|,\left|v_{k}^{+}(\lambda)\right|\right\}
\end{aligned}
$$

converges uniformly. Thus $\sup _{k} D\left[(B v)_{k}, \overline{0}\right]<\infty$. Hence $\left(v_{k}\right) \in \sigma\left(l_{\infty}(F)\right)$ and $h^{\beta}(F)=\sigma\left(l_{\infty}(F)\right)$. This completes the proof.

4. Conclusions

In this paper we introduced Hahn sequence space of fuzzy numbers and we discussed some of its topological properties. We can further proceed the work to find the matrix transformations between this space and some of the known spaces of sequences of fuzzy numbers.

Acknowledgment We wish to express our warm thanks to Bernard De Baets and Didier Dubois for their valuable suggestions that improved the presentation of this paper.

References

[1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8(1965), 338-353.
[2] H-M. Hsu and C.-T. Chen, Aggregation of fuzzy opinions under group decision making, Fuzzy Sets and systems, 79(1996), 279-285.
[3] M. Sakawa and K. Kato, Interactive decision making for large-scale multiobjective linear programmes with fuzzy numbers, Fuzzy sets and systems, 88(1997), 161-172.
[4] P. Diamond and P. Kloden, Metric spaces of fuzzy sets, Fuzzy sets and systems, 35(1990), 241-249.
[5] D. Dubois and H. Prade, Operations on Fuzzy numbers, Internet. J. Systems sci., 9(1978), 613-626.
[6] M. Matloka, sequences of fuzzy numbers, BUSEFAL, 28(1986), 28-37.
[7] S. Aytar and S. Pehlian, Statistically monotonic and statistically bounded sequences of fuzzy numbers, inform. Sci., 176 no. 6 (2006), 734-744.
[8] M. Mursaleen and M. Basarir, On some sequence spaces of fuzzy numbers, Indian J. Pure Appl. Math, 34 no. 9 (2003), 1351-1357.
[9] E. Savas, A note on sequences of fuzzy numbers, Information sciences, 124(2000), 297-300.
[10] S. Nanda, On sequences of fuzzy numbers, Fuzzy sets and systems, 33(1989), 123-126.
[11] Rifat Colak Hifsi Altinok and Mikail Et, Generalised difference sequences of fuzzy numbers chaos solitons and fractals, 40(2009), 1106-1117.
[12] Ozer Talo and Feyzi Basar, On the space $b \vee \rho(F)$ of sequences of p bounded variation of fuzzy numbers, Acta Mathematica Cinica English series, 24 no. 7 (2008), 1205-1212.
[13] K. Chandrasekhara Rao, The Hahn sequence space, Bull. Cal. Math. Soc., 82(1990), 72-78.
[14] K. Chandrasekhara Rao and N. Subramanian, The Hahn sequence spaceIII, Bull. Malaysian Math. Sc. Soc (Second Series), 25(2002), 163-171.
[15] Ozer Talo and Feyzi Basar, Determination of the Duals of classical sets of sequences of Fuzzy numbers and related matrix transformations, Computers and Mathematics with applications, 58(2009), 717-733.
[16] M. Stojakovic and Z. Stojakovic, Addition and series of fuzzy Numbers, Fuzzy sets and systems, 83(1996), 341-346.
[17] M. H. Puri and D. A. Ralescu, Differentials fuzzy functions, J. Math. Anal. Appl., 91(1983), 552-558.

[^0]: *2000 Mathematics Subject Classification. Primary 40A05, 40D25, 46A45.
 \dagger E-mail: satbalu@yahoo.com
 ${ }^{\ddagger}$ Corresponding author. E-mail: raniseelan_92@yahoo.co.in

