
The Conditional Covering Problem on Interval

Graphs with Unequal Costs ∗

Akul Rana†

Department of Mathematics, Narajole Raj College,

Narajole, Paschim Medinipur- 721 211, India

Anita Pal‡

Department of Mathematics, National Institute of Technology Durgapur,

Durgapur-713 209, India

and

Madhumangal Pal§

Department of Applied Mathematics with Oceanology and Computer Programming,

Vidyasagar University, Midnapore-721 102, India

Received November 18, 2009, Accepted July 30, 2010.

Tamsui Oxford Journal of Information and Mathematical Sciences 27(2) (2011) 183-195
Aletheia University

Abstract

The conditional covering problem is an extension of classical set cov-
ering problem. The classical set covering problem finds a minimum cost
covering set that covers all the vertices of the graph. The conditional
covering problem has the same objective with an additional condition
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that every vertex in the covering set must be cover by at least one other
vertex in the covering set. This problem is known to be NP-hard for
general graphs. In some special cases, polynomial results are known.
In this paper, an O(n2) time algorithm is presented to compute the
minimum cost conditional covering set of an interval graph with n ver-
tices. Here it is assumed that the costs of the vertices are unequal. The
dynamic programming approach is used to solve the problem.

Keywords and Phrases: Design of algorithms, Analysis of algorithms, In-
terval graph, Set covering, Conditional covering.

1. Introduction

Let G = (V,E) be a simple graph, i.e., finite, undirected, loop less without
multiple edges, with vertex set V = {1, 2, · · · , n} and edge set E of size m.
We use d(x, y) to denote the shortest distance between every pair of vertices
x, y ∈ V . A real number c(v) is associated with each vertex v of V , called
cost of the vertex v. The cost of a set of vertices is the sum of the costs of the
vertices in the set. For any set X of vertices, the cost of X is denoted by c(X),
i.e., c(X) =

∑
v∈X

c(v). Each vertex v ∈ V provides a positive real number R(v)

such that v can cover all vertices within the distance R(v) except the vertex
v. R(v) is said to be the coverage radius of the vertex v. A vertex covers all
vertices within its coverage radius except itself (no vertex can cover itself),
i.e., the vertex x ∈ V is covered by a vertex y ∈ V (x 6= y), if d(x, y) ≤ R(y)
holds. A set of vertices X is said to be a covering set if the set of vertices in X
covers all the vertices of the graph G. A minimum covering set is a covering
set of minimum cost. The conditional covering problem (CCP, for short) is to
find a minimum cost covering set which covers all the vertices of the graph.
We refer this minimum cost covering set as minimum conditional covering set
(MCCS). From this definition, it is observed that the cardinality of MCCS is
at least two.

Although, the CCP is NP-complete for general graphs, there exists some
spacial graphs which can be solved in polynomial time. In this paper, we
consider a special case of the CCP on interval graphs. Here, we consider the
vertex costs are non-uniform, coverage radius is uniform and all edge weights
are unity.
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Figure 1: An interval graph.

1.1. Interval graph

An undirected graph G = (V,E) is an interval graph if there exists a one-
to-one correspondence between the vertex set V and a set of intervals I on
the real line such that two vertices in V are adjacent in G if and only if their
corresponding intervals intersect.

Let I = {I1, I2, . . . In} where Ij = [aj, bj], j = 1, 2, 3, . . . n; be the interval
representation of a connected interval graph G = (V,E), V = {1, 2, . . . n}, aj
and bj are respectively left and right end points of the interval Ij. The vertex
j corresponds to the interval Ij. Without any loss of generality, we assume
that each interval contains both its end points and that no two intervals share
a common end point. Also, we assume that the intervals in I are indexed by
increasing right end points, that is, b1 < b2 < · · · < bn. This indexing known
as interval graph (IG) ordering. An interval Ix = [ax, bx] is to the left of the
interval Iy = [ay, by], if bx < by and Ix is to the right of the interval Iy, if
bx > by. If bx < by, then we write x < y.

An interval graph and its interval representation are shown in Figure 1 and
2 respectively.

1

2

3

4

5

6

7

8

9

Figure 2: An interval representation of the interval graph of Figure 1.
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Intervals and vertices of an interval graph are the same. The set I is called
an interval representation of G. An interval representation with sorted end
points of an interval graph can be constructed in O(n+m) time [1]. Interval
graphs are discussed extensively in [5].

In Figure 1, if the cost of the vertices 1, 2, 3, 4, 5, 6, 7, 8, 9 are 5, 4, 3,
8, 10, 5, 5, 7, 9 respectively and if, we take coverage radius R = 2, then it is
easy to verify that the set {5, 9} is a conditional covering set. The set {4, 7}
is also a conditional covering set, but none of them is a MCCS. We can verify
that {3, 7} is a MCCS. Also, {3, 6} is another MCCS. From this example, it
is observed that MCCS for a graph may not be unique.

1.2. Application of interval graph and CCP

The CCP occurs in several practical planning problems. One set of applica-
tions supports the situation when a facility experiences a failure and requires
coverage from a backup facility. The application area of the CCP include lo-
cating facilities in distribution systems, emergency systems, communication
systems and energy supply systems. Consider the problem of locating rescue
centers in a country. Each potential site is associated with a covering radius
and a cost of locating a facility there. In case of a disaster, no rescue center
can help the site at which it is located. Hence every rescue center should be
cover by another rescue center. This problem can be modelled as CCP on
a graph. Another motivating example is the location of Weapons of Mass
Destruction Civil Support Teams in the United States [11]. The teams are
located to quickly respond to biological or chemical terrorist attacks in major
cities. The teams does not necessarily cover the city at which a team is located
since a biological or chemical terrorist attack may render the team incapable
of performing its mission.

Interval graphs arise in the process of modelling of real life situations,
specially involving time dependencies or other restrictions that are linear in
nature. The graphs and various subclasses thereof arise in diverse areas such
as archeology, molecular biology, sociology, genetics, traffic planning, VLSI
design, circuit routing, psychology, scheduling, transportation and others.
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1.3. Survey of the related works

In the literature, Moon and Chaudhry [13] were the first to address CCP as
constrained facility location model. They present an integer programming
model for this problem. This study was followed in a sequence of papers
[2, 3, 10]. Moon and Papayanopoulos [14] consider one variation of CCP on
trees and presented a linear time algorithm. These authors consider the graph
that contains uniform facility cost, each vertex has a radius in which a facility
must be located and potential facility locations can exist at places other than
the vertices of the graph. Lunday et al. [11] introduced a modified version of
the CCP. In modified version of CCP, a facility can cover all vertices within
its coverage radius except itself and potential facility locations are confined to
the vertices of the graph. In this paper, we study this modified version. For
the CCP on a path with uniform coverage radii, Lunday et al. [11] present
a linear time algorithm to optimally solve the unweighted cost CCP and an
O(n2) time dynamic programming algorithm to solve the weighted cost CCP.
Horne and Smith [7] studied the weighted cost CCP on path and extended star
graphs with nonuniform coverage radius and developed an O(n2) time dynamic
programming algorithm. In an another paper, Horne and Smith [8] consider
weighted cost CCP on the tree graphs and presented an O(n4) time dynamic
programming algorithm. Recently, Rana et al. [16] propose an O(n) time
algorithm to solve the CPP on interval graphs with uniform coverage radius.
In another paper [17], these authors presented an O(n2) time algorithm for
the CCP on interval graphs with non uniform coverage radius.

1.4. Our result

In this paper, we consider a special case of CCP on interval graphs where vertex
weights are unequal, coverage radii are fixed positive integers and all edge
weights are 1. For this case, we propose an O(n2) time algorithm for finding
minimum cost conditional covering set in interval graphs where n indicates
the number of vertices in the graph. We have used dynamic programming
approach to solve the problem.

1.5. Organization of the paper

The rest of this paper is organized as follows. In section 2, preliminaries and
notations are given. Also, some results are presented in this section which pro-
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vides the basis for the algorithm. Section 3 develops an O(n2) time dynamic
programming algorithm for solving CCP on an interval graph. The time com-
plexity is also calculated in this section. Finally, in section 4, we give some
concluding remarks.

2. Preliminary

Ramalingam and Pandurangan have proved the following useful lemma for an
interval graph.

Lemma 1. [15] A graph G = (V,E) with |V | = n is an interval graph iff its
vertices can be numbered from 1 to n such that for i < j < k, if (i, k) is an edge
in the graph then (j, k) is an edge in the graph, i.e., (i, k) ∈ E ⇒ (j, k) ∈ E.

Using this lemma, we prove the following result.

Lemma 2. Let j be a vertex such that i < j < k and if d(i, k) ≤ R then
d(k, j) ≤ R.

Proof. There are two cases may arise, (i, k) ∈ E or (i, k) /∈ E.
Case 1: (i, k) ∈ E. Then by Lemma 1, (j, k) ∈ E. Therefore d(k, j) ≤ R.
Case 2: (i, k) /∈ E. In this case, there must exist a sequence of vertices

t1 < t2 < · · · < tm in between i and k which forms the path i→ t1 → t2 · · · →
tm → k. There are two subcases may arise:

Subcase 1: ti = j for some i = 1, 2, . . . ,m. Then, obviously d(k, j) ≤ R.
Subcase 2: ti 6= j for any i = 1, 2, . . . ,m. In this case, there must exist at

least one ti such that (ti, j) ∈ E. Therefore, d(k, j) ≤ R. 2

Let us introduce some notations which are used in the rest of this paper.
Let Ai be the set of vertices within the coverage radius of the vertex i, i.e.,

Ai = {j : d(i, j) ≤ R} and Bi = Ai ∪ {i}. Define lower reach l(i) of the vertex
i as the smallest index vertex that lies within the coverage radius of i, i.e.,
l(i) = min{j : j ∈ Bi} and ml(i) = max{l(j) : l(i) ≤ j ≤ i}.

We construct two sets Pi and Qi as follows
Pi = {ml(i),ml(i) + 1, · · · , i} and Qi = {j : j > i and d(i, j) ≤ R}.
It should be noted that for 1 ≤ i ≤ n− 1, Qi is always non empty, but Qn

is empty.
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For any non empty set X of vertices, Min{X} denote a covering set of X
that has minimum cost. Clearly, Min{X} is a set of vertices which may or
may not be a subset of X.

For any non empty set of vertices X, mc(X) denote the cost of minimum
cost covering set of X, i.e., mc(X) = c(Min{X}).

If X = φ then Min{X} denote a set of infinite cost, i.e., if X = φ then
mc(X) =∞.

From above definitions, we observe that only the vertices of the set Ai can
cover the vertex i.

Following the above definitions, we can prove the following two lemmas
easily.

Lemma 3. Let j be a vertex such that l(i) ≤ j ≤ i and ml(i) = l(j) then
Bj ⊆ Pi ∪Qi.

Proof. We have, Bj = {j} ∪ Aj and Aj is the set of all vertices within the
coverage radius of the vertex j. So, the minimum index vertex in the set Bj is
l(j) and maximum index vertex is greater than j and lies within the coverage
radius of j. Here ml(i) = l(j), so Pi = {l(j), l(j) + 1, · · · , i}. Therefore,
Pi contains the vertex j. Qi is the set of all vertices greater than i and lies
within the coverage radius of i. Since l(i) ≤ j ≤ i, therefore Qi contains the
maximum index vertex of Bj. Hence Pi ∪ Qi contains all the vertices of Bj,
i.e., Bj ⊆ Pi ∪Qi. 2

Lemma 4. For any two vertices x, y ∈ Pi, d(x, y) ≤ R, for any i.

Proof. Recall that Pi = {ml(i),ml(i) + 1, · · · , i} and ml(i) = max{l(j) :
l(i) ≤ j ≤ i}. It follows that, for any x ∈ Pi, l(i) ≤ x ≤ i, ml(i) ≥ l(x).
Clearly, d(x,ml(i)) ≤ R. Then by Lemma 2, d(x, y) ≤ R for any two vertices
x, y ∈ Pi. 2

3. The Algorithm

Let Vi = {1, 2, · · · , i} and Ci be a subset of V that covers Vi. MCi denote the
MCCS of Vi.

Lemma 5. In each Ci, there must be at least one vertex from the set Pi ∪Qi.
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Proof. We prove this lemma by contradiction. If possible, let there exists a
Ci which does not contain any vertex of Pi ∪Qi. Let j be a vertex such that
l(i) ≤ j ≤ i and ml(i) = l(j). Then j ∈ Vi. The vertices which lie within the
distance R can cover the vertex j, i.e., j can only be covered by the vertices
of the set Aj. From Lemma 3, it follows that Aj ⊂ Pi ∪Qi. Since Ci does not
include any vertex of Pi ∪ Qi, it does not include any vertex of Aj. Then j
remains uncovered. But j ∈ Vi and Ci is a subset of V that covers Vi, which
is a contradiction. Hence the lemma. 2

From above lemma, it is clear that, there must be one vertex, say, k, in Ci,
from the set Pi ∪Qi. Then k ∈ Pi or k ∈ Qi.

If k ∈ Pi, let M1Ci be the minimum cost covering set of Vi and if k ∈ Qi,
let M2Ci be the minimum cost covering set of Vi.

If k ∈ Pi, then the vertex k covers the set {l(k), l(k) + 1, · · · , i} except
itself. Then to find a Ci, it is necessary and sufficient that the set Ci/{k}
covers the set {k} ∪ Vl(k)−1.

Let Di be a subset of V that covers {i} ∪ Vl(i)−1 and MDi be a minimum
cost Di.

The following two lemmas are the backbone of the algorithm presented
here.

Lemma 6. Let k ∈ Pi. If k ∈ Ci then M1Ci =Min{{k} ∪ MDk} where
MDi =Min{{j} ∪MCmin{l(i)−1,l(j)−1} : j ∈ Ai}.

Proof. Since k ∈ Pi and k ∈ Ci, the set of vertices covered by k is a super
set of {l(k), l(k) + 1, · · · , i} − {k}. Then to find a Ci, it is required to cover
the set {1, 2, · · · , l(k) − 1} ∪ {k} = Vl(k)−1 ∪ {k}. But, Di is a subset of V
that covers Vl(i)−1 ∪ {i}. Therefore, Ci = {k} ∪ Dk and hence for k ∈ Pi,
M1Ci =Min{{k} ∪MDk}.

Now, Di is a subset of V that covers Vl(i)−1 ∪ {i}, Di must include some
vertex t within the coverage radius of i, i.e., t ∈ Di such that t ∈ Ai. If the
interval It lies to the left of the interval Ii then l(i) > l(t) and to find a Di,
it is necessary and sufficient to cover the set Vl(t)−1. If the interval It lies to
the right of the interval Ii, then it is required to cover the set Vl(i)−1. That is,
Di = {{t} ∪ Vmin{l(i)−1,l(t)−1} : t ∈ Ai}.

Therefore, we have the following recurrence relations
MDi = Min{{k} ∪MCmin{l(i)−1,l(t)−1} : t ∈ Ai} and
M1Ci = Min{{k} ∪MDk : k ∈ Pi}. 2

Lemma 7. Let k ∈ Qi. If k ∈ Ci then M2Ci =Min{{k} ∪MCl(k)−1}.
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Proof. If k ∈ Qi, then the interval Ik lies to the right of the interval Ii, i.e.,
k /∈ Vi. The vertex k will cover the set {l(k), l(k) + 1, · · · , i}. Since k /∈ Vi,
to find a Ci, it is needed that the set Ci/{k} covers the set {1, 2, · · · , l(k) −
1} = Vl(k)−1. Therefore, for k ∈ Qi, we have the following recurrence relation
M2Ci = Min{{k} ∪MCl(k)−1 : k ∈ Qi}. 2

The algorithm proceeds by covering the vertices of the graph from left to
right in the interval representation. At each stage i(1 ≤ i ≤ n−1), we compute
M1Ci and M2Ci. For 1 ≤ i ≤ n − 1, if mc(M2Ci) > mc(M1Ci), then we take
MCi = M1Ci, otherwise MCi = M2Ci. For i = n, MCn = M1Cn.

A formal description of the algorithm is given below.

Algorithm MCCS
Input: A set of sorted intervals of an interval graph G = (V,E).
Output: A minimum conditional covering set MCn in G.

Initially MC0 = Φ (empty set) and mc(MC0) = 0.
Step 1: Compute the arrays l(i),ml(i) for each vertex i ∈ V .
Step 2: Compute the sets Pi, Qi for each vertex i ∈ V .
Step 3: For i = 1 to n− 1 do

cost1=∞, cost2=∞, cost3=∞;
// Compute MDi by lemma 6 //
For all j ∈ Ai

If j ∈ Ai and c(j) +mc(MCmin{l(j)−1,l(i)−1}) < cost1 then
cost1= c(j) +mc(MCmin{l(j)−1,l(i)−1});
t = j;

endif;
endfor;
MDi = {t} ∪MCmin{l(t)−1,l(i)−1};
// Compute M1Ci by lemma 6 //
For all j ∈ Pi

If j ∈ Pi and c(j) +mc(MDj) < cost2 then
cost2= c(j) +mc(MDj);
t = j;

endif;
endfor;
M1Ci = {t} ∪MDt;
// Compute M2Ci by lemma 7 //
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For all j ∈ Qi

If j ∈ Qi and c(j) +mc(MCl(j)−1) < cost3 then
cost3= c(j) +mc(MCl(j)−1);
t = j;

endif;
endfor;
M2Ci = {t} ∪MCl(t)−1;
If mc(M2Ci) > mc(M1Ci) then

MCi = M1Ci;
else

MCi = M2Ci;
endif;
end for;

Step 4: MDn =Min{{j} ∪MCmin{l(j)−1,l(n)−1} : j ∈ An};
MCn =Min{{j} ∪MDn : j ∈ Pn};

end MCCS
To illustrate our methodology, we consider an interval graph of seven ver-

tices with R = 2 shown in Figure 3. The numbers within the boxes denote the
cost of the corresponding vertex.
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Table 1: Illustration of the methodology on the CCP instance given in
Figure 3.

Ai Pi Qi MDi M1Ci M2Ci MCi

i = 1 {2, 3, 4, 5, 7} {1} {2, 3, 4, 5, 7} {5} {1, 5} {5} {5}
i = 2 {1, 3, 4, 5, 7} {1, 2} {3, 4, 5, 7} {5} {1, 5} {5} {5}
i = 3 {1, 2, 4, 5, 6, 7} {1, 2, 3} {4, 5, 6, 7} {5} {1, 5} {5} {5}
i = 4 {1, 2, 3, 5, 6, 7} {1, 2, 3, 4} {5, 6, 7} {5} {1, 5} {5} {5}
i = 5 {1, 2, 3, 4, 6, 7} {1, 2, 3, 4, 5} {6, 7} {1} {1, 5} {7} {7}
i = 6 {3, 4, 5, 7} {3, 4, 5, 6} {7} {5} {1, 5} {7} {7}
i = 7 {1, 2, 3, 4, 5, 6} {3, 4, 5, 6, 7} φ {5} {1, 5} − {1, 5}

Therefore, the set {1, 5} is a MCCS of the graph of Figure 3.

4. Proof of Correctness of the Algorithm and

its Time Complexity

We show by induction that MCi being a minimum cost covering set of Vi.
As a basis step consider the computation of MC1. Since, V1 = {1} and

P1 = {1}, any minimum cost covering set for V1 must contain a vertex from
Q1. By choosing a vertex from Q1 of minimum cost, the algorithm ensures
that MC1 is correctly computed.

Let us assume that MCi−1 be a minimum cost covering set of Vi−1. If
MCi−1 covers the vertex i then the algorithm sets MCi to MCi−1. Since
Vi−1 ⊆ Vi, no minimum cost covering for Vi can have minimum cost than that
for Vi−1. If the vertex i is not covered by the set MCi−1, then we compute
M1Ci and M2Ci. If mc(M2Ci) > mc(M1Ci) then MCi = M1Ci, otherwise
MCi = M2Ci. At nth stage, if MCn−1 covers the vertex n, then the algorithm
sets MCn to MCn−1. Otherwise, since Qn = φ, MCn = M1Cn is a minimum
cost covering set for Vn. Therefore the algorithm has correctly computed
MCCS for Vn = G. 2

Theorem 1. Algorithm MCCS finds a minimum cost conditional covering set
on interval graph in O(n2) time.

Proof. Computation of the sets Ai can be done in O(n2) time. Also, com-
putation of arrays l(i) and ml(i) can be done in O(n2) time. The algorithm
consist of n stages. Stage i required O(Ai) + O(Pi) + O(Qi) = O(Bi) time.
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Therefore, the total time is
n∑

i=1

| Bi |=
n∑

i=1

O(n) = O(n2). Hence overall time

complexity is O(n2). 2

5. Concluding Remarks

In this article, we examine the CCP on interval graphs with non-uniform cost
and present an algorithm which runs in O(n2) time. Here, we consider uniform
edge weights, i.e., d(u, v) = 1 for all (u, v) ∈ E. Unfortunately, the algorithm
presented here does not appear to be extendable to the CCP with non-uniform
edge weights. It would be interesting to find a polynomial time algorithm for
interval graphs with non uniform cost and edge weights. In our future study,
we examine one of several practical variations of the CCP and examine the
CCP on various other graphs other than the ones studied. 2
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