Integral Mean Estimates for Polynomials with Restricted Zeros *

W. M. Shah ${ }^{\dagger}$
P. G. Department of Mathematics, Baramulla College, Kashmir, India-193101
and
A. Liman ${ }^{\ddagger}$
Department of Mathematics, National Institute of Technology, Kashmir, India-190006

Received October 16, 2009, Accepted January 8, 2010.

Abstract

In this paper, we prove some integral inequalities concerning polynomials and there by investigate the dependence of $|P(R z)-P(z)|$ on $|P(z)|$ for $|z|=1$. These results not only generalize some well-known $L^{q} \quad(q>1)$ inequalities, but also establish the validity of many in $(0,1)$ as well.

Keywords and Phrases: Polynomials, Integral mean estimates, Zeros..

[^0]
1. Introduction

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ its derivative, then for each $q \geq 1$,

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq n\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{1}
\end{equation*}
$$

and for every $q>0$,

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq R^{n}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{2}
\end{equation*}
$$

Inequality (1) is due to Zygmund [21], whereas inequality (2) is a simple consequence of a result due to Hardy [13]. Arestove [1] verified that (1) remains true for $0<q<1$ as well.

Inequalities (1) and (2) can be sharpened, if we restrict ourselves to the class of polynomials having no zeros in $|z|<k$ where $k \geq 1$. In case $k=1$, inequality (1) can be replaced $[8,18]$ by

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq n A_{q}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}, \quad q>0 \tag{3}
\end{equation*}
$$

where

$$
A_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{q} d \alpha\right\}^{\frac{-1}{q}}
$$

Whereas inequality (2) can be replaced $[7,17]$ by

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq B_{q}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{4}
\end{equation*}
$$

where

$$
B_{q}=\frac{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+R^{n} e^{i \alpha}\right|{ }^{q} d \alpha\right\}^{\frac{1}{q}}}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|{ }^{q} d \alpha\right\}^{\frac{1}{q}}}
$$

For $k \geq 1$, Govil and Rahman [10] have shown that, if $P(z)$ does not vanish in $|z|<k$, then for every $q \geq 1$,

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq n C_{q}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{5}
\end{equation*}
$$

where

$$
C_{q}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k+e^{i \alpha}\right|^{q} d \alpha\right\}^{\frac{-1}{q}}
$$

The validity of (5) for $0<q<1$ is verified in $[4,12]$. On the other hand, the extension of (4) for $k \geq 1$ was proved by Aziz and Shah [5] to read as

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq D_{q}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{6}
\end{equation*}
$$

where

$$
D_{q}=\frac{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+R^{n} e^{i \alpha}\right| q d \alpha\right\}^{\frac{1}{q}}}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+t_{k} e^{i \alpha}\right|{ }^{q} d \alpha\right\}^{\frac{1}{q}}}, \text { with } t_{k}=\left(\frac{1+R k}{R+k}\right)^{n}
$$

As a generalization of inequality (3), Aziz [2] obtained the following interesting result:

Theorem A. If $P(z)$ is a polynomial of degree n with $\min _{|z|=1}|P(z)|=m$ and $P(z)$ has no zeros in $|z|<1$, then for every given complex number β with $|\beta| \leq 1$ and for $q \geq 1$,

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)+m n \beta e^{i(n-1) \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq n A_{q}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{7}
\end{equation*}
$$

where A_{q} is defined above.

Recently Aziz and Rather [3] investigated the dependence of $\mid P\left(R e^{i \theta}\right)$ $P\left(e^{i \theta}\right) \mid$ on $\left|P\left(e^{i \theta}\right)\right|$ and proved the following:

Theorem B. If $P(z)$ is a polynomial of degree n, then for every $q>0$ and $R \geq 1$,

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq\left(R^{n}-1\right)\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{8}
\end{equation*}
$$

In this paper, we first consider a class of polynomials $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq$ $\mu \leq n$ and prove the following more general result analogous to Theorem B, which among other things provide generalizations for some well-known polynomial inequalities in L^{q} spaces.

Theorem 1. Let $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, \quad 1 \leq \mu \leq n$ be a polynomial of degree at most n, having no zeros in $|z|<k$ where $k \geq 1$ and $\min _{|z|=k}|P(z)|=m$. Then for every complex number β with $|\beta| \leq 1, \quad q>0, \quad R>1$ and $0 \leq \theta<2 \pi$, $0 \leq \alpha<2 \pi$,

$$
\begin{gather*}
\left\{\int_{0}^{2 \pi}\left|\frac{P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)}{R^{n}-1}+m \beta k^{-n} e^{i n \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
\leq\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|^{q} d \alpha\right\}^{-\frac{1}{q}}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+m \beta k^{-n} e^{i n \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{9}
\end{gather*}
$$

where

$$
\begin{equation*}
C_{\mu k}=k^{\mu+1}\left\{\frac{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}+1}{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}\right\} \tag{10}
\end{equation*}
$$

The result is sharp in case $k=1$ and equality holds for $P(z)=z^{n}+1$.
The following corollary immediately follows from Theorem 1 by making $R \rightarrow 1$.

Corollary 1. If $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}$ is a polynomial of degree n with $\min _{|z|=k}|P(z)|=m$ and having no zeros in the disk $|z|<k, \quad k \geq 1$, then for every given complex number β with $|\beta| \leq 1, \quad q>0$ and for each θ with $0 \leq \theta<2 \pi, 0 \leq \alpha<2 \pi$,

$$
\begin{gather*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)+m n \beta k^{-n} e^{i(n-1) \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
\leq \frac{n}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}^{\prime}+e^{i \alpha}\right| q d \alpha\right\}^{\frac{1}{q}}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+m \beta k^{-n} e^{i n \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{11}
\end{gather*}
$$

where

$$
\begin{equation*}
C_{\mu k}^{\prime}=k^{\mu+1}\left\{\frac{\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}+1}{1+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}\right\} . \tag{12}
\end{equation*}
$$

Remark 1. For $k=1$, it follows from Corollary 1, that Theorem A holds true for $0<q<1$ and for $\beta=0, \quad k=1$, Corollary 1 reduces to de Bruijn's theorem [8] for every $q>0$.

Remark 2. Since $\frac{R^{\mu}-1}{R^{n}-1} \leq \frac{\mu}{n}$ for all $R>1, \quad 1 \leq \mu \leq n$ (for refrence see [6]) and $\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k+e^{i \alpha}\right|^{q} d \alpha\right\}^{\frac{1}{q}} \leq\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|^{q} d \alpha\right\}^{\frac{1}{q}}$ (for refrence see [9]), the following improvement as well as generalization of a result of Govil and Rahman follows from Theorem 1 by taking $\beta=0$.

Corollary 2. If $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}$ is a polynomial of degree n , having no zeros in $|z|<k, \quad k \geq 1$, then for every $q>0, \quad R>1$ and $0 \leq \theta<2 \pi$,

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)}{R^{n}-1}\right|^{q} d \theta\right\}^{\frac{1}{q}}
$$

$$
\begin{equation*}
\leq \frac{1}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|^{q} d \alpha\right\}^{\frac{1}{q}}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{13}
\end{equation*}
$$

where $C_{\mu k}$ is given by (10).
Remark 3. By making $q \rightarrow \infty$ and noting that

$$
\lim _{q \rightarrow \infty}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}=\max _{|z|=1}|P(z)|
$$

we have from inequality (9)

$$
\begin{array}{r}
\max _{|z|=1}\left|\frac{P(R z)-P(z)}{R^{n}-1}+\frac{m \beta z^{n}}{k^{n}}\right| \\
\leq\left\{\frac{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{2 \mu}+k^{\mu+1}}{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}+1\right\}^{-1} \max _{|z|=1}\left|P(z)+m \beta k^{-n} z^{n}\right| .
\end{array}
$$

Equivalently

$$
\begin{gather*}
\left|\frac{P(R z)-P(z)}{R^{n}-1}+\frac{m \beta z^{n}}{k^{n}}\right| \\
\leq\left\{\frac{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\left(1+k^{\mu+1}\right)+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{2 \mu}+k^{\mu+1}\right)}\right\}\left(\max _{|z|=1}|P(z)|+m|\beta| k^{-n}\right) . \tag{14}
\end{gather*}
$$

Choosing argument of β suitably, so that for $|z|=1$,

$$
\left|\frac{P(R z)-P(z)}{R^{n}-1}+\frac{m \beta z^{n}}{k^{n}}\right|=\left|\frac{P(R z)-P(z)}{R^{n}-1}\right|+\frac{m|\beta|}{k^{n}}
$$

and then making $|\beta| \rightarrow 1$, we get from inequality (14) the following:

Corollary 3. If $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, \quad 1 \leq \mu \leq n$ is a polynomial of degree at most n , having no zeros in $|z|<k, \quad k \geq 1$, then for $R>1$,

$$
\begin{align*}
& \left|\frac{P(R z)-P(z)}{R^{n}-1}\right| \leq\left\{\frac{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\left(1+k^{\mu+1}\right)+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{2 \mu}+k^{\mu+1}\right)}\right\} \underset{|z|=1}{ }|P(z)| \\
& \quad-\frac{1}{k^{n}}\left\{1-\frac{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\left(1+k^{\mu+1}\right)+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{2 \mu}+k^{\mu+1}\right)}\right\} \min _{|z|=k}|P(z)| . \tag{15}
\end{align*}
$$

The following result which is an improvement as well as a generalization of a result due to Govil, Rahman and Schmeisser [11] (see also Qazi [16]) follows from Corollary 3 by making $R \rightarrow 1$.

Corollary 4. If $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, \quad 1 \leq \mu \leq n$ is a polynomial of degree n , having no zeros in $|z|<k, \quad k \geq 1$, then

$$
\begin{align*}
& \max _{|z|=1}\left|P^{\prime}(z)\right| \leq n\left\{\frac{1+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\left(1+k^{\mu+1}\right)+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{2 \mu}+k^{\mu+1}\right)}\right\} \max _{|z|=1}|P(z)| \\
& -\frac{n}{k^{n}}\left\{1-\frac{1+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\left(1+k^{\mu+1}\right)+\frac{\mu}{n}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{2 \mu}+k^{\mu+1}\right)}\right\} \min _{|z|=k}|P(z)| . \tag{16}
\end{align*}
$$

It can be easily verified (see for refrence [6]) that

$$
\begin{equation*}
\frac{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\left(1+k^{\mu+1}\right)+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right|\left(k^{2 \mu}+k^{\mu+1}\right)} \leq \frac{1}{1+k^{\mu}} . \tag{17}
\end{equation*}
$$

Using (17) in (15), we get the following:

Corollary 5. If $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}$, is a polynomial of degree n , which does not vanish in the disk $|z|<k$ where $k \geq 1$, then for $R>1$,

$$
\begin{equation*}
\left|\frac{P(R z)-P(z)}{R^{n}-1}\right| \leq \frac{1}{1+k^{\mu}} \max _{|z|=1}|P(z)|-\frac{1}{k^{n-\mu}\left(1+k^{\mu}\right)} \min _{|z|=k}|P(z)| . \tag{18}
\end{equation*}
$$

The result is best possible either in case $\mu=n$ or $R \rightarrow 1$ and in both cases equality holds for polynomials $P(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$.

Remark 4. If we make $R \rightarrow 1$ in (18), then Corollary 5 not only gives a generalization of a result due to Malik [15], but also for $k=1$ yields a refinement of Erdös conjecture proved by Lax [14].

Next, we consider a class of polynomials having a zero of order s at the origin and the rest of the zeros outside, or on the circle of radius $k, \quad k \geq 1$ and prove the following result which generalizes some known L^{q} inequalities for polynomials. We prove:

Theorem 2. If $P(z)=z^{s}\left\{a_{0}+\sum_{j=\mu}^{n-s} a_{j} z^{j}\right\}, \quad 1 \leq \mu \leq n-s$ is a polynomial of degree n, having all its zeros in $|z| \geq k$ where $k \geq 1$ except s-fold zeros at the origin, then

$$
\begin{gather*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
\leq\left\{\left(R^{s}-1\right)+\frac{R^{n}-R^{s}}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|^{q} d \alpha\right\}^{\frac{1}{q}}}\right\}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{19}
\end{gather*}
$$

where $C_{\mu k}$ is given by (10).
The following corollary immediately follows from Theorem 2, by dividing the two sides of (19) by $R-1$ and making $R \rightarrow 1$.

Corollary 6. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \geq k$
where $k \geq 1$ except s-fold zeros at the origin, then for every $q>1$,

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq\left\{s+\frac{n-s}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right| q d \alpha\right\}^{\frac{1}{q}}}\right\}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{20}
\end{equation*}
$$

Remark 5. The result of Dewan, Bhat and Pukhta [9] is a special case of Corollary 6 , when $s=0$.

2. Lemmas

For the proofs of these theorems, we need the following lemmas:
Lemma 1. Let $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}$ be a polynomial of degree n, having no zeros in $|z|<k$ where $k \geq 1$. If $m=\min _{|z|=k}|P(z)|$, then for every given complex number β with $|\beta| \leq 1$ and $R \geq 1$,

$$
\begin{equation*}
\frac{\left|P(R z)-P(z)+\left(R^{n}-1\right) m \beta k^{-n} z^{n}\right|}{\left|R^{n} P\left(\frac{z}{R}\right)-P(z)\right|} \leq \frac{1}{k^{\mu+1}}\left\{\frac{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}+1}{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}}\right\} \text { for }|z|=1 \tag{21}
\end{equation*}
$$

Proof of Lemma 1. The result is trivial if $R=1$, so we suppose that $R>1$. Since $P(z)$ has all zeros in $|z| \geq k$ where $k \geq 1$, therefore $P(k z)$ has all zeros in $|z| \geq 1$. Also, $m \leq|P(z)|$ for $|z|=k$, so that $m \leq|P(k z)|$ for $|z|=1$. This gives for any β with $|\beta|<1, \quad\left|m \beta z^{n}\right|<|P(k z)|$ for $|z|=1$. By Rouche's theorem the polynomial $F(z)=P(k z)+\beta m z^{n}$ has also all zeros in $|z| \geq 1$. Therefore, the polynomial $G(z)=z^{n} F\left(\frac{1}{\bar{z}}\right)$ has all its zeros in $|z| \leq 1$ and $|F(z)|=|G(z)|$ for $|z|=1$. Hence the function $\frac{G(z)}{F(z)}$ is analytic in $|z|<1$ and
$\left|\frac{G(z)}{F(z)}\right|=\frac{|G(z)|}{|F(z)|}=1$. A direct application of the maximum modulus principle shows that

$$
\begin{equation*}
|G(z)| \leq|F(z)| \text { for } \quad|z| \leq 1 \tag{22}
\end{equation*}
$$

We now show that all the zeros of $f(z)=F(z)-\alpha G(z)$ lie in $|z| \leq 1$ for every α with $|\alpha|>1$. First suppose that $F(z)$ has all its zeros on $|z|=1$. If $z_{1}, z_{2}, \cdots, z_{n}$ are zeros of $F(z)$, then $\left|z_{j}\right|=1$ for all $j=1,2, \cdots, n$ and we have

$$
F(z)=c \prod_{j=1}^{n}\left(z-z_{j}\right)
$$

so that

$$
\begin{aligned}
G(z)=z^{n} \overline{F\left(\frac{1}{\bar{z}}\right)} & =\bar{c} \prod_{j=1}^{n}\left(1-z \bar{z}_{j}\right)=u F(z), \\
\text { where } \quad|u| & =\left|\frac{\bar{c}}{c}(-1)^{n} \prod_{j=1}^{n} \frac{1}{z_{j}}\right|=1
\end{aligned}
$$

This shows that all the zeros of $f(z)=F(z)-\alpha G(z)=(1-\alpha u) F(z)$ also lie on $|z|=1$ and inparticular in $|z| \leq 1$. Next, suppose that $F(z)$ has atleast one zero in $|z|<1$, then obviously $\frac{G(z)}{F(z)}$ is not a constant and hence from (22), it follows that

$$
\begin{equation*}
|G(z)|<|F(z)| \text { for }|z|<1 \tag{23}
\end{equation*}
$$

Replacing z by $\frac{1}{\bar{z}}$ in (23), we get $|F(z)|<|G(z)|$, for $|z|>1$. By Rouche's theorem, we conclude that the polynomial $f(z)=F(z)-\alpha G(z)$ has all its zeros in $|z| \leq 1$. Thus in any case the polynomial $f(z)$ has all its zeros in $|z| \leq 1$ for every α with $|\alpha|>1$. Since $|f(z)|<|f(R z)|$ for $|z|=1$ and $R>1$, and all the zeros of $f(R z)$ lie in $|z| \leq \frac{1}{R}<1$, again Rouche's theorem shows that the polynomial

$$
\begin{gather*}
g(z)=f(R z)-f(z) \tag{24}\\
=\{F(R z)-F(z)\}-\alpha\{G(R z)-G(z)\}
\end{gather*}
$$

has all its zeros in $|z|<1$, for every complex number α with $|\alpha|>1$ and $R>1$. This implies

$$
\begin{equation*}
|F(R z)-F(z)| \leq|G(R z)-G(z)| \text { for }|z| \geq 1 \text { and } R>1 \tag{25}
\end{equation*}
$$

If inequality (25) is not true, then there is a point $z=z_{0}$ with $\left|z_{0}\right| \geq 1$ such that $\left|F\left(R z_{0}\right)-F\left(z_{0}\right)\right|>\left|G\left(R z_{0}\right)-G\left(z_{0}\right)\right|$. Since $G(z)$ has all its zeros in $|z| \leq 1$, it follows that all the zeros of $G(R z)-G(z)$ lie in $|z|<1$, for every $R>1$. Hence $G\left(R z_{0}\right)-G\left(z_{0}\right) \neq 0$ for $\left|z_{0}\right| \geq 1$. We take $\alpha=\frac{F\left(R z_{0}\right)-F\left(z_{0}\right)}{G\left(R z_{0}\right)-G\left(z_{0}\right)}$, so that $|\alpha|>1$ and with this choice of α, from (24), we get $g\left(z_{0}\right)=0$, where $\left|z_{0}\right| \geq 1$. This contradicts the fact that all the zeros of $g(z)$ lie in $|z|<1$. Thus $|F(R z)-F(z)| \leq|G(R z)-G(z)| \underline{\text { for }}|z| \geq 1$ and $R>1$. Replacing $F(z)$ by $P(k z)+\beta m z^{n}$ and $G(z)$ by $z^{n} P\left(\frac{k}{\bar{z}}\right)+\bar{\beta} m$, we get

$$
\begin{aligned}
\mid P(R k z) & -P(k z)+\left(R^{n}-1\right) m \beta z^{n}\left|\leq\left|R^{n} z^{n} \overline{P\left(\frac{k}{R \bar{z}}\right)}-z^{n} P\left(\frac{k}{\bar{z}}\right)\right|\right. \\
= & \left|R^{n} P\left(\frac{k z}{R}\right)-P(k z)\right| \text { for }|z|=1 \text { and } R>1
\end{aligned}
$$

Since the polynomial $R^{n} P\left(\frac{k z}{R}\right)-P(k z)$ does not vanish in $|z| \leq 1$, therefore $H(z)=\frac{P(R k z)-P(k z)+\left(R^{n}-1\right) m \beta z^{n}}{R^{n} P\left(\frac{k z}{R}\right)-P(k z)}$ is analytic in $|z| \leq 1$ and by the maximum modulus principle, we have $|H(z)| \leq 1$, for $|z| \leq 1$. Also, it can be easily seen that $H(0)=H^{\prime}(0)=\cdots=H^{\mu-1}(0)=0$ and $H^{\mu}(0)=\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu}$. By a generalized form of Schwarz's lemma, we have

$$
|H(z)| \leq|z|^{\mu} \frac{|z|+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu}}{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu}|z|+1} \text { for }|z| \leq 1
$$

Equivalently

$$
\left|\frac{P(R k z)-P(k z)+\left(R^{n}-1\right) m \beta z^{n}}{R^{n} P\left(\frac{k z}{R}\right)-P(k z)}\right| \leq|z|^{\mu} \frac{|z|+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu}}{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu}|z|+1} \text { for }|z| \leq 1 .
$$

We take $z=\frac{e^{i \theta}}{k}, \quad 0 \leq \theta<2 \pi$, so that $|z|=\frac{1}{k}$ and we get

$$
\left|\frac{P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)+\left(R^{n}-1\right) m \beta k^{-n} e^{i n \theta}}{R^{n} P\left(\frac{e^{i \theta}}{R}\right)-P\left(e^{i \theta}\right)}\right| \leq \frac{1}{k^{\mu+1}} \frac{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}+1}
$$

This implies for $|z|=1$,

$$
\left|\frac{P(R z)-P(z)+\left(R^{n}-1\right) m \beta k^{-n} z^{n}}{R^{n} P\left(\frac{z}{R}\right)-P(z)}\right| \leq \frac{1}{k^{\mu+1}} \frac{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}+1}
$$

This completes proof of Lemma 1.
The next lemma which we need is due to Aziz and Rather [3].
Lemma 2. If $P(z)$ is a polynomial of degree n, then for each $q>0, \quad R \geq 1$, α real and $0 \leq \theta<2 \pi$,

$$
\begin{gather*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left(P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)\right)+e^{i \alpha}\left(R^{n} P\left(\frac{e^{i \theta}}{R}\right)-P\left(e^{i \theta}\right)\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
\leq\left(R^{n}-1\right)\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{26}
\end{gather*}
$$

3. Proofs of the Theorems

Proof of Theorem 1. Applying Lemma 2 to the polynomial $P(z)+\frac{\beta m z^{n}}{k^{n}}$, which is of degree at most n , we get for every $q>0, \quad R \geq 1, \quad \alpha$ real and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|F_{1}(\theta)+e^{i \alpha} G_{1}(\theta)\right|^{q} d \theta \leq\left(R^{n}-1\right)^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\frac{\beta m e^{i n \theta}}{k^{n}}\right|^{q} d \theta \tag{27}
\end{equation*}
$$

where

$$
F_{1}(\theta)=P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)+\beta m k^{-n}\left(R^{n}-1\right) e^{i n \theta}
$$

and

$$
G_{1}(\theta)=R^{n} P\left(\frac{e^{i \theta}}{R}\right)-P\left(e^{i \theta}\right)
$$

Integrate both sides of (27) with respect to α from 0 to 2π, we have for $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|F_{1}(\theta)+e^{i \alpha} G_{1}(\theta)\right|^{q} d \alpha d \theta \leq 2 \pi\left(R^{n}-1\right)^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m k^{-n} e^{i n \theta}\right|^{q} d \theta \tag{28}
\end{equation*}
$$

Now since for every real α and $A \geq B \geq 1$, we have

$$
\left|A+e^{i \alpha}\right| \geq\left|B+e^{i \alpha}\right|
$$

This gives

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|A+e^{i \alpha}\right|^{q} d \alpha \geq \int_{0}^{2 \pi}\left|B+e^{i \alpha}\right|^{q} d \alpha, \quad q>0 \tag{29}
\end{equation*}
$$

If $F_{1}(\theta) \neq 0$, we take $A=\frac{\left|G_{1}(\theta)\right|}{\left|F_{1}(\theta)\right|}$ and $B=k^{\mu+1}\left\{\begin{array}{c|c|c}\frac{R^{\mu}-1}{R^{n-1}}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}+1 \\ \hline 1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}\end{array}\right\}, \quad 1 \leq \mu \leq n$.
Since $P(z)$ is a polynomial of degree at most n, having no zeros in $|z|<k$, $k \geq 1$ then by Lemma 1 , for $A \geq B \geq 1$, we get by using (29)

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|F_{1}(\theta)+e^{i \alpha} G_{1}(\theta)\right|^{q} d \alpha & =\left|F_{1}(\theta)\right|^{q} \int_{0}^{2 \pi}\left|1+\frac{G_{1}(\theta)}{F_{1}(\theta)} e^{i \alpha}\right|^{q} d \alpha \\
& =\left|F_{1}(\theta)\right|^{q} \int_{0}^{2 \pi}\left|\frac{G_{1}(\theta)}{F_{1}(\theta)}+e^{i \alpha}\right|^{q} d \alpha \\
& =\left|F_{1}(\theta)\right|^{q} \int_{0}^{2 \pi}| | \frac{G_{1}(\theta)}{F_{1}(\theta)}\left|+e^{i \alpha}\right|^{q} d \alpha
\end{aligned}
$$

$$
\begin{gather*}
\geq\left|F_{1}(\theta)\right|^{q} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|^{q} d \alpha \\
=\left|P\left(\operatorname{Re}^{i \theta}\right)-P\left(e^{i \theta}\right)+\beta m k^{-n}\left(R^{n}-1\right) e^{i n \theta}\right|^{q} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|^{q} d \alpha . \tag{30}
\end{gather*}
$$

For $F_{1}(\theta)=0$, this inequality is trivially true. Using (30) in (28), we conclude that for each $q>0, \quad R \geq 1, \quad \alpha$ real and $0 \leq \theta<2 \pi$,

$$
\begin{gathered}
\int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|^{q} d \alpha \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)+\beta m k^{-n}\left(R^{n}-1\right) e^{i n \theta}\right|^{q} d \theta \\
\leq 2 \pi\left(R^{n}-1\right)^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+m \beta k^{-n} e^{i n \theta}\right|^{q} d \theta
\end{gathered}
$$

This implies

$$
\left\{\int_{0}^{2 \pi}\left|\frac{P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)}{R^{n}-1}+m \beta k^{-n} e^{i n \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq \frac{\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+m \beta k^{-n} e^{i n \theta}\right|^{q} d \theta\right\}^{\frac{1}{q}}}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right|{ }^{q} d \alpha\right\}^{\frac{1}{q}}}
$$

where

$$
C_{\mu k}=k^{\mu+1}\left\{\frac{\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu-1}+1}{1+\frac{R^{\mu}-1}{R^{n}-1}\left|\frac{a_{\mu}}{a_{0}}\right| k^{\mu+1}}\right\} .
$$

This proves Theorem 1.
Proof of Theorem 2. Since $P(z)$ has s-zeros at the origin, we write $P(z)=$ $z^{s} f(z)$, where $f(z)$ has all its zeros in $|z| \geq k, \quad k \geq 1$. So that

$$
\begin{aligned}
P(R z)-P(z) & =z^{s}\left[R^{s} f(R z)-f(z)\right] \\
& =z^{s}\left[\left(R^{s}-1\right) f(z)+R^{s} f(R z)-f(z)\right]
\end{aligned}
$$

which implies for $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left|P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)\right|=\left|\left(R^{s}-1\right) f\left(e^{i \theta}\right)+R^{s} f\left(R e^{i \theta}\right)-f\left(e^{i \theta}\right)\right| \tag{31}
\end{equation*}
$$

By Minkowski's inequality, we get from (31), for every $q \geq 1$,

$$
\begin{align*}
\left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}= & \left\{\int_{0}^{2 \pi}\left|\left(R^{s}-1\right) f\left(e^{i \theta}\right)+R^{s} f\left(R e^{i \theta}\right)-f\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
\leq & \left(R^{s}-1\right)\left\{\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
& +R^{s}\left\{\int_{0}^{2 \pi}\left|f\left(R e^{i \theta}\right)-f\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \tag{32}
\end{align*}
$$

Using inequality (9) with $\beta=0$ and noting that $\left|f\left(e^{i \theta}\right)\right|=\left|e^{i s \theta} f\left(e^{i \theta}\right)\right|=$ $\left|P\left(e^{i \theta}\right)\right|, \quad 0 \leq \theta<2 \pi$, we get from inequality (32)

$$
\begin{aligned}
& \left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \leq\left(R^{s}-1\right)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}} \\
& +R^{s}\left\{\frac{R^{n-s}-1}{\left.\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right| q d \alpha\right\}^{\frac{1}{q}}\right\}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}}\right. \\
& =\left\{\left(R^{s}-1\right)+\frac{R^{n}-R^{s}}{\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|C_{\mu k}+e^{i \alpha}\right| q d \alpha\right\}^{\frac{1}{q}}}\right\}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{\frac{1}{q}}
\end{aligned}
$$

This completes proof of Theorem 2.
Acknowledgement This work is sponsored by University Grants Commission, Govt. of India under the Major Research Project F.No. 34-142/2008 (SR).

References

[1] V. V. Arestov, On inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat., 45(1981), 3-22.
[2] A. Aziz, Inequalities for the derivative of a polynomial, Proc. Amer. Math. Soc., 89(1983), 259-266.
[3] A. Aziz and N. A. Rather, New integral mean estimates for polynomials, Proc. Ind. Acad. Sci. (Math. Sci), 109(1999), 65-74.
[4] A. Aziz and W. M. Shah, Lp inequalities for polynomials with restricted zeros, Proc. Ind. Acad. Sci. (Math. Sci), 108(1998), 63-68.
[5] A. Aziz and W. M. Shah, Integral mean estimates for polynomials with restricted zeros, Math. Inequal. and Appl., 4(2001), 491-497.
[6] A. Aziz and W. M. Shah, Inequalities for a polynomial and its derivatives, Math, Inequal. and Appl., 6(2003), (To appear)
[7] R. P Boas, Jr. and Q. I. Rahman, Lp inequalities for polynomials and entire functions, Arch Rational Mech. Anal., II(1962), 34-39.
[8] N. G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. Ser., A50(1947), 1265-1272; indag. Math., 9(1947), 591-598.
[9] K. K Dewan, A. A. Bhat, and M. S Pukhta, Inequalities concerning the Lp norm of a polynomial, J. Math. Anal. Appl., 224(1998), 14-21.
[10] N. K Govil and Q. I. Rahman, Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc., 137(1969), 501-517.
[11] N. K Govil, Q. I Rahman, and G Schmeisser, On the derivative of a polynomial, Illinois J. Math., 23(1979), 319-329.
[12] R. B. Gardner and N. K. Govil, Lp inequalities for a polynomial and its derivative, J. Math. Anal. and Appl., 194(1995), 720-726.
[13] G. H. Hardy, The mean value of the modulus of an analytic function. Proc. London. Math. Soc., 14(1915), 269-277.
[14] P. D. Lax, Proof of a conjucture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., (N.S), 50(1944), 509-513.
[15] M. A. Malik, On the derivative of a polynomial, J. London. Math. Soc., 1(1969), 57-60.
[16] M. A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(1992), 337-343.
[17] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[18] Q. I. Rahman and G. Schmeisser, Lp inequalities for polynomials, J. Approx. Theory, 53(1988), 26-32.
[19] G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Rassias, Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[20] G. V. Milovanovic and Th. M. Rassias, Inequalities for polynomial zeros, Survey on classical inequalities, Kluwer academic Publishers, Dorderecht, (2000), 165-202.
[21] A. Zygmund, A remark on Canjugate series, Proc London. Math. Soc., 34 no. 2 (1932), 392-400.

[^0]: *2000 Mathematics Subject Classification. Primary 26D05,30D15,41A17.
 †E-mail: wmshah@rediffmail.com
 \ddagger Corresponding author. E-mail: abliman22@yahoo.co.in

