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Abstract

In this paper, we prove some integral inequalities concerning poly-
nomials and there by investigate the dependence of |P(Rz) — P(z)| on
|P(2)| for |z| = 1. These results not only generalize some well-known

L% (g > 1) inequalities, but also establish the validity of many in (0, 1)
as well.
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1. Introduction

Let P(z) be a polynomial of degree n and P'(z) its derivative, then for each

q=1,
. o % 1 27 %
{5 [P eman} <u{o- [1ptepas] )
0 0

and for every g > 0,

{ /|P Z")|qd0} <R”{ /|P i |‘1d0} | 2)

Inequality (1) is due to Zygmund [21], whereas inequality (2) is a simple con-
sequence of a result due to Hardy [13]. Arestove [1] verified that (1) remains
true for 0 < g < 1 as well.

Inequalities (1) and (2) can be sharpened, if we restrict ourselves to the
class of polynomials having no zeros in |z| < k where £k > 1. In case k = 1,
inequality (1) can be replaced [8,18] by

2m 1 2T 1
1 ;o q 1 ‘ q
{%/]P (eza)\qde} SnAq{%/]P(ela)\qu} , ¢q>0 (3)
0 0
27 1
]' o |q K
Aq = % ’1 +e ‘ dC( .
0

Whereas inequality (2) can be replaced [7,17] by

{ /|P "9)|‘1d0} <B{ /|P )y |qd9} , (4)

1

2w q

{% [+ Rneia|qcza}q
0

2 q
(2T cpan)
0

where

where

B_

q =




Integral Mean Estimates for Polynomials with Restricted Zeros 167

For k > 1, Govil and Rahman [10] have shown that, if P(z) does not vanish
in |z| < k, then for every ¢ > 1,

{ /|P in) |qde} <nC’{ /|P i0) qcze} | (5)

27 1

1 . q
Cy= {%/|k+ew‘|qda}
0

The validity of (5) for 0 < ¢ < 1 is verified in [4,12]. On the other hand, the
extension of (4) for £ > 1 was proved by Aziz and Shah [5] to read as

{ /|P Rel9)|qd0} < D, { /|P o |qd0};, (6)

where

where

Q=

2m
{% J 11+ R”em|qda}

Dq: 0 T with tk:<

21 a
{%fllmemlqdo‘}q
0

1+ RE\"
R+k )~

As a generalization of inequality (3), Aziz [2] obtained the following inter-
esting result:

Theorem A. If P(z) is a polynomial of degree n with |rr‘11n |P(2)] = m and
1

P(z) has no zeros in |z| < 1, then for every given complex number [ with
8] <1 and for q > 1,

2 1 2 1
1 . 101010 1 / Y - 2
i 7 i(n < . g mo|q
{27r/’P<€ ) +mnpe |90y <n A, o |P(e") +mpBe™|9dg ¢ .
0 0
(7)

where A, is defined above.
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Recently Aziz and Rather [3] investigated the dependence of |P(Re') —
P(e%)| on |P(e")| and proved the following:

Theorem B. If P(z) is a polynomial of degree n, then for every ¢ > 0 and
R>1,

{% ?P(Re”) - P(ei9)|qd6}é < (R" - 1){% ?P(ew)qde}é. (8)

In this paper, we first consider a class of polynomials P(z) = ap+ Y a;27, 1<
J=p
1 < n and prove the following more general result analogous to Theorem B,

which among other things provide generalizations for some well-known poly-
nomial inequalities in L? spaces.

Theorem 1. Let P(z) =ag+ Y a;27, 1< u <n be a polynomial of degree
J=p
at most n, having no zeros in |z| < k where k > 1 and ‘H|11r]i |P(2)] = m. Then

for every complex number B with || <1, ¢ >0, R>1and0 <60 < 2,

0<a<2m,
2 1
P(Rew) _ P(eie) —n _ind ! a
{/' T +mpBk™"e de
0
2 1
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1 : e : / ’
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The result is sharp in case k = 1 and equality holds for P(z) = 2™ + 1.

The following corollary immediately follows from Theorem 1 by making
R—1.
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Corollary 1. If P(z) = ag + Y, a;27 is a polynomial of degree n with
j=p
FE,HP(ZN = m and having no zeros in the disk |z| < k, k > 1, then for

every given complex number § with |[f] < 1, ¢ > 0 and for each 6 with
0<60<2m0<a<?2m,

21 1

1 ro . g

{% / |P'(e) +mnﬁk”el(”1)9|qd0}
0

27 1
1 . . q
< d Ao [ 1P maerpans
2w q s
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0
where
£l pu=1 4
, n | ag
Cuk, = k““{—}. (12)
14 B kptl
n | ag

Remark 1. For £ = 1, it follows from Corollary 1, that Theorem A holds
true for 0 < ¢ < 1 and for 8 =0, k = 1, Corollary 1 reduces to de Bruijn’s
theorem [8] for every ¢ > 0.

Remark 2. Since gij < Eforall R > 1, 1< pu <n (for refrence see
1

27 é 2 q
[6]) and {% 1l \k—i—ew‘]qda} < {% [ 1Cu +eia|qda} (for refrence see [9]),
0 0
the following improvement as well as generalization of a result of Govil and
Rahman follows from Theorem 1 by taking g = 0.

Corollary 2. If P(z) = ag+ >_ a;27 is a polynomial of degree n, having no
J=n
zeros in |z| < k, k > 1, then for every ¢ >0, R>1and 0 <46 < 2m,

2
1 P 0\ _ 0\ |4 o
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0
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2 1

1 1 A q

< {5 [Ipean (13
2r ' 7 | 27

TS

0

where C);, is given by (10).

Remark 3. By making ¢ — oo and noting that

21 1
1 . q
lim {%/]P(e“’)]qde} — max | P(2)],
0

q—00 |z|=1

we have from inequality (9)

P(Rz) — P(z)  mpz"

1 B T T
RE-L\Gu | p2p o pptl 1
R"—1 | ao
< { + 1} max |P(z) + mBk™"z"|.
LA =
Equivalently
P(Rz) — P(2) n mpz"
R —1 kn
S PRV
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Choosing argument of 3 suitably, so that for |z| =1,

m|f|
+

P(Rz) — P(z) mpz"
Ri-1 &

_ ‘P(Rz) — P(z)
R —1

and then making |5| — 1, we get from inequality (14) the following:
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Corollary 3. If P(z) = ap+ Y a;27, 1 < pu < nis a polynomial of degree

J=H
at most n, having no zeros in |z| < k, k> 1, then for R > 1,
1+ gt
‘P(RRzz — f(z) < { 0 }Ilna)f |P(2)]
(14 ket + b g (2w oy ) ) 0
RF—1|ap
1 1+ st b k“+1
A min | (). (15)
(14 kptt) 4 o= S| (k20 L) 2=

The following result which is an improvement as well as a generalization of
a result due to Govil, Rahman and Schmeisser [11] (see also Qazi [16]) follows
from Corollary 3 by making R — 1.

Corollary 4. If P(z) = ap+ Y a;27, 1 < pu < nis a polynomial of degree
J=p
n, having no zeros in |z| < k, k> 1, then

1+ &) |fptl
, n| ag
max |P (2)| <n max |P(z)|
|2|=1 |2|=1
= (1 + kjlﬁ'l) + K% (kZu ‘f‘k’“"‘l) =
n | ag
14 &% et
n n| ag
_k;_"{l_ }min|P(z)|. (16)
(1 Fott) 4 22| 2| (2 - frry ) I
n | ag
It can be easily verified (see for refrence [6])that
1+ =g et .
< : 17
T 14k (17)

A
ao

(14 sty + =1

RE—L || (2 g 1)

Using (17) in (15),we get the following:
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Corollary 5. If P(2) =ag+ Y a;z7, is a polynomial of degree n, which does

=
not vanish in the disk |z| < k where k& > 1, then for R > 1,

L in|P(). (18)

< P - —
— 14k fﬁi)fl (2)] kr=m(1 + kt) |z1=k

‘P(Rz) — P(z)
R —1

The result is best possible either in case 4 = n or R — 1 and in both cases
equality holds for polynomials P(z) = (2* + k*)».

Remark 4. If we make R — 1 in (18), then Corollary 5 not only gives
a generalization of a result due to Malik [15], but also for k = 1 yields a
refinement of Erdés conjecture proved by Lax [14].

Next, we consider a class of polynomials having a zero of order s at the
origin and the rest of the zeros outside, or on the circle of radius k, k£ > 1
and prove the following result which generalizes some known L? inequalities
for polynomials. We prove:

Theorem 2. If P(z) = zs{ao + i ajzj}, 1 <pu<n-—sisapolynomial of
J=p
degree n, having all its zeros in |z| > k where k > 1 except s-fold zeros at the

origin, then
1 2m 1
{% / P(Re) —P(ew)lqdﬁ}
0

2 1

§{<RS_1)+ R" — R {1

s [ipenra} )

2 2 2
(e Tiew a7
0
where Cyy is given by (10).
The following corollary immediately follows from Theorem 2, by dividing

the two sides of (19) by R — 1 and making R — 1.

Corollary 6. If P(z) is a polynomial of degree n having all its zeros in |z| > k
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where k > 1 except s-fold zeros at the origin, then for every ¢ > 1,

21 1 2 1

1 ;. q — 1 . q

{5 [P epas] s{s+ W [ipenras)
0 0

2w
{_ f1Cn +em|qda}

(20)

Remark 5. The result of Dewan, Bhat and Pukhta [9] is a special case of
Corollary 6, when s = 0.

2. Lemmas
For the proofs of these theorems, we need the following lemmas:
Lemma 1. Let P(z) = ag+ Y ajz’ be a polynomial of degree n, having no

J=H
zeros in |z| < k where k > 1. If m = min |P(z)|, then for every given complex

|z|=k
number 8 with |f| <1 and R > 1,

|P(Rz) — P(z) + (R" — 1)mBk™"2"| P { =

‘R”P<§> ~ P(2) B

1
1

au
ag

kPt 41
} for |z| =1

o1

Ay
ap

Rr—1
L+ R™—1

(21)

Proof of Lemma 1. The result is trivial if R = 1, so we suppose that R > 1.
Since P(z) has all zeros in |z| > k where k£ > 1, therefore P(kz) has all zeros
in [z| > 1. Also, m < |P(2)| for |z| = k, so that m < |P(kz)| for |z| = 1.
This gives for any g with || < 1, |mpz"| < |P(kz)| for |z| = 1. By Rouche’s
theorem the polynomial F(z) = P(kz) + Smz" has also all zeros in |z| > 1.

Therefore, the polynomial G(z) = 2"F (%) has all its zeros in |z| < 1 and

|F'(2)] = |G(z)] for |z| = 1. Hence the function % is analytic in |z| < 1 and



174 W. M. Shah and A. Liman

ggi; = Igg} = 1. A direct application of the maximum modulus principle
shows that

G(2) <[F(2)] for |2[ <1, (22)

We now show that all the zeros of f(z) = F(2) — aG(z) lie in |z| < 1 for
every a with |a| > 1. First suppose that F(z) has all its zeros on |z| = 1. If
21,22, , %, are zeros of F(z), then |z;| = 1 for all j = 1,2,--- ,n and we

have
n

Fz) =]z - 2).

so that

=1.

n
Z.
j=1"7

This shows that all the zeros of f(z) = F(z) — aG(z) = (1 — au)F(z) also lie

on |z| = 1 and inparticular in |z| < 1. Next, suppose that F(z) has atleast
G(z)

where |u| = g(—l)”

one zero in |z| < 1, then obviously is not a constant and hence from (22),
it follows that

|G(2)| < |F(2)| for |z| <1. (23)

Replacing z by 1 in (23), we get |F(z)| < |G(2)], for |z| > 1. By Rouche’s
theorem, we conclude that the polynomial f(z) = F(z) — aG(z) has all its
zeros in |z| < 1. Thus in any case the polynomial f(z) has all its zeros in
|z] <1 for every a with || > 1. Since |f(2)| < |f(Rz)| for |z] =1 and
R > 1, and all the zeros of f(Rz) lie in || < % < 1, again Rouche’s theorem
shows that the polynomial

9(z) = f(Rz) = f(2) (24)
= {F(Rz) — F(2)} — o{G(Rz) — G(2)}

has all its zeros in |z| < 1, for every complex number o with |a| > 1 and
R > 1. This implies

|F(Rz) — F(2)| < |G(Rz) — G(z)| for |z|>1 and R>1.  (25)
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If inequality (25) is not true, then there is a point z = 2y with |z9| > 1 such
that |F(Rzo) — F(z0)| > |G(Rzy) — G(20)|. Since G(z) has all its zeros in
|z| <1, it follows that all the zeros of G(Rz) — G(z) lie in |z| < 1, for every
R > 1. Hence G(Rzy) — G(z0) # 0 for |z > 1. We take a@ = %,
so that |a| > 1 and with this choice of «, from (24), we get g(z) = 0, where
|z0] > 1. This contradicts the fact that all the zeros of g(z) lie in |2| < 1. Thus

|F(Rz) — F(2)| < |G(Rz) — G(z)| for |z2| >1 and R > 1. Replacing F'(z)
by P(kz) + fmz" and G(z) by z”P(%) + Bm, we get

R"z P(RZ)_Z P(E)‘

for |z|=1 and R > 1.

|P(Rkz) — P(kz) + (R" — )mBz"| <

(%) - s

Since the polynomial R"P( £ ) — P(kz) does not vanish in |z| < 1, therefore

H(Z) _ P(Rkz)—P(kz)+(R"—1)mpBz"

is analytic in |z| < 1 and by the maximum
RnP| k2 ) _P(kz)

modulus principle, we have |H(z)| < 1, for |z| < 1. Also, it can be easily seen

that H(0) = H (0) = --- = H*'(0) = 0 and H*(0) = f5=;|%|k*. By a
generalized form of Schwarz’s lemma, we have
RF—1]a
2] + &1 o |k
|H(z)| < |z* for |z| < 1.
gz:} Z—‘O‘ krlz| +1
Equivalently
P(Rkz) — P(kz) + (R — 1)m3z" 2 + T o B
’ < |z|* for |z| < 1.
R”P(’“—RZ> _ P(k2) Bt )] 41
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We take z = ST 0 <6 < 2m, so that |z] = + and we get
. . 4 14 &1 )8 prd
'P(Rew) — P(e?) + (R™ — 1)mBk e 1 Rr—11ao
i ) = kptl a
R"P(%) — P(ei) A LG
This implies for |z| = 1,
14 Rret e | 1
P(Rz) — P(z) + (R" — )mBk—"zn| 1 T &
L T
RhP( %) — P(2) Rnla“k“1+1

This completes proof of Lemma 1.
The next lemma which we need is due to Aziz and Rather [3].

Lemma 2. If P(z) is a polynomial of degree n, then for each ¢ >0, R>1,
a real and 0 < 0 < 27,

¢ Vi

d@}

{% j(P(ReiQ) — P(e")) + e (R”P (G—RG) - P(e”’))
< (R 1){% / |P(ei9)|qcze}q. (26)

2 1
0

3. Proofs of the Theorems

Bmz"™

Proof of Theorem 1. Applying Lemma 2 to the polynomial P(z) + =5,
which is of degree at most n, we get for every ¢ > 0, R > 1, « real and
0<6<2m,

27

zn@
/|F1(0)+emGl(e)|qd9< m 1)1 /|P Oy T——j9dh.  (27)

0




Integral Mean Estimates for Polynomials with Restricted Zeros 177

where
Fi(0) = P(Re™) — P(e) + pmk " (R™ — 1)e™
and
if 4
G1(0) = R”P(E) — P(e").

Integrate both sides of (27) with respect to a from 0 to 27w, we have for ¢ > 0,

21 27 27
/ / |F1(0) + e G1(0)|%dadh < 2m(R™ —1)4 / |P(e) + fmk~"e™|1dh. (28)
0 0

0

Now since for every real « and A > B > 1, we have

|A + e > |B + €.

This gives
2 2
/|A+em|qdoz > /|B+eia|Qd@, ¢>0. (29)
0 0
RM—1|ap
R™—1] ag

If F1(0) # 0, we take A =

I‘%l((g))'\ and B = kn“{

khm141
}, 1<u<n.

RE—1|ap |4u41
1+R”—1 ag k

Since P(z) is a polynomial of degree at most n, having no zeros in |z| < k,
k > 1 then by Lemma 1, for A > B > 1, we get by using (29)

/|F1(9)+emGl(9)]qda: |F1(9)|q/'1+(;11—((g))em da
—\F1(9)|f1/ %Eg))%m da

0

2 G 9
—1roF |||+

0
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q

Cur + | do

> |F1(9)|q7

2
= |P(Re®) — P(e") + Bmk™"(R" — 1)ein0|q/
0

q

Cur + €| da. (30)

For F(f) = 0, this inequality is trivially true. Using (30) in (28), we conclude
that for each ¢ >0, R>1, «areal and 0 <6 < 2,

2

/

0

O“k + et

2T

q

da / (P(Re®) — P(®) + Bmk—"(R" — 1)e?|1d0
0

21
< 2n(R" — 1)1 / () + mBk—"e™|1dp.
0
This implies
1

2 q
g 21 {f |P(e?) +mﬁk”ei”9|qd9}
de} <=0

1 )

1 27 ) q
(& e o

2w
AN 60 )
{/‘P(Re ) P(€ )_i_mﬁkfnean
R —
0

where
i o [P H 1
G — 1+ }
14 = | |t

This proves Theorem 1.

Proof of Theorem 2. Since P(z) has s-zeros at the origin, we write P(z) =
2°f(z), where f(z) has all its zeros in |z| > k, k > 1. So that

P(Rz) = P(2) = 2°[R*f(Rz) — [(2)]

= 2*((R* — 1) f(2) + R*f(Rz) — f(2)],
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which implies for 0 < 6 < 27,
[P(Re”) = P(e")| = |(R* = ) f(e") + R f(Re”) = f(e”)].  (31)
By Minkowski’s inequality, we get from (31), for every ¢ > 1,

{/ PR = Pe) "’de} { / (R =1 f(e" +Rsf(R€w)—f(ei9)|qd9};
< (-1 7rf<ew>|qcze}3
{/|f (Re") — ’e)lqde}l. (32)

Using inequality (9) with 3 = 0 and noting that |f(e)] = |e®?f(e)| =
|P(e?)], 0<6<2m, we get from inequality (32)

{/yP (Re) — ’H)chze} < (R*—1) {/yP i yqde}
L ()

{%J|C,uk+€m’qda} 0

2w

={(RS—1)+ - il 1}{/]13@”)]%9}".
{%ﬂcuwrem’qda}q 0
0

This completes proof of Theorem 2.
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