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Abstract

In this paper, we prove some integral inequalities concerning poly-
nomials and there by investigate the dependence of |P (Rz)− P (z)| on
|P (z)| for |z| = 1. These results not only generalize some well-known
Lq (q > 1) inequalities, but also establish the validity of many in (0, 1)
as well.
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1. Introduction

Let P (z) be a polynomial of degree n and P
′
(z) its derivative, then for each

q ≥ 1, {
1

2π

2π∫
0

|P ′(eiθ)|qdθ
} 1

q

≤ n

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

(1)

and for every q > 0,{
1

2π

2π∫
0

|P (Reiθ)|qdθ
} 1

q

≤ Rn

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

. (2)

Inequality (1) is due to Zygmund [21], whereas inequality (2) is a simple con-
sequence of a result due to Hardy [13]. Arestove [1] verified that (1) remains
true for 0 < q < 1 as well.

Inequalities (1) and (2) can be sharpened, if we restrict ourselves to the
class of polynomials having no zeros in |z| < k where k ≥ 1. In case k = 1,
inequality (1) can be replaced [8,18] by{

1

2π

2π∫
0

|P ′(eiθ)|qdθ
} 1

q

≤ n Aq

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

, q > 0 (3)

where

Aq =

{
1

2π

2π∫
0

|1 + eiα|qdα
}−1

q

.

Whereas inequality (2) can be replaced [7,17] by

{
1

2π

2π∫
0

|P (Reiθ)|qdθ
} 1

q

≤ Bq

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

, (4)

where

Bq =

{
1

2π

2π∫
0

|1 +Rneiα|qdα
} 1

q

{
1

2π

2π∫
0

|1 + eiα|qdα
} 1

q

.



Integral Mean Estimates for Polynomials with Restricted Zeros 167

For k ≥ 1, Govil and Rahman [10] have shown that, if P (z) does not vanish
in |z| < k, then for every q ≥ 1,

{
1

2π

2π∫
0

|P ′(eiθ)|qdθ
} 1

q

≤ n Cq

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

, (5)

where

Cq =

{
1

2π

2π∫
0

|k + eiα|qdα
}−1

q

.

The validity of (5) for 0 < q < 1 is verified in [4,12]. On the other hand, the
extension of (4) for k ≥ 1 was proved by Aziz and Shah [5] to read as

{
1

2π

2π∫
0

|P (Reiθ)|qdθ
} 1

q

≤ Dq

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

, (6)

where

Dq =

{
1

2π

2π∫
0

|1 +Rneiα|qdα
} 1

q

{
1

2π

2π∫
0

|1 + tkeiα|qdα
} 1

q

, with tk =

(
1 +Rk

R + k

)n
.

As a generalization of inequality (3), Aziz [2] obtained the following inter-
esting result:

Theorem A. If P (z) is a polynomial of degree n with min
|z|=1
|P (z)| = m and

P (z) has no zeros in |z| < 1, then for every given complex number β with
|β| ≤ 1 and for q ≥ 1,

{
1

2π

2π∫
0

|P ′(eiθ) +mnβei(n−1)θ|qdθ
} 1

q

≤ n Aq

{
1

2π

2π∫
0

|P (eiθ) +mβeinθ|qdθ
} 1

q

,

(7)
where Aq is defined above.
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Recently Aziz and Rather [3] investigated the dependence of |P (Reiθ) −
P (eiθ)| on |P (eiθ)| and proved the following:

Theorem B. If P (z) is a polynomial of degree n, then for every q > 0 and
R ≥ 1,

{
1

2π

2π∫
0

|P (Reiθ)− P (eiθ)|qdθ
} 1

q

≤ (Rn − 1)

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

. (8)

In this paper, we first consider a class of polynomials P (z) = a0+
n∑
j=µ

ajz
j, 1 ≤

µ ≤ n and prove the following more general result analogous to Theorem B,
which among other things provide generalizations for some well-known poly-
nomial inequalities in Lq spaces.

Theorem 1. Let P (z) = a0 +
n∑
j=µ

ajz
j, 1 ≤ µ ≤ n be a polynomial of degree

at most n, having no zeros in |z| < k where k ≥ 1 and min
|z|=k
|P (z)| = m. Then

for every complex number β with |β| ≤ 1, q > 0, R > 1 and 0 ≤ θ < 2π,
0 ≤ α < 2π, { 2π∫

0

∣∣∣∣P (Reiθ)− P (eiθ)

Rn − 1
+mβk−neinθ

∣∣∣∣qdθ} 1
q

≤
{

1

2π

2π∫
0

|Cµk + eiα|qdα
}− 1

q
{ 2π∫

0

|P (eiθ) +mβk−neinθ|qdθ
} 1

q

, (9)

where

Cµk = kµ+1

{ Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ−1 + 1

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

}
. (10)

The result is sharp in case k = 1 and equality holds for P (z) = zn + 1.

The following corollary immediately follows from Theorem 1 by making
R→ 1.
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Corollary 1. If P (z) = a0 +
n∑
j=µ

ajz
j is a polynomial of degree n with

min
|z|=k
|P (z)| = m and having no zeros in the disk |z| < k, k ≥ 1, then for

every given complex number β with |β| ≤ 1, q > 0 and for each θ with
0 ≤ θ < 2π,0 ≤ α < 2π,{

1

2π

2π∫
0

|P ′(eiθ) +mnβk−nei(n−1)θ|qdθ
} 1

q

≤ n{
1

2π

2π∫
0

|C ′µk + eiα|qdα
} 1

q

{
1

2π

2π∫
0

|P (eiθ) +mβk−neinθ|qdθ
} 1

q

, (11)

where

C
′

µk = kµ+1

{ µ
n

∣∣∣∣aµa0
∣∣∣∣kµ−1 + 1

1 + µ
n

∣∣∣∣aµa0
∣∣∣∣kµ+1

}
. (12)

Remark 1. For k = 1, it follows from Corollary 1, that Theorem A holds
true for 0 < q < 1 and for β = 0, k = 1, Corollary 1 reduces to de Bruijn’s
theorem [8] for every q > 0.

Remark 2. Since Rµ−1
Rn−1

≤ µ
n

for all R > 1, 1 ≤ µ ≤ n (for refrence see

[6]) and

{
1

2π

2π∫
0

|k+ eiα|qdα
} 1

q

≤
{

1
2π

2π∫
0

|Cµk + eiα|qdα
} 1

q

(for refrence see [9]),

the following improvement as well as generalization of a result of Govil and
Rahman follows from Theorem 1 by taking β = 0.

Corollary 2. If P (z) = a0 +
n∑
j=µ

ajz
j is a polynomial of degree n, having no

zeros in |z| < k, k ≥ 1, then for every q > 0, R > 1 and 0 ≤ θ < 2π,

{
1

2π

2π∫
0

∣∣∣∣P (Reiθ)− P (eiθ)

Rn − 1

∣∣∣∣qdθ} 1
q
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≤ 1{
1

2π

2π∫
0

|Cµk + eiα|qdα
} 1

q

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

, (13)

where Cµk is given by (10).

Remark 3. By making q →∞ and noting that

lim
q→∞

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

= max
|z|=1
|P (z)|,

we have from inequality (9)

max
|z|=1

∣∣∣∣P (Rz)− P (z)

Rn − 1
+
mβzn

kn

∣∣∣∣

≤

{ Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣k2µ + kµ+1

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

+ 1

}−1

max
|z|=1
|P (z) +mβk−nzn|.

Equivalently ∣∣∣∣P (Rz)− P (z)

Rn − 1
+
mβzn

kn

∣∣∣∣
≤

{ 1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

(1 + kµ+1) + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣(k2µ + kµ+1)

}
(max
|z|=1
|P (z)|+m|β|k−n). (14)

Choosing argument of β suitably, so that for |z| = 1,∣∣∣∣P (Rz)− P (z)

Rn − 1
+
mβzn

kn

∣∣∣∣ =

∣∣∣∣P (Rz)− P (z)

Rn − 1

∣∣∣∣+
m|β|
kn

and then making |β| → 1, we get from inequality (14) the following:
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Corollary 3. If P (z) = a0 +
n∑
j=µ

ajz
j, 1 ≤ µ ≤ n is a polynomial of degree

at most n, having no zeros in |z| < k, k ≥ 1, then for R > 1,

∣∣∣∣P (Rz)− P (z)

Rn − 1

∣∣∣∣ ≤
{ 1 + Rµ−1

Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

(1 + kµ+1) + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣(k2µ + kµ+1)

}
max
|z|=1
|P (z)|

− 1

kn

{
1−

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

(1 + kµ+1) + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣(k2µ + kµ+1)

}
min
|z|=k
|P (z)|. (15)

The following result which is an improvement as well as a generalization of
a result due to Govil, Rahman and Schmeisser [11] (see also Qazi [16]) follows
from Corollary 3 by making R→ 1.

Corollary 4. If P (z) = a0 +
n∑
j=µ

ajz
j, 1 ≤ µ ≤ n is a polynomial of degree

n, having no zeros in |z| < k, k ≥ 1, then

max
|z|=1
|P ′(z)| ≤ n

{ 1 + µ
n

∣∣∣∣aµa0
∣∣∣∣kµ+1

(1 + kµ+1) + µ
n

∣∣∣∣aµa0
∣∣∣∣(k2µ + kµ+1)

}
max
|z|=1
|P (z)|

− n

kn

{
1−

1 + µ
n

∣∣∣∣aµa0
∣∣∣∣kµ+1

(1 + kµ+1) + µ
n

∣∣∣∣aµa0
∣∣∣∣(k2µ + kµ+1)

}
min
|z|=k
|P (z)|. (16)

It can be easily verified (see for refrence [6])that

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

(1 + kµ+1) + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣(k2µ + kµ+1)

≤ 1

1 + kµ
. (17)

Using (17) in (15),we get the following:
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Corollary 5. If P (z) = a0 +
n∑
j=µ

ajz
j, is a polynomial of degree n, which does

not vanish in the disk |z| < k where k ≥ 1, then for R > 1,∣∣∣∣P (Rz)− P (z)

Rn − 1

∣∣∣∣ ≤ 1

1 + kµ
max
|z|=1
|P (z)| − 1

kn−µ(1 + kµ)
min
|z|=k
|P (z)|. (18)

The result is best possible either in case µ = n or R → 1 and in both cases
equality holds for polynomials P (z) = (zµ + kµ)

n
µ .

Remark 4. If we make R → 1 in (18), then Corollary 5 not only gives
a generalization of a result due to Malik [15], but also for k = 1 yields a
refinement of Erdös conjecture proved by Lax [14].

Next, we consider a class of polynomials having a zero of order s at the
origin and the rest of the zeros outside, or on the circle of radius k, k ≥ 1
and prove the following result which generalizes some known Lq inequalities
for polynomials. We prove:

Theorem 2. If P (z) = zs
{
a0 +

n−s∑
j=µ

ajz
j

}
, 1 ≤ µ ≤ n− s is a polynomial of

degree n, having all its zeros in |z| ≥ k where k ≥ 1 except s-fold zeros at the
origin, then {

1

2π

2π∫
0

|P (Reiθ)− P (eiθ)|qdθ
} 1

q

≤

{
(Rs − 1) +

Rn −Rs{
1

2π

2π∫
0

|Cµk + eiα|qdα
} 1

q

}{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

, (19)

where Cµk is given by (10).

The following corollary immediately follows from Theorem 2, by dividing
the two sides of (19) by R− 1 and making R→ 1.

Corollary 6. If P (z) is a polynomial of degree n having all its zeros in |z| ≥ k
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where k ≥ 1 except s-fold zeros at the origin, then for every q > 1,

{
1

2π

2π∫
0

|P ′(eiθ)|qdθ
} 1

q

≤

{
s+

n− s{
1

2π

2π∫
0

|Cµk + eiα|qdα
} 1

q

}{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

.

(20)

Remark 5. The result of Dewan, Bhat and Pukhta [9] is a special case of
Corollary 6, when s = 0.

2. Lemmas

For the proofs of these theorems, we need the following lemmas:

Lemma 1. Let P (z) = a0 +
n∑
j=µ

ajz
j be a polynomial of degree n, having no

zeros in |z| < k where k ≥ 1. If m = min
|z|=k
|P (z)|, then for every given complex

number β with |β| ≤ 1 and R ≥ 1,

|P (Rz)− P (z) + (Rn − 1)mβk−nzn|∣∣∣∣RnP

(
z
R

)
− P (z)

∣∣∣∣ ≤ 1

kµ+1

{ Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1 + 1

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ−1

}
for |z| = 1.

(21)

Proof of Lemma 1. The result is trivial if R = 1, so we suppose that R > 1.
Since P (z) has all zeros in |z| ≥ k where k ≥ 1, therefore P (kz) has all zeros
in |z| ≥ 1. Also, m ≤ |P (z)| for |z| = k, so that m ≤ |P (kz)| for |z| = 1.
This gives for any β with |β| < 1, |mβzn| < |P (kz)| for |z| = 1. By Rouche’s
theorem the polynomial F (z) = P (kz) + βmzn has also all zeros in |z| ≥ 1.

Therefore, the polynomial G(z) = znF

(
1
z̄

)
has all its zeros in |z| ≤ 1 and

|F (z)| = |G(z)| for |z| = 1. Hence the function G(z)
F (z)

is analytic in |z| < 1 and
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∣∣∣∣G(z)
F (z)

∣∣∣∣ = |G(z)|
|F (z)| = 1. A direct application of the maximum modulus principle

shows that
|G(z)| ≤ |F (z)| for |z| ≤ 1. (22)

We now show that all the zeros of f(z) = F (z) − αG(z) lie in |z| ≤ 1 for
every α with |α| > 1. First suppose that F (z) has all its zeros on |z| = 1. If
z1, z2, · · · , zn are zeros of F (z), then |zj| = 1 for all j = 1, 2, · · · , n and we
have

F (z) = c

n∏
j=1

(z − zj),

so that

G(z) = znF

(
1

z̄

)
= c̄

n∏
j=1

(1− zz̄j) = uF (z),

where |u| =
∣∣∣∣ c̄c(−1)n

n∏
j=1

1

zj

∣∣∣∣ = 1.

This shows that all the zeros of f(z) = F (z)− αG(z) = (1− αu)F (z) also lie
on |z| = 1 and inparticular in |z| ≤ 1. Next, suppose that F (z) has atleast

one zero in |z| < 1, then obviously G(z)
F (z)

is not a constant and hence from (22),
it follows that

|G(z)| < |F (z)| for |z| < 1. (23)

Replacing z by 1
z̄

in (23), we get |F (z)| < |G(z)|, for |z| > 1. By Rouche’s
theorem, we conclude that the polynomial f(z) = F (z) − αG(z) has all its
zeros in |z| ≤ 1. Thus in any case the polynomial f(z) has all its zeros in
|z| ≤ 1 for every α with |α| > 1. Since |f(z)| < |f(Rz)| for |z| = 1 and
R > 1, and all the zeros of f(Rz) lie in |z| ≤ 1

R
< 1, again Rouche’s theorem

shows that the polynomial

g(z) = f(Rz)− f(z) (24)

= {F (Rz)− F (z)} − α{G(Rz)−G(z)}

has all its zeros in |z| < 1, for every complex number α with |α| > 1 and
R > 1. This implies

|F (Rz)− F (z)| ≤ |G(Rz)−G(z)| for |z| ≥ 1 and R > 1. (25)
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If inequality (25) is not true, then there is a point z = z0 with |z0| ≥ 1 such
that |F (Rz0) − F (z0)| > |G(Rz0) − G(z0)|. Since G(z) has all its zeros in
|z| ≤ 1, it follows that all the zeros of G(Rz) − G(z) lie in |z| < 1, for every

R > 1. Hence G(Rz0) − G(z0) 6= 0 for |z0| ≥ 1. We take α = F (Rz0)−F (z0)
G(Rz0)−G(z0)

,

so that |α| > 1 and with this choice of α, from (24), we get g(z0) = 0, where
|z0| ≥ 1. This contradicts the fact that all the zeros of g(z) lie in |z| < 1. Thus
|F (Rz)− F (z)| ≤ |G(Rz)−G(z)| for |z| ≥ 1 and R > 1. Replacing F (z)

by P (kz) + βmzn and G(z) by znP

(
k
z̄

)
+ β̄m, we get

|P (Rkz)− P (kz) + (Rn − 1)mβzn| ≤
∣∣∣∣RnznP

(
k

Rz̄

)
− znP

(
k

z̄

)∣∣∣∣
=

∣∣∣∣RnP

(
kz

R

)
− P (kz)

∣∣∣∣ for |z| = 1 and R > 1.

Since the polynomial RnP

(
kz
R

)
− P (kz) does not vanish in |z| ≤ 1, therefore

H(z) = P (Rkz)−P (kz)+(Rn−1)mβzn

RnP

(
kz
R

)
−P (kz)

is analytic in |z| ≤ 1 and by the maximum

modulus principle, we have |H(z)| ≤ 1, for |z| ≤ 1. Also, it can be easily seen

that H(0) = H
′
(0) = · · · = Hµ−1(0) = 0 and Hµ(0) = Rµ−1

Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ. By a

generalized form of Schwarz’s lemma, we have

|H(z)| ≤ |z|µ
|z|+ Rµ−1

Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ

Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ|z|+ 1

for |z| ≤ 1.

Equivalently

∣∣∣∣P (Rkz)− P (kz) + (Rn − 1)mβzn

RnP

(
kz
R

)
− P (kz)

∣∣∣∣ ≤ |z|µ |z|+
Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ

Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ|z|+ 1

for |z| ≤ 1.
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We take z = eiθ

k
, 0 ≤ θ < 2π, so that |z| = 1

k
and we get

∣∣∣∣P (Reiθ)− P (eiθ) + (Rn − 1)mβk−neinθ

RnP

(
eiθ

R

)
− P (eiθ)

∣∣∣∣ ≤ 1

kµ+1

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ−1 + 1

.

This implies for |z| = 1,

∣∣∣∣P (Rz)− P (z) + (Rn − 1)mβk−nzn

RnP

(
z
R

)
− P (z)

∣∣∣∣ ≤ 1

kµ+1

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ−1 + 1

.

This completes proof of Lemma 1.

The next lemma which we need is due to Aziz and Rather [3].

Lemma 2. If P (z) is a polynomial of degree n, then for each q > 0, R ≥ 1 ,
α real and 0 ≤ θ < 2π,{

1

2π

2π∫
0

∣∣∣∣(P (Reiθ)− P (eiθ)) + eiα
(
RnP

(
eiθ

R

)
− P (eiθ)

)∣∣∣∣qdθ} 1
q

≤ (Rn − 1)

{
1

2π

2π∫
0

|P (eiθ)|qdθ
} 1

q

. (26)

3. Proofs of the Theorems

Proof of Theorem 1. Applying Lemma 2 to the polynomial P (z) + βmzn

kn
,

which is of degree at most n, we get for every q > 0, R ≥ 1, α real and
0 ≤ θ < 2π,

2π∫
0

|F1(θ) + eiαG1(θ)|qdθ ≤ (Rn − 1)q
2π∫

0

|P (eiθ) +
βmeinθ

kn
|qdθ. (27)
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where

F1(θ) = P (Reiθ)− P (eiθ) + βmk−n(Rn − 1)einθ

and

G1(θ) = RnP

(
eiθ

R

)
− P (eiθ).

Integrate both sides of (27) with respect to α from 0 to 2π, we have for q > 0,

2π∫
0

2π∫
0

|F1(θ) + eiαG1(θ)|qdαdθ ≤ 2π(Rn−1)q
2π∫

0

|P (eiθ) +βmk−neinθ|qdθ. (28)

Now since for every real α and A ≥ B ≥ 1, we have

|A+ eiα| ≥ |B + eiα|.

This gives
2π∫

0

|A+ eiα|qdα ≥
2π∫

0

|B + eiα|qdα, q > 0. (29)

If F1(θ) 6= 0, we take A = |G1(θ)|
|F1(θ)| and B = kµ+1

{ Rµ−1
Rn−1

∣∣∣∣aµa0 ∣∣∣∣kµ−1+1

1+Rµ−1
Rn−1

∣∣∣∣aµa0 ∣∣∣∣kµ+1

}
, 1 ≤ µ ≤ n.

Since P (z) is a polynomial of degree at most n, having no zeros in |z| < k,
k ≥ 1 then by Lemma 1, for A ≥ B ≥ 1, we get by using (29)

2π∫
0

|F1(θ)+eiαG1(θ)|qdα = |F1(θ)|q
2π∫

0

∣∣∣∣1+
G1(θ)

F1(θ)
eiα
∣∣∣∣qdα

= |F1(θ)|q
2π∫

0

∣∣∣∣G1(θ)

F1(θ)
+ eiα

∣∣∣∣qdα
= |F1(θ)|q

2π∫
0

∣∣∣∣∣∣∣∣G1(θ)

F1(θ)

∣∣∣∣+ eiα
∣∣∣∣qdα
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≥ |F1(θ)|q
2π∫

0

∣∣∣∣Cµk + eiα
∣∣∣∣qdα

= |P (Reiθ)− P (eiθ) + βmk−n(Rn − 1)einθ|q
2π∫

0

∣∣∣∣Cµk + eiα
∣∣∣∣qdα. (30)

For F1(θ) = 0, this inequality is trivially true. Using (30) in (28), we conclude
that for each q > 0, R ≥ 1, α real and 0 ≤ θ < 2π,

2π∫
0

∣∣∣∣Cµk + eiα
∣∣∣∣qdα

2π∫
0

|P (Reiθ)− P (eiθ) + βmk−n(Rn − 1)einθ|qdθ

≤ 2π(Rn − 1)q
2π∫

0

|P (eiθ) +mβk−neinθ|qdθ.

This implies

{ 2π∫
0

∣∣∣∣P (Reiθ)− P (eiθ)

Rn − 1
+mβk−neinθ

∣∣∣∣qdθ} 1
q

≤

{
2π∫
0

|P (eiθ) +mβk−neinθ|qdθ
} 1

q

{
1

2π

2π∫
0

|Cµk + eiα|qdα
} 1

q

,

where

Cµk = kµ+1

{ Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ−1 + 1

1 + Rµ−1
Rn−1

∣∣∣∣aµa0
∣∣∣∣kµ+1

}
.

This proves Theorem 1.

Proof of Theorem 2. Since P (z) has s-zeros at the origin, we write P (z) =
zsf(z), where f(z) has all its zeros in |z| ≥ k, k ≥ 1. So that

P (Rz)− P (z) = zs[Rsf(Rz)− f(z)]

= zs[(Rs − 1)f(z) +Rsf(Rz)− f(z)],
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which implies for 0 ≤ θ < 2π,

|P (Reiθ)− P (eiθ)| = |(Rs − 1)f(eiθ) +Rsf(Reiθ)− f(eiθ)|. (31)

By Minkowski’s inequality, we get from (31), for every q ≥ 1,{ 2π∫
0

|P (Reiθ)−P (eiθ)|qdθ
} 1

q

=

{ 2π∫
0

|(Rs−1)f(eiθ)+Rsf(Reiθ)−f(eiθ)|qdθ
} 1

q

≤ (Rs − 1)

{ 2π∫
0

|f(eiθ)|qdθ
} 1

q

+Rs

{ 2π∫
0

|f(Reiθ)− f(eiθ)|qdθ
} 1

q

. (32)

Using inequality (9) with β = 0 and noting that |f(eiθ)| = |eisθf(eiθ)| =
|P (eiθ)|, 0 ≤ θ < 2π, we get from inequality (32){ 2π∫

0

|P (Reiθ)− P (eiθ)|qdθ
} 1

q

≤ (Rs − 1)

{ 2π∫
0

|P (eiθ)|qdθ
} 1

q

+Rs

{
Rn−s − 1{

1
2π

2π∫
0

|Cµk + eiα|qdα

} 1
q

}{ 2π∫
0

|P (eiθ)|qdθ
} 1

q

=

{
(Rs − 1) +

Rn −Rs{
1

2π

2π∫
0

|Cµk + eiα|qdα
} 1

q

}{ 2π∫
0

|P (eiθ)|qdθ
} 1

q

.

This completes proof of Theorem 2.
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