Basic Subgroups in Semi-simple Abelian Group Rings *

Peter V. Danchev ${ }^{\dagger}$
Plovdiv State University, Mathematical Department, 4000 Plovdiv, Bulgaria

Received October 5, 2009, Accepted November 27, 2009.

Abstract

We consider the question of finding in an explicit form a basic subgroup of the group $S(K G)$ of normalized invertible p-elements in a group ring $K G$ where K is a field of $\operatorname{char}(K) \neq p$ and G is an abelian p-group. In some partial cases the problem is completely resolved.

Keywords and Phrases: Basic subgroups, Group rings, Units, Pure subgroups, Divisible groups, Direct sums of cyclic groups.

1. Introduction

Throughout the text of the present paper, let K be a field of characteristic distinct from a prime p and let G be an abelian p-group with a basic subgroup B. As usual, $K G$ designates the group algebra of G over K with group $S(K G)$ of all normalized p-units. All other notations and terminology used are standard and follow essentially those from $[\mathrm{F}]$ and $[\mathrm{K}]$, [Ka].

[^0]Inspired by [D] and [Da], the purpose here is to establish in an explicit form, which is convenient for further applications, a proper basic subgroup $B_{S(K G)}$ of $S(K G)$ which eventually depends on B.

In [Dan] we have proved that $S(K B) \subseteq B_{S(K G)}$ and that $B_{S(K G)} \cong S(K B)$, provided that K is the first kind field with respect to p.

We shall demonstrate in the sequel that $B_{S(K G)}$ coincides with $(1+I(K G ; B)) \cap$ $S(K G)$ where $I(K G ; B)$ is the relative augmentation ideal of $K G$ with respect to B, provided K is a field of the first kind with respect to p and G is a direct sum of cyclic groups (in particular, a countable separable group).

Before doing that, we first need the following preparatory technicalities.

2. Preliminaries

Lemma 1. Suppose R is a commutative unitary ring and A is a multiplicative abelian group with a subgroup C. Then $T=[1+I(R A ; C)] \cap S(R A)$ is a group.

Proof. Choose $a, b \in T$. Clearly $a b \in S(R A)$. Moreover, $a=1+a_{1}$ and $b=1+b_{1}$ where $a_{1}, b_{1} \in I(R A ; C)$. Thus $a b=\left(1+a_{1}\right)\left(1+b_{1}\right)=1+a_{1}+b_{1}+$ $a_{1} b_{1} \in 1+I(R A ; C)$. Hence $a b \in T$.

On the other hand, there exists a positive integer m such that $a^{p^{m}}=1$. Therefore, $a^{-1}=a^{p^{m}-1} \in T$ applying inductively the first step.

Moreover, motivated by the preceding lemma, we obtain:
Proposition 2. Suppose R is a commutative unitary ring and A is a multiplicative abelian p-group with a subgroup C. Then the following two implications hold:
(i) If C is separable and pure in A, then $(1+I(R A ; C)) \cap S(R A)$ is pure in $S(R A)$.
(ii) If A / C is divisible, then $S(R A) /[(1+I(R A ; C)) \cap S(R A)]$ is divisible, provided that R is the first kind field with respect to p.

Proof. (i) We shall show that $(1+I(R A ; C)) \cap S^{p^{n}}(R A)=[(1+I(R A ; C)) \cap$ $S(R A)]^{p^{n}}$ for each natural $n \geq 1$. In order to do this, given x in the left hand-side. Hence $x \in(1+I(R A ; F)) \cap S(R A)$ where $F \leq C$ is a finite subgroup. Because of pureness of C in A, we observe that F can be regarded
as a direct factor of A (see [F]). Consequently, referring to ([Da], Lemma 6), $(1+I(R A ; F)) \cap S(R A)$ is a direct factor of $S(R A)$, hence it is its pure subgroup. Finally, $x \in[(1+I(R A ; F)) \cap S(R A)]^{p^{n}} \subseteq[(1+I(R A ; C)) \cap S(R A)]^{p^{n}}$, which is equivalent to the promised equality as expected.
(ii) According to [Dan] or [Danc], $S(R A) /[(1+I(R A ; C)) \cap S(R A)] \cong$ $S(R(A / C))$. However, it was proved in [Dan] that $S(R(A / C))$ is divisible and so the claim follows.

Proposition 3. Suppose G is an infinite group with a subgroup C and K is the first kind field with respect to p. Then

$$
|(1+I(K G ; C)) \cap S(K G)|=|G|
$$

Proof. First of all, observe that $|G|=|\mathcal{F}|$ where $\mathcal{F}=\{F: F \leq G$ is finite \}. Choose an idempotent $e \in K F$ and fix an element $b \in C$ with $b \notin F$; actually because $|G /\langle b\rangle|=|G|$ we may take $F \cap\langle b\rangle=\{1\}$ for almost all finite subgroups F of G.

Construct the element $1 \neq 1-e+e b=1-e(1-b)$ which clearly belongs to $(1+I(K G ; C)) \cap S(K G)$. If u is another idempotent from $K F, u \neq e$, we deduce that $1-e+e b \neq 1-u+u b$. Otherwise $u-e=(u-e) b$ and since $u-e \in K F$ it follows immediately that $b \in F$, a contradiction. By the same token, if $e^{\prime} \in K F^{\prime}$ is an idempotent for some finite $F^{\prime} \leq G$ such that $\left(F F^{\prime}\right) \cap\langle b\rangle=1$, we see as above that $1-e+e b=1-e^{\prime}+e^{\prime} b$ only when $e=e^{\prime}$. This substantiates our equality.

The following statement which is of an independent interest strengthens a lemma due to Mollov proved in [Mo] when G is separable. Here we omit this restriction on G.

Lemma 4. Let P be a pure separable subgroup of the group G and let R be a commutative unitary ring. Then $S(R P)$ is pure in $S(R G)$.
Proof. Take $x \in S(R P) \cap S^{p^{n}}(R G)$ where n is an arbitrary natural, whence $x \in S(R E)$ for some finite subgroup E of P. Because of the separability of P, we may assume that E is a direct factor of P. Thus E must be a direct factor of G (see, e.g., $[\mathrm{F}]$). Furthermore, one easily checks that $S(R E)$ is a direct factor of $S(R G)$ and hence $x \in S^{p^{n}}(R E) \subseteq S^{p^{n}}(R P)$ as required.

3. Basic Subgroups in Commutative Semi-Simple Group Algebras

We are now ready to establish a proper basic subgroup of $S(K G)$ (it is worthwhile noticing that in this situation when G is a direct sum of cyclic groups $S(K G)$ is a basic subgroup of itself).

Theorem 5. Suppose G is an infinite direct sum of cyclic p-groups (in particular, a countable separable abelian p-group) and K is a field of the first kind with respect to p of $\operatorname{char}(K)=p \neq 0$. Then

$$
B_{S(K G)}=(1+I(K G ; B)) \cap S(K G)
$$

Proof. It is well known that each countable separable abelian p-group G is a direct sum of cyclic groups (see [F]). Appealing to [M] we deduce that $S(K G)$ is a direct sum of cyclic groups, whence so is its subgroup $(1+$ $I(K G ; B)) \cap S(K G)$. Furthermore, we apply Proposition 2 to conclude that $(1+I(K G ; B)) \cap S(K G)$ is a proper basic subgroup of $S(K G)$, indeed.

Remark. There is another method for attacking the proof. In fact, in accordance with Proposition 2 we need to show only that $(1+I(K G ; B)) \cap S(K G)$ is a direct sum of cyclic groups. Indeed, write $B=\cup_{n<\omega} B_{n}$ where $B_{n} \subseteq B_{n+1}$ are finite and pure in B, whence pure in G. Thus $(1+I(K G ; B)) \cap S(K G)=$ $\cup_{n<\omega}\left[\left(1+I\left(K G ; B_{n}\right)\right) \cap S(K G)\right]$. It is only a technical exercise to check that the members of the union have only a finite number of finite heights in $S(K G)$. On the other hand, by Proposition 2(i) they are also pure in $S(K G)$, and hence in the former group $(1+I(K G ; B)) \cap S(K G)$. Finally, we wish apply [H] to deduce the wanted claim, whence we obtain the stated equality.

Note. In the case when G is countable, it follows from [M] or [Dan] that $S(K G)$ is countable, whence so is its subgroup $(1+I(K G ; B)) \cap S(K G)$. Furthermore, to show once again that this subgroup is a direct sum of cyclic groups, it is strongly enough to prove that it is separable. However, the idea of proof is analogous to that in Theorem 5.

Standardly, A_{d} and A_{r} denote the maximal divisible subgroup and the reduced part of an abelian p-group A, respectively.

Theorem 6. Suppose G is an abelian p-group and K is a field of the second kind with respect to p of $\operatorname{char}(K) \neq p$. Then

$$
B_{S(K G)}=S(K G)_{r} .
$$

Proof. Employing [M], we write $S(K G)=S(K G)_{d} \times S(K G)_{r}$ where $S(K G)_{r}$ is a direct sum of cyclic groups. Moreover, $S(K G)_{r}$ is pure in $S(K G)$ and $S(K G) / S(K G)_{r} \cong S(K G)_{d}$ is divisible. So, the equality follows.

We finish with the following crucial
Remark. Proposition 3 illustrates that Theorem 5 is not longer true when G is not starred, i.e., $|G|>|B|$. In fact, if $|G|=\aleph_{1}>\aleph_{0}=|B|$, then $B_{S(K G)} \neq$ $(1+I(K G ; B)) \cap S(K G)$ since by virtue of [Dan] we have $B_{S(K G)} \cong S(K B)$, whence in view of $[\mathrm{M}]$ we have $\left|B_{S(K G)}\right|=|B|=\aleph_{0}$ whereas Proposition 3 tells us that $|(1+I(K G ; B)) \cap S(K G)|=|G|=\aleph_{1}$.

References

[1] P. V. Danchev, Sylow p-subgroups of commutative modular and semisimple group rings, Compt. rend. Acad. bulg. Sci., 54 no. 6 (2001), 5-6.
[2] P. V. Danchev, Basic subgroups in abelian group rings, Czechoslovak Math. J., 52 no. 1 (2002), 129-140.
[3] P. V. Danchev, Sylow p-subgroups of abelian group rings, Serdica Math. J., 29 no. 1 (2003), 33-44.
[4] P. V. Danchev, Ulm-Kaplansky invariants of $S(K G) / G$, Bull. Polish Acad. Sci. -Math., 53 no. 3 (2005), 147-156.
[5] P. V. Danchev, On the coproducts of cyclics in commutative modular and semisimple group rings, Bull. Acad. Sci. Moldova - Math., 51 no. 2 (2006), 26-33.
[6] L. Fuchs, Infinite Abelian Groups, volume I, Mir, Moscow, 1974. (In Russian.)
[7] P. D. Hill, Primary groups whose subgroups of smaller cardinality are direct sums of cyclic groups, Pac. J. Math., 42 no. 1 (1972), 63-67.
[8] G. Karpilovsky, Commutative Group Algebras, Marcel Dekker, New York, 1983.
[9] G. Karpilovsky, Unit Groups of Group Rings, John Wiley and Sons, New York, 1989.
[10] T. Zh. Mollov, Sylow p-subgroups of the normalized unit groups of semisimple group algebras of uncountable abelian p-groups, Pliska Stud. Math. Bulg., 8 (1986), 34-46. (In Russian.)
[11] T. Zh. Mollov, Ulm-Kaplansky invariants of the Sylow p-subgroups of the normed unit groups of semisimple group algebras of infinite separable abelian p-groups, Pliska Stud. Math. Bulg., 8 (1986), 101-106. (In Russian.)

[^0]: *2000 Mathematics Subject Classification. Primary 16U60, 16S34, 20K10.
 ${ }^{\dagger}$ E-mail: pvdanchev@yahoo.com

