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Abstract

In this paper, we present a generalized Čebyšev type inequality for
absolutely continuous functions whose derivatives belong to Lp [a, b] ,
p > 1. Applications for probabilty density functions are also given.
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1. Introduction

For two measurable functions f, g : [a, b]→ R, define the functional,

T (f, g; a, b) :=
1

b− a

b∫
a

f (x) g (x) dx−

 1

b− a

b∫
a

f (x) dx

 1

b− a

b∫
a

g (x) dx

 ,

(1.1)
which is in literature called the Čebyšev functional, provided the integrals in
(1.1) exists.

Moreover, in 1882 P. L. Čebyšev (see [5], p. 297) proved that,
if f

′
, g

′ ∈ L∞ [a, b] , then

|T (f, g; a, b)| ≤ 1

12
(b− a)2

∥∥∥f ′
∥∥∥
∞

∥∥∥g′
∥∥∥
∞
. (1.2)

In the recent past, Čebyšev functional has remained an area of special
interest for many researchers and has yielded many variants and generaliza-
tions in the field of inequalities. It has also played a key role in obtaining
some new inequalities of Ostrowski type, for example, Ostrowski-Grüss type,
Ostrowski-Čebyšev type, etc. The research papers [1, 2, 6] cover a comprehen-
sive literature on the generalizations of Čebyšev functional and its associated
bounds.

In [7], B. G. Pachpatte presented the following Čebyšev type inequality in
Lp norm:

Theorem 1. Let f, g : [a, b] → R be absolutely continuous functions whose
derivatives f ′, g′ ∈ Lp [a, b] , p > 1 then

|P (C,D, f, g)| ≤ 1

(b− a)2
M

2
q ‖f ′‖p ‖g

′‖p , (1.3)

where

C =
1

3

[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]
,

D =
1

3

[
g (a) + g (b)

2
+ 2g

(
a+ b

2

)]
,
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M =
(2q+1 + 1) (b− a)q+1

3 (q + 1) 6q

with 1
p

+ 1
q

= 1, and

‖f‖p =

(∫ b

a

|f (t)|p dt
) 1

p

<∞.

P (α, β, f, g) = αβ − 1

b− a

α b∫
a

g (t) dt+ β

b∫
a

f (t) dt


+

 1

b− a

b∫
a

f (t) dt

 1

b− a

b∫
a

g (t) dt

 , (1.4)

α and β are real constants.

Recently, in [4], Zheng Liu presented the following generalization of (1.3):

Theorem 2. Let the assumptions of Theorem 1 hold, then for any θ ∈ [0, 1] ,

|P (Γθ,∆θ, f, g)| ≤ 1

(b− a)2
M

2
q

θ ‖f
′‖p ‖g

′‖p , (1.5)

where

Mθ =
θq+1 + (1− θ)q+1

(q + 1) 2q
(b− a)q+1 ,

and

Γθ =
θ

2
[f (a) + f (b)] + (1− θ) f

(
a+ b

2

)
,

∆θ =
θ

2
[g (a) + g (b)] + (1− θ) g

(
a+ b

2

)
.

In this paper, we obtain a generalization of the inequalities (1.3) and (1.5)
and apply them to probability density functions.
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2. Main Results

For suitable functions f, g : [a, b]→ R and h ∈ [0, 1] , we present the following
notations:

Γh,x = (1− h) f (x) + h

(
(x− a) f (a) + (b− x) f (b)

b− a

)
,

∆h,x = (1− h) g (x) + h

(
(x− a) g (a) + (b− x) g (b)

b− a

)
. (2.1)

and P (α, β, f, g) is as defined above in (1.4).
The following result holds:

Theorem 3. Let the assumptions of Theorem 1 hold, then for any h ∈ [0, 1]
and x ∈ [a, b] , we have:

|P (Γh,x,∆h,x, f, g)|

≤ 1

(b− a)2
M

2
q

h,x ‖f
′‖p ‖g

′‖p (2.2)

where Γh,x and ∆h,x are as defined by (2.1) and

Mh,x =
1

q + 1

[
hq+1 + (1− h)q+1] [(x− a)q+1 + (b− x)q+1] . (2.3)

Proof. We define the function

k (x, t;h) =

{
t− (1− h) a− hx, t ∈ [a, x] ,
t− (1− h) b− hx, t ∈ (x, b].

Then, we obtain the following identities:

Γh,x −
1

b− a

b∫
a

f (t) dt =
1

b− a

b∫
a

k (x, t;h) f
′
(t) dt, (2.4)

∆h,x −
1

b− a

b∫
a

g (t) dt =
1

b− a

b∫
a

k (x, t;h) g
′
(t) dt. (2.5)
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Multiplying the left and right hand side of (2.4) and (2.5) , we get,

P (Γh,x,∆h,x, f, g) =
1

(b− a)2

 b∫
a

k (x, t;h) f
′
(t) dt

 b∫
a

k (x, t;h) g
′
(t) dt

 ,

implies

|P (Γh,x,∆h,x, f, g)| ≤ 1

(b− a)2

 b∫
a

|k (x, t;h)|
∣∣∣f ′

(t)
∣∣∣ dt
 b∫

a

|k (x, t;h)|
∣∣∣g′

(t)
∣∣∣ dt
 .

(2.6)
Thus, by using the Hölder’s integral inequality:

|P (Γh,x,∆h,x, f, g)|

≤ 1

(b− a)2


 b∫

a

|k (x, t;h)|q dt


1
q
 b∫

a

∣∣∣f ′
(t)
∣∣∣p dt


1
p


×


 b∫

a

|k (x, t;h)|q dt


1
q
 b∫

a

∣∣∣g′
(t)
∣∣∣p dt


1
p


=

1

(b− a)2

 b∫
a

|k (x, t;h)|q dt


2
q ∥∥∥f ′

∥∥∥
p

∥∥∥g′
∥∥∥
p
. (2.7)

From the definition of k (x, t;h) , it follows that

b∫
a

|k (x, t;h)|q dt =
1

(q + 1)

[
hq+1 + (1− h)q+1] [(x− a)q+1 + (b− x)q+1] .

(2.8)
By using (2.7)− (2.8), (2.2) follows.

Remark 1. For x = a+b
2
, h = 1

3
in (2.2), (1.3) is recaptured.

Remark 2. For x = a+b
2

in (2.2), (1.5) is recaptured.

We, now, state a special case of Theorem 3 in the form of the following
corollary:
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Corollary 1. Let the assumptions of Theorem 1 hold, then∣∣∣P (Γ1,a+b
2
,∆1,a+b

2
, f, g

)∣∣∣
≤ 1

(b− a)2
M

2
q

1,a+b
2

‖f ′‖p ‖g
′‖p (2.9)

where

M1,a+b
2

=
1

2q (q + 1)
(b− a)q+1 , (2.10)

and

Γ1,a+b
2

=
f (a) + f (b)

2
,

∆1,a+b
2

=
g (a) + g (b)

2
. (2.11)

We, now apply (2.9) to probability density functions as follows:

3. Applications for PDF’s

Let X be a continuous random variable with the probability density function
f : [a, b]→ R+ and the expectation of X is given by

E (X) =

b∫
a

t f (t) dt. (3.1)

The cumulative distribution function F is given as:

F (x) =

x∫
a

f (t) dt, (3.2)

for x ∈ [a, b] .
Moreover, let Y be another continuous variable with the probability density

function h : [a, b]→ R+ and the expectation of Y is given by

E (Y ) =

b∫
a

t h (t) dt. (3.3)
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The cumulative distribution function H is given as:

H (y) =

y∫
a

h (t) dt, (3.4)

for y ∈ [a, b] . Then,

b∫
a

F (x) dx = b− E (X) ,

F (a) = 0, F (b) = 1,

F (a) + F (b)

2
=

1

2
(3.5)

and

b∫
a

H (y) dy = b− E (Y ) ,

H (a) = 0, H (b) = 1,

H (a) +H (b)

2
=

1

2
. (3.6)

The following proposition holds:

Proposition 1. Let X, Y, F and H be defined as above. Then, the following
holds:∣∣∣∣∣14
(

1−
(
E (Y )− E (X)

b− a

))
− 1

b− a

(
b− E (X) + E (Y )

2

)(
1−

b− E(X)+E(Y )
2

b− a

)∣∣∣∣∣
≤ 1

4

(
b− a
q + 1

) 2
q

‖f‖p ‖h‖p . (3.7)

Proof. By choosing f = F and g = H in (2.9)-(2.11) and simplifying with the
help of (3.1)-(3.6), we get the required inequality.
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Remark 3. If in (3.7), we choose F = H, then we have:∣∣∣∣12 − 1

b− a
(b− E (X))

∣∣∣∣
≤ 1

2

(
b− a
q + 1

) 1
q

‖h‖p , (3.8)

which is known in literature as ”trapezoid inequality” for cumulative distribu-
tion functions (see [3], p. 34 for f = H).
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