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1. Introduction

The methodology of Analysis of Means (ANOM) was developed and intro-
duced into the literature by Ott (1967). Later, Schilling (1973a, b) extended
the ANOM concept to address interaction and main effects for a variety of ex-
perimental designs. Schilling called his extension as the Analysis of Means
for Treatment Effects (ANOME), where k means being compared are not
necessarily independent. Nelson (1983a) gives necessary mathematical con-
stants. Balamurali (2010) provided simplified factors of ANOME constants.
The ANOM is sometimes referred to as an alternative to the Analysis of Vari-
ance (ANOVA). Its advantage over the ANOVA procedure is that the data
are plotted and thus the results may be quickly interpreted. The ANOM tech-
nique provides a control chart-like approach to the analysis of experimental
data. Consequently, it is to be expected that the increasing interest in control
chart should lead to an increased interest in ANOM. Control charts under
error are currently generating much interest and a growing body of literature.
The purpose of this paper is, therefore, to determine and illustrate the effect of
misclassification error on the operating characteristic (OC) curve of ANOM.

2. Attributes Data

Ott (1975) had pointed out that important problems arise in almost every
industrial process where the economically critical characteristics of the prod-
uct are attributes. The ANOM was extended to the case where the normal
distribution can be used as an approximation to the actual distribution of
the data or one can transform the data to make it approximately normal.
Transformation of attribute data is discussed in Nelson (1983b).

2.1. Proportions Data

When the data consists of the number or proportion of units having a par-
ticular attribute, it can often be represented by a binomial distribution. The
procedural steps are outlined below.

(i) Obtain samples of equal size n from each of k populations. Let the
number of units having the attribute of interest in each of the k samples
be denoted by X1, X2, . . . , Xk.
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(ii) Compute the k sample proportions pi =
Xi

n
, i = i, 2, . . . , k.

(iii) Compute the overall sample proportion p =
k∑

i=1

pi
k
.

(iv) Compute an estimate of the standard deviation of the sample proportion

using Sp =
√

p(1−p)
n

.

(v) Determine the decision lines at risk α as

Upper Decision Line(UDL) = p+ hαsp

√
(k − 1)

k
Center Line (CL) = p

Lower Decision Line (LDL) = p− hαsp

√
(k − 1)

k
(1)

where hα is the table value in Nelson (1983a) for specified value of α
and k means with infinite degrees of freedom. The infinite degrees of
freedom used because one is approximating the binomial distribution
with a normal distribution.

(vi) Plot the sample proportions pi against the decision lines. If all pro-
portions fall between the decision lines, then accept the hypothesis of
k equal proportions. Otherwise conclude that the excessive variability
exists and the process is not in statistical control. When the standard
or target value is given by p, the decision lines are obtained by

Upper Decision Line (UDL) = p+ hα

√
p(1− p)

n
Center Line (CL) = p

Lower Decision Line (LDL) = p− hα

√
p(1− p)

n
(2)

where, as before, n is the number of items inspected and hα is the value
obtained from Nelson (1983a) for specified value of α and k with ∞
degrees of freedom.
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When a sample of size n is taken, the sample fraction defective given by
the statistic x/n is compared to the decision lines. The largest and smallest
values of x for which an in-control state is indicated are;

xl = [nUDL]− and xs = [nLDL]+ (3)

where [ ]− and [ ]+ indicate round-down and round-up operations respectively,
to the nearest integer. The OC curve illustrates the probability that a sample
fraction defective x/n will fall within control limits as a function of the true
process fraction defective p, i.e.,

Pa(p) =

xl∑
x=max{0,xs}

(
n

x

)
px(1− p)n−x, 0 ≤ p ≤ 1 (4)

Example 1. Consider the following example. (Given in Ott (1975), pp.106).

Table 1: Effect of Copper on Corrosion

Level of Copper Containers Examined Failures Fraction failing
(ppm) n di pi

5 80 14 0.175
10 80 36 0.450
15 80 47 0.588

Total 240 97

The overall sample proportion of failures is p = (p1+p2+p3)/3 =0.404=40.4%.

The standard deviation of the proportion is Sp =
√

p(1−p)
n

=5.5% for p =

0.404 and n = 80. For k = 3 and α = 0.01, referring to the Nelson (1983a)
table, we get h = 2.91. Then, CL = 0.404 = 40.4%, UDL = 0.5344 =
53.44% and LDL = 0.2736 = 27.36%. The ANOM chart is shown in Figure
1.

Using equations (3) and (4) we can calculate the probability Pa that a
sample fraction defective x/n will fall within control limit as a function of the
true process fraction defective, p. That is.,

Pa(p) =

xl∑
x=max{0,xs}

(
n

x

)
px(1− p)n−x, 0 ≤ p ≤ 1
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The values of xl and xs are xl = [80(0.5344)]− = 42 and xs = [80(0.2736)]+ =
22 .

Therefore, the OC curve is expressed mathematically as

Pa(p) =
42∑

x=22

(
80

x

)
px (1− p)80−x, 0 ≤ p ≤ 1

Figure 1: Effect of Copper on Corrosion

2.1.1. Development of Formulae under Misclassification Error

There are only two types of error possible in attribute sampling. An item that
is good may be regarded as defective (Type I error) or a defective item may
be classified as good (Type II error).

Let E1 = The event that a good item is classified as a defective item

E2 = The event that a defective item is classified as good item

A = The event that an item is defective and

B = The event that an item is classified as a defective
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Then

P (B) = P (A) P (E2) + P (A) P (E1) (5)

Also by defining the quantities,

p = P (A) = true fraction defective

pe = P (B) = apparent fraction defective

e1 = P (E1) = the probability that E1 occurs, and

e2 = P (E2) = the probability that E2 occurs

Then the apparent fraction defective may be expressed as

pe = p (1− e2) + (1− p) e1 (6)

The decision lines under misclassification error when the standards are based
upon the data will be modified from equation (1) and the decision lines are
given by,

Upper Decision Line (UDL) = pe + hα spe

√
(k − 1)

k
Center Line (CL) = pe

Lower Decision Line (LDL) = pe − hα spe

√
(k − 1)

k
(7)

where Spe =
√

pe(1−pe)
n

and pe = p(1− e2) + (1− p)e1.

If p is treated as a target value, the center line and decision limits for the
ANOM chart will be exactly as given in equation (2). Now the statistic of
interest is the sample apparent fraction defective ye/n, where ye is the number
of apparent defectives observed by the inspector. The largest and smallest
values of ye for which an in-control state is indicated will be

yel1 = [nUDLPe ]
− and yes1 = [nLDLpe ]

+ (8)
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Then the OC curve under inspection error is given by

Pae1(pe) =

yel1∑
ye=max(0,yes1 )

(
n

ye

)
pyee (1− pe)

n−ye , 0 ≤ pe ≤ 1 (9)

Clearly, although the ANOM chart remains identical to the error free case,
inspection will distort the OC curve of the ANOM chart.

Example 2. Again let us consider Example 1, and assume that the ANOM
for proportions is now based upon data observed from an error prone in-
spection process operating at an actual fraction defective p = 0.404 and
α = 0.01. The four cases of Type I and Type II errors considered are
(0.00, 0.00); (0.05, 0.00); (0.00, 0.05) and (0.05, 0.05). The center line and other
decision lines will change as a function of each error pair considered. To illus-
trate the calculations, let us consider (e1, e2) = (0.05, 0.05). In this case we
have the decision lines as

Center Line (CL) = pe = 0.4136

Upper Decision Line (UDL) = 0.5444

Lower Decision Line (LDL) = 0.2828

The values of yel and yes are 43 and 23 respectively. The OC curve under
this error pair would be given by

Pae1(pe) =
43∑

ye=23

(
80

ye

)
pyee (1− pe)

80−ye , 0 ≤ pe ≤ 1

Table 2 shows the decision line values under four cases of error pairs.

Table 2: Decision Line Values under Error

(e1, e2) CLpe UDLpe LDLpe

0.00, 0.00 0.4040 0.5344 0.2736
0.05, 0.00 0.4338 0.5654 0.3021
0.00, 0.05 0.3838 0.5130 0.2546
0.05, 0.05 0.4136 0.5444 0.2828
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Figure 2: Operating Characteristic (OC) Curves under Different Error Rates

Figure 2 illustrates the OC curve under each error pair considered. It is
easily seen that realistic quantities of error have considerable effect on the
OC curve. From the graph it is easily observed that Type I error increases
the value of Pae1 for low process fraction defective and decreases the value of
Pae1 at high process fraction defective. We already defined Type I error is the
erroneous classification of a good item as defective. Therefore, the probability
that the sample statistic ye/n falling above LDL is increased when errors are
made. Similarly, Type I error causes the sample statistic to fall above LDL. It
is also obvious that Type II error decreases the value of Pae1 for low fraction
defective and increases the value of Pae1 at high fraction defective. When both
errors are operative together, the Type I error has more influence on the OC
curve for low value of p, while the Type II error dominates the effect on the
OC curve for higher values of p. The reason is that when the actual process
fraction defective is quite low there is a little chance for a Type II error. When
p increases the effect of this error is also increased.

2.1.2. Adjusted OC Curve

The decision lines may be determined for the proportions data, to large extent,
compensate for misclassification error and provide an OC curve closer to the
desired. First the center line and other decision lines are determined using
equations (2). This is easily done based upon the target value or actual fraction
defective p. However, the value of p to be used in (1) may be found by solving
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equation (6) for p.

p =
pe − e1

1− e1 − e2
(10)

In order to estimate e1 and e2, p must be known. This is true, and p may
be determined by inspection job samples, post inspection audits etc. However,
once floor production sampling begins, p is not known and must be estimated
by the apparent process fraction defective pe.

Once the center line CLp and other decision lines UDLp and LDLp have
been determined, the compensating adjusted center line (ACL) and other ad-
justed decision lines (AUDL and ALDL) are calculated as follows:

ACL = CLp(1− e2) + (1− CLp)e1

AUDL = UDLp(1− e2) + (1− UDLp)e1

ALDL = LDLp(1− e2) + (1− LDLp)e1 (11)

It is to be noted that the compensating ANOM chart simply reflects taking the
error free center line and control limit fraction defective, and using equation
(6) to convert them to error-prone equivalents.

The largest and the smallest values of ye for which an in-control state is
indicated are

yela = [nAUDLpe]
−and yesa = [nALDLpe]

+ (12)

The adjusted OC curve (Paae(pe)) under misclassification error is given by,

Paae(pe) =

yela∑
ye=Max(0,yesa )

(
n

ye

)
pyee (1− pe)

n−ye , 0 ≤ pe ≤ 1 (13)

2.2. Count Data

ANOM can also be applied to count data (non-conformities) in which the
Poisson distribution is an appropriate model. The decision lines are obtained
by,

Upper Decision Line(UDL) = c+ hα

√
c

√
(k − 1)

k
Center Line(CL) = c

Lower Decision Line(LDL) = c− hα

√
c

√
(k − 1)

k
(14)
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where c is the overall average and is expressed mathematically as c =
∑k

i=1
ci
k
.

Let X be the number of non-conformities (defects) in the sample. Then the
largest and the smallest values of X for which an in-control state is indicated
are

xl = [UDL]− and xs = [LDL]+ (15)

The OC function is given by

Pa(c) =

xl∑
x=Max(0,xs)

e−ccx

x!
, c > 0 (16)

where Pa(c) represents the probability that a sample point (number of non-
conformities) will fall within the decision limits. If the standard value (target
value) is available by c, then the decision lines are given by

CL = c

UDL = c+ hα

√
c

LDL = c− hα

√
c (17)

Again the largest and the smallest values of X, for which an in-control state is
indicated are xl = [UDL]− and xs = [LDL]+. The OC function is then given
by

Pa(c) =

xl∑
x=Max(0,xs)

e−ccx

x!
, c > 0

Example 3. Consider the following problem (given in Wadsworth et al. (1986)
pp.614).
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Sample Number Number of Non-conformities
1 11
2 23
3 35
4 19
5 22
6 25
7 28
8 14
9 50
10 23

250

The average count c = 250
10

= 25; s =
√
25; hα for α = 0.05, k = 10 and

for ∞ degrees of freedom is 2.8. The decision lines computed using equation
(14) are, 25 ± 2.8(5)

√
9/10. Thus UDLc = 25 + 13.3 = 38.3, CLc = 25 and

LDLc = 25− 13.3 = 11.7.

2.2.1. Development of Formulae under Misclassification Error

In using ANOM for count data, a sample is taken and the number of non-
conformities is counted. Again the two types of error are (i) failing to find one
or more number of non-conformities in the sample and (ii) declaring one or
more non-conformities when none exist (a false alarm). Let

u = probability that a non− conformity is correctly noted

v = the average number of false alarm per part

c = true average number of non− conformities per part

c0 = average number of defects per part observed by the inspector.

Then we have

c0 = uc+ v (18)

with both u and v estimated. Every effort should be made to eliminate both
types of errors, i.e., to get u close to one and v close to zero. Thus we obtained
equation (17) as that of Ran Suich (1988). If the ANOM for count is based
upon past data which is subject to misclassification error, then the equations
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(14) and (17) can be rewritten on the basis of estimated value of c0 instead of
c. Therefore, the error prone and error free decision lines will be

CLc0 = c0

UDLc0 = c0 + hα

√
c0

√
(k − 1)

k

LDLc0 = c0 − hα

√
c0

√
(k − 1)

k
(19)

and

CL0 = c

UDL0 = c+ hα

√
c

LDL0 = c− hα

√
c (20)

respectively. The OC function under error prone data is given by

Pa(c0) =

xl∑
x=Max(0,xs)

e−c0cx0
x!

(21)

where xl = [UDLc0 ]
− and xs = [LDLc0 ]

+.

Example 4. Consider the example 3, under misclassification error. Here we
consider four cases (u, v) = (1, 0), (1, 2), (0.8, 0) and (0.8, 2). The first case
corresponds to sampling without misclassification error while the other three
represent different error rates. The following table shows different decision
limits under different error rates and the graph shows the effects on OC curve.

Table 3: Decision Lines under Misclassification Error

u v UDLc CLc LDLc

1.0 0.0 38.3 25.0 11.7
1.0 2.0 40.803 27.0 13.2
0.8 0.0 31.88 20.0 8.12
0.8 2.0 34.46 22.0 9.54
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Figure 3: Operating Characteristic (OC) Curves under Different Error Rates

From Figure 3, it can be seen that (1, 2) results in a shifting of the OC
curve to the left. This is because u = 1 means that none of non-conformities
were missed while v = 2 means that there will be, on the average, two false
alarms per part and this will shift the OC curve to the left side of the true
OC curve. An error rate of (0.8, 0) results in huge shift of the OC curve to
the right. That is, u = 0.8 means that the inspector is finding only 80% of the
non-conformities.

2.2.2. Adjusted OC Curve

First the center line and other decision lines are determined using equation
(17). This is easily done based upon the target value or actual fraction non-
conformities c. However, the value of c to use in the equation (17) may be
found by solving the equation (18) for c as

c =
c0 − v

u
(22)

We then use the value of c from the equation (22) in equation (17). In either
case we obtain the Adjusted Center Line (ACL) and Adjusted Decision Lines
(AUDL and ALDL) yes
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ACLc = CLc(u) + v

AUDLc = UDLc(u) + v

ALDLc = LDLc(u) + v (23)

Then xal and xas, the largest and the smallest values of X, for which the
process is in control are

xal = [AUDLc]
−and xas = [ALDLc]

+ (24)

The adjusted OC curve is given by

Pa(c) =

xal∑
w=Max(0,xas)

e−ccw

w!
(25)

2.3. Measurement Data

Ramig (1983) describes the ANOM procedure very clearly. We can use her
step by step procedure to explain the technique here. As a first example, let
us assume that we have samples all of size n. All the samples are assumed
to have come from normal population with the same variance σ2. Let xij be

the jth observation from the population i. Let X represents the grand mean
and s2 is the pooled estimate of the common but unknown variance. These
quantities are defined mathematically by,

X =
k∑

i=1

X i

k
(26)

s2 =
k∑

i=1

s2i
k

(27)

where s2i =
n∑

j=1

(xij −X i)
2

(n− 1)
and X i =

n∑
j=1

xij

n
.

The procedure is as given below.
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1. Compute the group mean X i, (i = 1, 2, 3, . . . , k)

2. Compute the grand mean X using equation (26)

3. Compute s, an estimate of the standard deviation of an individual ob-
servation. This is the square root of s2, where s2 is computed using
(27).

4. Obtain the value of hα , from the table in Nelson (1983a) for the level of
significance α , number of means k and degrees of freedom (n− 1)k.

5. Compute the decision lines as follows

CL = X

UDL = X + hαs

√
(k − 1)

kn

LDL = X − hαs

√
(k − 1)

kn
(28)

6. Plot the means against the decision lines. If any mean falls outside
the decision lines then conclude that there is a statistically significant
difference among the means.

The decision lines in (28) were obtained under the assumption that µ and σ

are unknown, so they were estimated by X and s respectively, where s is as
defined in (27), ν is the degrees of freedom upon which s is based. If µ and/or
σ were both known, then they can be used for calculation of decision lines

instead of X and s.

2.3.1. ANOM under Measurement Error

In ANOM, a target line and two action (decision) lines have been drawn one
on each side of the target line at a distance of say hα

σ√
n
( σ is assumed to be

known). The observations are plotted on the graph corresponding to sample
numbers and an out-of-control alarm is triggered whenever an observation
occurs outside the region enclosed by the action lines. A process is in-control
when no systematic bias exists, where the bias is defined as the difference
between the process mean and the target value.
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Suppose now that the observations are subject to some measurement error,
i.e., what are observed is xi = pi + ei , where pi is the measured variable and
ei is the measurement error. Let us assume that pi’s are normally distributed
with mean µ and variance σ2

p and that the measurement errors are distributed
independently as N(µe, σ

2
e) . Furthermore, we assume that the pi’s and ei’s

are uncorrelated. Then the decision lines are given by,

CL = µ1

UDL = µ1 + hα
σ1√
n

LDL = µ1 − hα
σ1√
n
, (29)

where µ = µ+ µe and σ1 =
√

σ2
p + σ2

e .
In the concept of control charts, average run length (ARL) is defined as

the expected number of samples to be taken before a false alarm is signaled.
In the case of the ANOM with action lines of hα

σ√
n
units from the target line,

the ARL may be given as a fraction of the bias θ (in units of σ1 ), where
the bias is defined as the difference between the process mean and the target
value and is given as ARL = 1

1−β
where β = Pr(not detecting this shift on the

subsequent sample).
Consider the OC curve for an X chart with the standard deviation σ is

known. If the mean shifts from the in-control value, say µ0, to another value
µ1 = µ0 + cσ, where c is a constant, the probability of not detecting this shift
on the first subsequent sample or the β risk is

β = Pr{LDL ≤ X ≤ UDL|µi = µ1 = µ0 + cσ}. (30)

Since it is assumed that the ith group mean X i ∼ N(µ, σ
2

n
) then by anal-

ogy it can be proved as X ∼ N(µ, σ2

kn
). That is, if X i ∼ N(µ, σ

2

n
), then

E(X) = E( 1
k

∑k
i=1X i) = 1

k

∑k
i=1E(X i) = kµ

k
= µ. Similarly, V ar(X) =

V ar( 1
k

∑k
i=1X i) =

1
k2

∑k
i=1 V ar(X i) =

1
k2
k(σ

2

n
) = σ2

kn
.

The upper and lower decision lines for ANOM are given by

UDL = µ0 + hα
σ√
kn

LDL = µ0 − hα
σ√
kn

.
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We may write equation (30) as,

β = Φ

{
[UDL− (µ0 + cσ)]

σ/
√
kn

}
− Φ

{
[LDL− (µ0 + cσ)]

σ/
√
kn

}
= Φ

{
[µ0 + hα(σ/

√
kn)− (µ0 + cσ)]

σ/
√
kn

}
− Φ

{
[µ0 − hα(σ/

√
kn)− (µ0 + cσ)]

σ/
√
kn

}
= Φ

{
hα − c

√
kn

}
− Φ

{
−hα − c

√
kn

}
(31)

where Φ(.) denotes the standard normal cumulative distribution function.
Then the ARL for ANOM is given by

ARL =
1

1− β
(32)

where β =
1√
2π

z2∫
z1

e
−z2

2 dz, z1 = −hα − c
√
kn and z2 = hα − c

√
kn.

Table 4: ARL When There is No Measurement Error

Actual Bias θ (in units of σ1) ARL
0.0 142.9
0.4 98.04
0.8 38.8
1.0 25.0
1.5 9.5

For example, suppose that n = 3 and we wish to determine the probability
of detecting a shift to µ1 = µ0 + 2σ on the first sample following the shift.
Since c = 2, n = 3 and k = 3 (say), the degrees of freedom is k(n− 1) = 6 so
that we have hα = 3.07 and therefore

β = Φ(3.07− 2 ∗ 3)− Φ(−3.07− 2 ∗ 3)
= Φ(−2.93)− Φ(−9.07) ≈ 0.0017.

This is the β-risk or the probability of not detecting such a shift. The
probability that such a shift will be detected on the first subsequent sample is
1− β = 1− 0.0017 = 0.9983 and then ARL = 1

1−β
= 1.0017.
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Table 5: ARL When There is Measurement Error

Bias θ
σe = 0.5 σe = 1.0

Measurement Bias µe Measurement Bias µe

-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
0.0 27.1 40.7 27.1 13.0 15.3 19.0 15.0 9.0
0.4 39.5 30.8 15.0 7.4 19.08 16.3 10.0 6.0
0.8 34.2 17.3 8.4 4.5 17.50 11.14 7.0 4.0
1.0 59.2 60.6 6.5 3.7 15.0 9.0 5.3 3.4
1.2 20.04 9.75 5.13 3.0 12.4 7.23 4.34 3.0
1.5 13.0 6.50 4.0 2.4 9.0 5.24 3.4 2.3

To construct the OC curve for the ANOM, plot the β-risk against the
magnitude of the shift we wish to detect expressed in standard deviation units
for various sample sizes n. These probabilities may be evaluated directly from
equation (30). Under measurement error the limits can be written as (see
Abraham (1977)),

z1 =
−hα − c

√
kn√

(1 + σ2
e)

; z2 =
hα − c

√
kn√

(1 + σ2
e)

Table 4 gives the ARL values of the ANOM for some specified bias θ when
there is no measurement error in the process. Table 5 yields the ARL of
ANOM for specified θ, µe and σe, when measurement error occurs. The effect
of the measurement error is quite clear from these computations. When there
is no measurement error there is one false alarm in every 143 observations on
the average. However, if µe = 0.5 and σe = 0.5 then there would be one false
alarm in every 27 observations and if µe = 0.5 and σe = 1.0 then there would
be one in every 15 on the average. Thus the effect of measurement error has
been clearly shown. If one knows µe and σe in advance then the ANOM chart
could be modified by adjusting the target value and by recalling the ordinates.

3. Conclusions

In this article we have seen that both types of errors that are not unrealistic in
industry seriously affect the OC curve of ANOM under both proportions and
count data. In particular, when the center line and the decision limits are based
on a target value, the process can easily be judged in-control when, if in fact, it
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is not. When ANOM chart is based upon data under inspection error, the OC
curve of ANOM again distorted but not nearly so seriously. Adjusted decision
limits have been presented which do alleviate, to a considerable extent, this
problem. We have assumed throughout a constant error. In reality, this error
could vary with inspection, shifts, types of nonconforming (nonconformities)
etc. Therefore one can try for a separate study for these cases. We have also
shown the impact of measurement error on the ANOM chart. When there is
no measurement error, the rate of false alarm is sufficiently reduced.
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