
Topologies Generated by Probabilistic

Quasi-pseudo-metrics∗

Yeol Je Cho†

Department of Mathematics Education and the RINS College of Education,

Gyeongsang National University, Chinju 660-701, Korea

Mariusz T. Grabiec‡

Department of Operation Research, Academy of Economics

al. Niepodleg lości 10, 60-967 Poznań, Poland
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Introduction
The advances in the art of measurement in the 19th century stimulated a

corresponded concern with the accompanying errors. Motivated by the idea
that in practice and as, e.g., quantum mechanics implies even in theory, some
measurements are necessarily inexact, in his note Statistical Metrics [8] Karl
Menger proposed transferring the probabilistic notions of quantum mechanics
from the physics to the underlying geometry and showed how one could replace
a numerical distance between points p and q by a distribution function Fpq.
Subsequently, numerous authors studied such spaces, as did e.g., the excellent
books Probabilistic Metric Spaces[17] by Berthold Schweizer and Abe Sklar.
The contribution of Menger to resolving the interpretative issue of quantum
mechanics turned out to be of fundamental importance in probabilistic func-
tional analysis and nonlinear analysis; see e.g. [1]. Probabilistic metric spaces
notation is useful in modelling some phenomena where it is necessary to study
the relationship between two probability functions as will observe in [14]; for
instance, it has a direct physic motivation in the context of the two-slit exper-
iment as the foundation of E-infinity of high energy physics, recently studied
by El Naschie in England [11, 12, 15], Giordano et al. [13], and by Zmeskal et.
al. in Czech Republic [19] and etc. For instance, the process in the analysis of
the probability involved in the two-slit experiment can be modelled by means
of a probabilistic metric.

In this paper, we give the properties of some topological spaces generated
by Pqp-metrics.

In section 1. we define the concept of tI-norms and give its basic properties.
In section 2. some properties of t∆+-norms are given and studical.
In section 3. we give the basic concepts, some notation, definitions related

to the subject of PqpM -spaces.
In section 4. we introduce a one-parameter family of some neighbourhoods

{NP
x (t)}x∈X for any t > 0 in a PqpM -space (X,P, ∗) and give some conditions

for the t∆+-norm ∗ that the family is a complete system of neighbourhoods in
X.

A motivation for such a definition of a topology on X is provided by the
fact we prove, namely, that a topology TGp of a P -simple space (X,Gp) induced
by the Pqp-metric Gp is equivalent to the topology Tp generated by the quasi-
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pseudo-metric p of the space (X, p). In particular, if G = u1, then these
topologies are identical. Thus a study of the properties of topological spaces
generated by quasi-pseudo-metrics can be reduced to the study of topologies
of simple P -spaces. However, the topological spaces formed by probabilistic
metrics lead to a supremum topology TP ∨ TQ, where P and Q are mutually
conjugate Pqp-metrics.

In section 5. we study some properties (separation axioms) of a bitopolog-
ical space (X,TP , TQ) generated by a Pqp-metric P .

1. tI-Norms and Their Properties

Now, we shall give some definitions and properties of tI-norms (K. Menger [8])
defined on the unit interval I = [0, 1]. A tI-norm T : I2 → I is in interval I an
abelian semigroup with unit, and the tI-norm T is nondecreasing with respect
to each variable.

Definition 1.1. Let T be a tI-norm.

(1) T is called a continuous tI-norm if the function T is continuous with
respect to the product topology on the set I × I.

(2) The function T is said to be left-continuous if, for every x, y ∈ (0, 1], the
following condition holds:

T (x, y) = sup{T (u, v) : 0 < u < x, 0 < v < y}.

(3) The function T is said to be right-continuous if, for every x, y ∈ [0, 1),
the following condition holds:

T (x, y) = inf{T (u, v) : x < u < 1, y < v < 1}.

Note that the continuity of a tI-norm T implies both left and right-continuity
of it.

Definition 1.2. Let T be a tI-norm. For each n ∈ N and each x ∈ I, let

x0 = 1 and xn+1 = T (xn, x).



306 Yeol Je Cho, Mariusz T. Grabiec, and Reza Saadati

Then the function T is called an Archimedean tI-norm if, for every x, y ∈ (0, 1),
there is an n ∈ N such that

xn < y, that is, xn ≤ y and xn 6= y. (TA)

From an immediate consequence of the above definition, we have the fol-
lowing:

Lemma 1.3. If T is an archimedean tI-norm, then, for all x ∈ (0, 1), the
following inequality holds:

T (x, x) < x.

Proof. Indeed, by (TA), there exists an n ∈ N such that xn < x. Let m ∈ N
be the smallest number with xm = x. Then we have

xm+1 = T (xm, x) = T (x, x) < x.

This completes the proof.

Lemma 1.4. If T is a continuous tI-norm, strictly increasing in (0, 1]2, then
it is Archimedean.

Proof. By the strict monotonicity of T , for every x ∈ (0, 1), we have T (x, x) <
x and so xn+1 < xn for all n ∈ N. Since T is continuous, it follows that
limn→∞ x

n = 0. This completes the proof.

Definition 1.5. Let T be a tI-norm. Then T is said to be positive if T (x, y) >
0 for all x, y ∈ (0, 1].

Note that every tI-norm satisfying the assumption of Lemma 0.2.4 is pos-
itive.

We shall now establish the notation related to a few most important tI-
norms defined by:

M(x, y) = Min(x, y) = x ∧ y (T-M)

for all x, y ∈ I. The function M is continuous and positive, but is not
Archimedean (in fact, it fails to satisfy the strict monotonicity condition).

Π(x, y) = x · y (T-Π)
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for all x, y ∈ I. The function Π is strictly increasing and continuous and hence
it is a positive archimedean tI-norm.

W (x, y) = Max(x+ y − 1, 0) (T-W)

for all x, y ∈ I. The function W is continuous and Archimedean, but it is not
positive and hence it fails to be a strictly increasing tI-norm.

Z(x, y) =


x if x ∈ I and y = 1,

y if x = 1 and y ∈ I,
0 if x, y ∈ [0, 1).

(T-Z)

The function Z is Archimedean and right-continuous, but it fails to be
left-continuous.

We give the following relations among the tI-norms defined above:

M ≥ Π ≥ W ≥ Z, (T,≥)

M � Π� W � Z. (T,�)

Remark 1.6. For any number p ∈ (−∞,+∞), one can define a tI-norm Tp
as follows:

Tp(x, y) =

{
(Max(xp + yp − 1, 0))1/p if p 6= 0,

Π(x, y) = x · y if p = 0.

The function Tp is continuous and strictly monotone if and only if p ≤ 0.
Also, notice that p = −1 yields

T−1(x, y) =
xy

x+ y − xy

for any x, y ∈ (0, 1] and, for p = 1, T1 = W ,

lim
p→−∞

Tp(x, y) = M(x, y)

and
lim

p→+∞
Tp(x, y) = Z(x, y)

for any x, y ∈ (0, 1]
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2. t∆+-Norms and Their Properties

In this section, we shall now present some properties of the tS-norms defined
on ∆+ (Šerstnev [18]).

The ordered pair (∆+, ∗) is an abelian semigroup with the unit u0 ∈ ∆+

and the operation ∗ : ∆+ ×∆+ → ∆+ is a nondecreasing function. We note
that u∞ ∈ ∆+ is a zero of ∆+. Indeed, by (L-R) we obtain

u∞ ≤ u∞ ∗ F ≤ u∞ ∗ u0 = u∞ for all F ∈ ∆+.

Let T (∆+, ∗) denote the family of all t∆+-norms ∗ on the set ∆+.
Then the relation ≤ defined by:

(∆+,≤) ∗1 ≤ ∗2 iff F ∗1 G ≤ F ∗2 G for all F,G ∈ ∆+ partially orders the
family T (∆+, ∗).

Now, we are going to define the next relation in the T (∆+, ∗). It will be
denoted by � and is defined as follows:

(∆+,�) ∗1 � ∗2 iff for all F,G, P,Q ∈ ∆+[(F ∗2P )∗1 (G∗2R)] ≥ [(F∗G)∗2 (P ∗
R)]. By putting G = P = u0 we obtain F ∗1 R ≥ F ∗2 R for F,R ∈ ∆+

and hence ∗1 ≥ ∗2. Then follows that ∗1 � ∗2 ⇒ ∗1 ≥ ∗2.

Theorem 2.1. Let T be a left-continuous tI-norm. Then the function T :
∆+ ×∆+ → ∆+ defined by

T (F,G)(t) = T (F (t), G(t)) (2.1.1)

for any t ∈ [0,+∞] is a t∆+-norm on the set ∆+.

Theorem 2.2. For every t∆+-norm ∗, the following inequality holds:

∗ ≤M,

where M is the tI-norm of Definiton 1.15.

Proof. For every F , G ∈ ∆+, we have by definition of (∆+, ∗), F ∗ G ≤
F ∗ u0 = F and, by symmetry, also F ∗ G ≤ G. Thus, for every t ∈ [0,+∞],
we have

(F ∗G)(t) ≤M(F (t), G(t)) = M(F,G)(t). (2.2.1)
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Theorem 2.3. If T is a left-continuous tI-norm, then the function ∗T :
∆+ ×∆+ → ∆+ defined by

F ∗T G(t) = sup{T (F (u), G(s)) : u+ s = t, u, s > 0} (2.3.1)

is a t∆+-norm on ∆+.

Proof. The function F ∗T G ∈ ∆+ is nondereasing and satisfies the condition
F ∗T G(+∞) = 1 for all F,G ∈ ∆+. Thus it suffices to check that F ∗T G is
left-continuous, i.e., for every t ∈ (0,+∞) and h > 0, there exists 0 < t1 < t
such that

F ∗T G(t1) > F ∗T G(t)− h.

Let t ∈ (0,+∞). Then there exist u, s > 0 such that u+ s = t and

T (F (u), G(s)) > F ∗T G(t)− h

2
. (2.3.2)

By the left-continuity of F,G and the tI-norm T , it follows that there are
numbers 0 ≤ u1 < u and 0 ≤ s1 ≤ s such that

T (F (u1), G(s1)) > T (F (u), G(s))− h

2
. (2.3.3)

Now, put t1 = u1 + s1. Then t1 < t and, by (2.5.3), we obtain

F ∗T G(t) ≥ T (F (u1), G(s1)). (2.3.4)

This completes the proof.

Theorem 2.4. Let T be a continuous tI-norm. Then the t∆+-norms ∗T and
T are uniformly continuous on (∆+, dL).

Proof. Let us observe that the continuity of the tI-norm T implies its uniform
continuity on I× I with the product topology. Take an h ∈ (0, 1). Then there
exists s > 0 such that

T (Min(z + s, 1), w) < T (z, w) +
h

4

and

T (z,Min(w + s, 1)) < T (z, w) +
h

4
(2.4.1)
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for all z, w ∈ I. Let u < 1/s and v < 1/s be such that u+ v < 2/h. Next, by
(2.3.1), for every F,G ∈ ∆+ and t ∈ (0, 2/h), there exist u, v > 0 such that
u+ v = t and

F ∗T G(t) < T (F (u), G(v)) +
h

4
.

Now, let F1 ∈ ∆+ be such that dL(F, F1) < s, which means that

F (u) ≤ F1(u+ s) + s

for all u ∈ (0, 1
s
). Since u + v = t < 2/h, we have u < 2/h. Therefore, we

obtain

F ∗T G(t) < T (Min(F1(u+ s) + s, 1), G(v)) +
h

2

< T (F1(u+ s), G(v)) +
h

2

and

F ∗T G(t) < F1 ∗T G(u+ s+ v) +
h

2

≤ F1 ∗T G(u+ v +
h

2
) +

h

2

= F1 ∗T G(t+
h

2
) +

h

2
.

Thus, we have

pL(F1 ∗T G,G)≤ h
2
, qL(F ∗T G,F1 ∗T G) ≤ h

2

and so we have

dL(F1 ∗T G,F ∗T G)≤ h
2
.

If dL(G,G1) < s, then we have

dL(F1 ∗T G1, F1 ∗T G) ≤ h

2

and so let F, F1, G,G1 ∈ ∆+ satisfy the conditions dL(F, F1) < s and dL(G,G1) <
s. Then we have

dL(F1 ∗T G1, F ∗T G)

≤ dL(F1 ∗T G1, F1 ∗T G) + dL(F1 ∗T G,F ∗T G)

≤ h

2
+
h

2
= h.
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It follows that the t∆+-norm ∗T is uniformly continuous in the space (∆+, dL).
The second part is a simple restatement of the first one. This completes the
proof.

Remark 2.5. There exist t∆+-norms which are not continuous on (∆+, dL).
Among them, there is the function ∗Z of (2.3.1) and (T-Z). Indeed, this can
be seen by the following example.

Let Fn(t) = 1− e− t
n , where n ∈ N. Then

Fn
w→ u0

while the sequence {Fn∗ZFn} fails to be weakly convergent to u0∗Z u0 because
Fn ∗Z Fn = u∞ for all n ∈ N. We note that this example actually shows much
more: the t∆+-norm ∗Z is not continuous on (D+, dL). In particular, it is not
continuous at the point (u0, u0).

We finish this section by showing a few properties of the relation defined
in (∆+,�) in the context of t∆+-norms.

Lemma 2.6. If T1 and T2 are continuous tI-norms, then

T1 � T2 if and only if ∗T1 � ∗T2 .

Lemma 2.7. If T is a continuous tI-norm and T is the t∆+-norm of (2.1.1),
then:

T � ∗T , (i)

M � ∗ for all t∆+-norms ∗ . (ii)

3. Properties of PqpMPqpMPqpM-Spaces

First, we give the definition of PqpM -spaces and some properties of PqpM -
spaces and others.

Definition 3.1 ([3]). By a PqpM -space we mean an ordered triple (X,P, ∗),
where X is a nonempty set, the operation ∗ is a t∆+-norm and P : X2 → ∆+
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satisfies the following conditions (by Pxy we denote the value of P at (x, y) ∈
X2): for all x, y, z ∈ X,

Pxx = u0, (3.1.1)

Pxy ∗ Pyz ≤ Pxz. (3.1.2)

If P satisfies also the additional condition:

Pxy 6= u0 if x 6= y, (3.1.3)

then (X,P, ∗) is called a probabilistic quasi-metric space (denoted by PqM -
space).

Moreover, if P satisfies the condition of symmetry:

Pxy = Pyx, (3.1.4)

then (X,P, ∗) is called a probabilistic metric space (denoted by PM -space).

Definition 3.2. [3] Let (X,P, ∗) be a PqpM -space and let Q : X2 → ∆+ be
defined by the following condition:

Qxy = Pyx

for all x, y ∈ X. Then the ordered triple (X,Q, ∗) is also a PqpM -space. We
say that the function P is called a conjugate Pqp-metric of the function Q.
By (X,P,Q, ∗) we denote the structure generated by the Pqp-metric P on X.

Now, we shall characterize the relationships between Pqp-metrics and prob-
abilistic pseudo-metrics.

Lemma 3.3. Let (X,P,Q, ∗) be a structure defined by a Pqp-metric P and let
∗1 � ∗2(∆+,�). Then the ordered triple (X,F ∗1 , ∗) is a probabilistic pseudo-
metric space (denoted by PPM-space) whenever the function F ∗1 : X2 → ∆+

is defined in the following way:

F ∗1xy = Pxy ∗1 Qxy (3.3.1)

for all x, y ∈ X. If, additionally, P satisfies the condition:

Pxy 6= u0 or Qxy 6= u0 (3.3.2)

for x 6= y, then (X,F ∗1 , ∗) is a PM-space.
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Proof. For any x, y ∈ X, we have

F ∗1xy ∈ ∆+, F ∗1xy = F ∗1yx .

By (3.1.1), we obtain

F ∗1xx = Pxx ∗1 Qxx = u0 ∗1 u0 = u0.

Next, by (3.1.2), (∆+,�) and the monotonicity of t∆+-norm, we obtain

F ∗1xy = Pxy ∗1 Qxy

≥ (Pxz ∗ Pxz) ∗1 (Qxz ∗Qzy)

≥ (Pxz ∗1 Qxz) ∗ (Pzy ∗1 Qzy)

= F ∗1xz ∗ F ∗1zy .

The proof of the second part of the theorem is a direct consequence of the
fact that the conditions (3.3.2) and (3.3.1) both imply the statement that

F ∗1xz = Pxy ∗1 Qxy = u0 if and only if Pxy = Qxy = u0.

It follows that, whenever x 6= y, Pxy 6= u0 or Qxy 6= u0 and hence Pxy ∗1 Qxy 6=
u0. This completes the proof.

Remark 3.4. For an arbitrary t∆+-norm ∗1, by Lemma 3.4, M � ∗1 holds.
By (3.1.3), we have

FM(x, y) ≥ F ∗1(x, y) (3.4.1)

for all x, y ∈ X.
The function FM will be called the natural probabilistic pseudo-metric gen-

erated by the Pqp-metric P . It is the “greatest” among all the probabilistic
pseudo-metrics generated by P .

Definition 3.5. Let (X, p) be a quasi-pseudo-metric-space and G ∈ ∆+ be
distinct from u0 and u∞. Then (X,Gp) is called a P -simple space genrated by
(G, p) and G. Define of function Gp : X0 → ∆+ by

Gp(x, y) = G

(
t

p(x, y)

)
for all t ∈ R+ (3.5.1)

and G( t
0
) = G(∞) = 1, for t > 0, G(0

0
= G(0) = 0.
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Theorem 3.6. Every P -simple space (X,Gp) is a quasi-pseudo-Menger space
respect to the tI-norm M .

Proof. For all x, y, z ∈ X, by the triangle condition for the quasi-pseudo-
metric p, we have

p(x, y) ≥ p(x, y) + p(y, z).

Assume,that all at p(x, z), p(x, y) and p(y, z) are distinct from zero. For any
t1, t2 > 0, we obtain

t1 + t2
p(x, z)

≥ t1 + t2
p(x, y) + p(y, z)

(3.6.1)

and hence we infer that

Max

{
t1

p(x, y)
,

t2
p(y, z)

}
≥ t1 + t2
p(x, y) + p(y, z)

≥Min

{
t1

p(x, y)
,

t2
p(y, z)

}
.

This inequality and the monotonicity of G imply that

Gp(x, z)(t1 + t2) ≥Min (Gp(x, y)(t1), Gp(y, z)(t2)),

for t1, t2 ≥ 0.

4. Topologies in PqpM-Spaces

Definition 4.1. Let (X,P, ∗) be a PqpM -space. For all x ∈ X and t > 0, a
P -neighbourhood of the point x is the set

NP
x (t) = {y ∈ X : dL(Pxy, u0) < t} = {y ∈ X : Pxy(t) > 1− t}. (4.1.1)

Theorem 4.2. Let (X,P, ∗) be a PqpM-space. If the function ∗ is a con-
tinuous t∆+-norm, then the family {NP

x (t) : t ∈ R+}, where x ∈ X forms a
complete system of neighbourhoods in X.

Proof. We note that, for every t > 1, NP
x (t) = X. This is a consequence of

the property (2.5.5) of the metric dL. Since dL(Pxx, u0) = dL(u0, u0) = 0, we
have x ∈ NP

X(t) for t > 0. If t1 < t2, then

NP
x (t1) ⊂ NP

x (t2)

by (4.1.1). Thus it follows that

NP
x (min(t1, t2)) ⊂ NP

x (t1) ∩NP
x (t2).
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Let y ∈ NP
x (t) and let dL(Pxy, u0) = k. Then t− k > 0. By Theorem 2.4, the

t∆+-norm ∗ is uniformly continuous. Thus there exists t1 > 0 such that

dL(Pxy ∗G,Pxy) < t− k

whenever dL(G, u0) < t1.
Now, let z ∈ NP

y (t1). Then dL(Pyz, u0) < t and, by (3.1.2) and the
Lemma 2.3.2, we have

dL(Pxz, u0) ≤ dL(Pxy ∗ Pyz, u0)

≤ dL(Pxy ∗ Pyz, Pxy) + dL(Pxy, u0)

< t− k + k

= t.

It follows that z ∈ NP
x (t). Consequently, we have

NP
y (t1) ⊂ NP

x (t).

This completes the proof.

As an immediate consequence of the above theorem, we have the fact that
a Pqp-metric P does generate a topology on X. Let us denote it by Tp. Also,
the Pqp-metric Q which is a conjugate of P generates a topology TQ. Thus the
natural topological structure associated with a Pqp-metric is a bitopological
space (X,TP , TQ) (cf., Kelly [7]).

We note that, if P = Q, which is equivalent to the statement that the
PqpM -space satisfies the symmetry condition (3.1.4), then the topology TP is
identical with TQ, and the bitopological space (X,TP , TQ) reduces itself to the
topological space (X,TP ) generated by P .

Let (X, p) be a quasi-pseudo-metri space. Let (X,Gp) be a P -simple space
generated by p and G defined in (3.5.1). A relationship between the topologies
generated by p and Gp is provided by the following:

Theorem 4.3. Let (X, p) be a quasi-pseudo-metric space and let (X,Gp) be
a P -simple space generated by p and G. Then the topology TG is equivalent to
the topology Tp genrated by the quasi-pseudo-metric p.

Proof. Let NG
x (t) be a G-neighbourhood of x ∈ X. Let k > 0 be such that

G( t
k
) > 1− t and suppose that y ∈ Up

x(k), where

Up
x(k) = {y ∈ X : p(x, y) < k}.
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Then 0 ≤ p(x, y) < k and hence

Pxy(t) = G
( t

p(x, y)

)
≥ G

( t
k

)
> 1− t.

It follows that y ∈ Np
x(t) and so

Up
x(k) ⊂ NG

x (t).

On the other hand, let Up
x(k) be a p-neighbourhood of x. Since G 6= u0,

there exists a number a ∈ [0, 1) such that G∧(a) > 0, where G∧(s) = sup{t :
G(t) < s} denotes the left-continuous quasi-inverse of G. Let t > 0 be such
that t

G(1−t) < k and let y ∈ NG
x (t). Then we have

Pxy(t) > 1− t, Pxy(1− t) = p(x, y) ·G∧(1− t) < t,

and

p(x, y) <
t

G(1− t)
< k.

Hence it follows that p(x, y) < k, i.e., y ∈ UP
x (x) and so we have

NG
x (t) ⊂ UP

x (t).

This completes the proof.

Corollary 4.4. Let (X,Gp) be a P -simple space and let G = u1. Then
the topologies TG and TP generated by functions GP and p, respectively, are
identical.

Proof. We will show that NG
x (t) = Up

x(t) for all t > 0. Indeed, we have

NG
x (t) = {y ∈ X : Pxy(t) > 1− t}

=
{
y ∈ X : G

( t

p(x, y)

)
> 1− t

}
=
{
y ∈ X : u1

( t

p(x, y)

)
> 1− t

}
= {y ∈ X : p(x, y) < t}
= Up

x(t).

This completes the proof.
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Definition 4.5. If (X,P, ∗M) is a quasi-pseudo-Menger space with respect
to the tI-norm T =Min, then, for all a ∈ [0, 1], the function ra : X2 → R+

defined by
ra(x, y) = P∧xy(a) = sup{t : Rxy(t) < a} (4.5.1)

for all x, y ∈ X is a quasi-pseudo-metric on X.

The following example shows that the topology Tp generated by P fails to
be equivalent to any topology Tr(a) generated by the quasi-pseudo-metric ra.

Example 4.6. Let X = [0, 1] and let P : X2 → ∆+ be defined by

Pxy(a) =

{
0 if x = y or a ≤ y ≤ x,

1 if y <Min (a, b) or y > x

for all x, y ∈ [0, 1] and a ∈ [0, 1]. We note that

P∧xy(a) ≤ P∧xz(a) + P∧zy(a).

It follows that (X,P, ∗Min) is a quasi-pseudo-Menger space. Then, for each
t ∈ (0, 1), a P -neighbourhood of x = 1 ∈ [0, 1] is given by

NP
1 (t) = {y : P1y(t) > 1− t} = {y : P∧1y(1− t) < t} = [1− t, 1], (4.6.1)

where the ra-neighbourhoods of x = 1 are given by

U r
1 (t) = {y : P∧1y(a) < t} = [a, 1]. (4.6.2)

Suppose that the topology Tp is equivalent to the topology T generated by
a finite family of quasi-metrics ra1 , . . . , ran . Take a number k such that

0 < k <Min (1− a1, 1− a2, . . . , 1− an)

and consider the P -neighbourhood NP
1 (k). By our assumption, there exists

t > 0 such that
U
r(ai)
1 (t) ⊂ Np

1 (k)

for some 1 ≤ i ≤ n. By (4.6.1) and (4.6.2), we have [a1, 1] ⊂ [1 − k, 1]. It
follows that k ≥ 1− ai, which is a contradiction.

Remark 4.7. In Theorem 3.6, we proved that every P -simple space is a quasi-
pseudo-Menger space with respect to Min. An examination of the Theorem
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4.3 and the Example 4.6 leads to the conclusion that there are quasi-pseudo-
Menger spaces with respect to Min which are not P -simple.

Let P and Q be two conjugates of Pqp-metrics and let FP∨Q be the natural
probabilistic pseudo-metric associated with P and Q according to (3.1.1.). The
following gives a relationship that holds between topologies generated by these
functions.

Lemma 4.9. The topology TF generated by the probabilistic pseudo-metric
FP∨Q is the smallest topology containing the topologies TP and TQ generated
by the Pqp-metrics P and Q. Thus the topology TF is the supremum of TP
and TQ.

Proof. It suffices to observe that every F -neighbourhood is of the form

NF
x (t) = NP

x (t) ∩NQ
x (t).

Indeed, by (3.1.1) and (3.4.1), we have

FM(x, y)(t) = FP∨Q(x, y)(t) =Min (Pxy(t), Qxy(t)),

NF
x (t) = {y ∈ X : FP∨Q(x, y)(t) > 1− t}

= {y ∈ X :Min (Pxy(t), Qxy(t)) > 1− t}
= {y ∈ X : Pxy(t) > 1− t} ∩ {y ∈ X : Qxy(t) > 1− t}
= NP

x (t) ∩NP
x (t).

This completes the proof.

Example 4.10. Let (R, Gp) be a P -simple space as defined in (3.5.1), where
the quasi-pseudo-metric p : R2 → R is defined by

p(x, y) =

{
y − x, if x ≤ y,

0, if x > y.

Then, by Theorem 4.3, the topologies TGp and TGq consist, respectively, of
the sets of the forms (−∞, a) and (b,+∞) for any a, b ∈ R. The supremum
TGp ∨ TGq = TGp∨q is the natural topology TR on the real line. However, the
infimum TGp ∧ TGq = TGp∧q is the indiscrete topology T∅.

Example 4.11. Let (R, Gp1) be the P -simple space given in Definition 3.5
and let the quasi-pseudo-metric p1 : R2 → R be defined by

p1(x, y) =

{
Min (y − x, 1), if x ≤ y,

1, if x > y.
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Then, by Theorem 4.10, (R, TGp1
) and (R, TGq1

) are the Sorgenfrey lines. The
supremum TGp1

∨ TGq1
is the discrete topology on R.

The above examples provide a sequence of the relations between these
topologies:

TGp −→ TGp1

↗ ↘ ↗ ↘
T0 −→ TR −→ TX

↘ ↗ ↘ ↗
TGq −→ TGq1

Remark 4.12. Schwizer, Sklar and Thorp [16] introduced a two-parameter
family of neighbourhoods of elements ofX for the theory of probabilistic metric
spaces. Let (X,P, ∗) be a PqpM -space. Then an (ε, λ)-neighbourhood of
x ∈ X is a set defined as follows1:

NP
x (ε, λ) = {y ∈ X : Pxy(ε) > 1− λ}, (4.11.1)

where ε > 0 and λ > 0.

We note that topologies generated by the complete systems of neighbour-
hoods defined in Definition 4.1 and (4.11.1)2 are equivalent. Indeed, for every
t > 0, we have

NP
x (t, t) = NP

x (t)

and, for all ε, λ > 0, we have

NP
x (Min (ε, λ) ⊂ Nx(ε, λ).

The following papers mentioned here in a chronological order are devoted
to topologies in PM -spaces, i.e., Schweizer, Sklar and Throp [16], Fritsche [2],
Höhle [5]. The last two papers characterize the topologies in PM -spaces in a
manner different from that accepted in this work.

1A neighbourhhod NP
x (ε, λ) can be interpreted as a set of those y ∈ X for which the

distance between x and y is smaller than ε with a probability greater than 1− λ.
2A proof that the family of all (ε, λ)-neighbourhoods given in (5.11.1) is a complete

neighbourhood system in a PqpM -space is a simple restatement of the proof of Theorem
7.2 in [16].
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5. Separation Axioms in PqpM-Spaces

Definition 5.1. ([9]) A bitopological space (X,T1, T2) is called a pairwise
semi-Hausdorff space if, for all distinct x, y ∈ X, there exist a T1-open subset
U and a T2-open subset V such that x ∈ U, y ∈ V or x ∈ V and y ∈ U and
U ∩ V = ∅.
Definition 5.2. ([9]) A bitopological space (X,T1, T2) is called a pairwise
Hausdorff space if, for all distinct x, y ∈ X, there exist a T1-open subset U
and a T2-open subset V such that x ∈ U, y ∈ V and U ∩ V = ∅.
Theorem 5.3. Let (X,P, ∗) be a PqpM-space satisfying (3.1.6). Then (X,TP , TQ)
generated by P is a pairwise semi-Hausdorff space. If, moreover, P satisfies
(3.1.3), then (X,TP , TQ) is a pairwise Hausdorff space.

Proof. By (3.1.6), it follows that, any x, y ∈ X with x 6= y, we have Pxy 6= u0

or Qxy 6= u0. Assume that Pxy 6= u0. Then we have

0 < k = dL(Pxy, u0).

By the uniform continuity of ∗, there is t > 0 such that

dL(G1 ∗G2, u0) < k

whenever dL(G1, u0) < t and dL(G2, u0) < t. Suppose that z ∈ NP
x (t)∩NQ

x (t).
Then we have

dL(Pxz, u0) < t, dL(Qyz, u0) < t

and, by Lemma 2.7 and Definition 3.1.2, we obtain

dL(Pxy, u0) ≤ dL(Fxz ∗Gyz, u0) < k,

which is a constradiction.
The second part of the proof follows immediately by (3.1.3). This completes

the proof.

Definition 5.4. ([6]) Let (X,T1, T2) be a bitopological space. Then T1 is said
to be regular with respect to T2 if, for all x ∈ X and T1-closed set P with
x 6∈ P , there exist a T1-open set U and T2-open set V disjoint from U such
that x ∈ U and P ⊂ V .

Definition 5.5. ([6]) A bitopological space (X,T1, T2) is sais to be pairwise
normal if, for each T1-closed set A and T2-closed set B disjoint from A, there
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exist a T1-open set U and a T2-open set V disjoint from U such that A ⊂ U
and B ⊂ V .

Lemma 5.6. Let (X,P, ∗) be a PqpM-space such that the t∆+-norm is sup-
continuous3, i.e., for all F,G ∈ ∆+, λ ∈ Λ 6= ∅, the following holds:

sup
λ∈Λ
{Fλ ∗G} = ({sup

λ∈Λ
Fλ}) ∗G.

Then, for each ∅ 6= A ⊂ X and PxA = sup{Pxy : y ∈ A}, we have

PxA ≤ Pxz ∗ PzA

for all x ∈ X.

Proof. Let x ∈ X. Then, by (3.1.2), we have

PxA = sup{Pxy : y ∈ A} ≥ Pxy ≥ Pxz ∗ Pzy

for all y ∈ A. Since the t∆∗-norm ∗ is sup-continuous, it follows that

PxA ≥ sup{y ∈ A : Pxz ∗ Pzy} = Pxz ∗ PzA.

This completes the proof.

Lemma 5.7. Let (X,P, ∗) be a PqpM-space. Let the t∆+-norm ∗ be sup-
continuous. Then, for any A ⊂ X, the function fA : X → [0, 1] defined by
fA(x) = dL(PxA, u0) is upper Q-semicontinuous. If we additionally assume
that ∗ ≥ ∗W , then fA is lower P -semicontinuous. Also, the function gA : X →
[0, 1] defined by gA(x) = dL(QxA, u0) is an upper P -semicontinuous function
gA, which is also lower Q-semicontinuous.

Proof. It suffices to show that, for each t ∈ R+, the sets V =
{y ∈ X : dL(PyA, u0) < t} and U = {y ∈ X : dL(PyA, u0) < t} are, re-
spectively, Q-open and P -closed.

(i) Let z ∈ V . Since dL(PyA, u0) = a < t, we have t − a > 0. By the
uniform continuity of ∗, there is t1 > 0 such that

dL(G ∗ PzA, PzA) < t− a
3We note that sup-continuity means upper semicontinuity with respect to the partial

order in (∆+,≤). If T is a continuous tI -norm, then the t∆+ -norm ∗T is sup-continuous
and, on the other hand, a t∆+ -norm which is a concolution (cf., Schweizer and Sklar [17],
pp. 319) fails to be sup-continuous.
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whenever dL(G, u0) < t1. Let r ∈ NQ
z (t). This means that

dL(Pzr, u0) = dL(Prz, u0) < t1

and
dL(PrA, u0) ≤ dL(Prz ∗ PzA) + dL(PzA, u0) < t− a+ a = t

and so NQ
z (t1) ⊂ V . Thus V is Q-open.

(ii) Now, we will show that U is P -closed. Let h > 0. By Lemma 5.6, we
have

Pzr ∗ PrA(t+ h) + h ≥Max (Pzr(h) + PrA(t)− 1, 0) + h

≥ 1− h+ PrA(t)− 1 + h = PrA(t)

whenever r ∈ NP
z (h). On the other hand, we have

PrA(t+ h) + h ≥Min (Pzr(h), PrA(t))

≥ Pzr ∗ PrA(t+ h)

≥ Pzr ∗ PrA(t)

and hence, for all h > 0 and r ∈ NP
z (h), we obtain

dL(Pzr ∗ PrA, PrA) < h

by Theorem 2.4.

Next, let x ∈ UP
and z 6∈ U . Thus we have dL(PzA, u0) = b < t, b− t > 0

and, by Theorem 2.4, for all h < b− t,

b = dL(PzA, u0) ≤ dL(Pzr ∗ PrA, u0)

≤ dL(Pzr ∗ PrA) + dL(PrA, u0)

< b− t+ dL(PrA, u0).

Hence dL(PrA, u0) > t if r ∈ NP
z (h) and U ∩NP

z (h) = ∅. Thus U = U
P

. This
completes the proof.

Theorem 5.8. Let (X,P, ∗) be a PqpM-space with the supcontinuous t∆+-
norm ∗ such that ∗ ≥ ∗W . Then the bitopological space (X,TP , TQ) generated
by the probabilistic quasi-pseudo-metric P is pairwise regular and pairwise nor-
mal.
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Proof. By Lemma 5.7, for each x ∈ X and t > 0, the set {y ∈ X :
dL(Pxy, u0) < t} is Q-closed and hence each x ∈ X has a P -base consist-
ing of Q-closed sets. Thus TP is regular with respect to TQ. Similarly, TQ is
regular with respect to TP .

Now, let A and B be disjoint subsets of X such that A is P -closed and B
is Q-closed. By Lemma 5.7, we have

A = {x ∈ X : dL(PxA, u0) = 0}

and
B = {x ∈ X : dL(QxB, u0) = 0}.

Then we define the sets U and V as follows:

U = {x ∈ X : dL(PxA, u0) < dL(QxB, u0)},
V = {x ∈ X : dL(QxB, u0) < dL(PxA, u0)}.

We observe that A ⊂ U and B ⊂ V and U ∩ V = ∅. To complete the proof,
we must show that U is Q-open and V is P -open.

First, we shall show that V is P -open. Assume that x0 ∈ V . Then we have

dL(Px0A, u0)− dL(Qx0B, u0) = k > 0.

By Lemma 5.7, the function dL(QxB, u0) is upper semicontinuous. Therefore,
there is t1 > 0 such that, if z ∈ NP

x0
(t1), then

dL(PxA, u0) > dL(Px0A, u0) +
k

4

and

dL(Qx0B, u0) > dL(QxB, u0) +
k

4
. Thus we have

dL(PxA, u0)− dL(QxB, u0)− (dL(Px0A, u0)− dL(Qx0B, u0)) +
k

4
+
k

4
> 0,

which means that x ∈ V and so NP
x0

(t1) ⊂ V . This implies that V is P -open.
This completes the proof.

Corollary 5.9. Let (X, p) be a quasi-pseudo-metric space. Then the bitopo-
logical space (X,Tp, Tq) generated by the quasi-pseudo-metric P is pairwise
regular and pairwise normal.
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Proof. The for follows immediately from Theorem 5.8 and Corollary 4.4.

Definition 5.10. ([4]) A bitopological space (X,T1, T2) is said to be pairwise
perfectly normal if it is pairwise normal, each T1-closed set is T2−Gδ and each
T2-closed set is T1 −Gδ.

Theorem 5.11. Let (X,P, ∗) be a PqpM-space such that the t∆+-norm ∗ is
sup-continuous and ∗ ≥ ∗W . Then the bitopological space (X,TP , TQ) generated
by the probabilistic quasi-pseudo-metric P is pairwise perfectly normal.

Proof. By Theorem 5.8, (X,TP , TQ) is pairwise normal. Let A be a P -closed
set. For each n ∈ N, we define

Un = {y ∈ X : dL(PyA, u0) <
1

n
}.

Observe that, by Lemma 5.7, for each n ∈ N, the set Un is Q-open. Since A is
P -closed, we get

A = A
P

= {y ∈ X : dL(PyA, u0) = 0}
= {y ∈ X : dL(QAy, u0) = 0}

=
∞⋂
n=1

Un.

Thus A is Q−Gδ. Similarly, we show that every Q-closed set is P −Gδ. This
completes the proof.

Corollary 5.12. Let (X, p) be a quasi-pseudo-metric space. Then the bitopo-
logical space (X,TP , TQ) generated by p is pairwise perfectly normal.

Proof. The proof follows immediately from Theorem 5.11, Corollary 5.9 and
Corollary 4.4.

Remark 5.13. The concept of a bitopological space was introduced by Kelly
in [7] and separation axioms in those spaces were studied by Kelly [7], Fletcher
[2], Patty [9] and Reilly [10].
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