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Abstract

We consider a generalized class SH(m, b) which is constructed by
modified Salagean operator. The object of the present paper is to study
some relations between classes of harmonic univalent functions which
are starlike or convex of complex order and other classes of harmonic
univalent functions and to give an answer to a conjecture due to Owa
[9] in harmonic case.
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1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in
a complex domain C if both u and v are real harmonic in C. In any simply
connected domain D ⊂ C we can write f = h+ g, where h and g are analytic
in D. We call h the analytic part and g the co-analytic part of f . A necessary
and sufficient condition for f to be locally univalent and sense- preserving in
D is that |h′(z)| > |g′(z)| in D. See [4].

Denote by SH the class of functions f = h+g that are harmonic univalent
and sense-preserving in the unit disk U = {z : |z| < 1} for which f(0) =
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fz(0) − 1 = 0. Then for f = h + g ∈ SH, we may express the analytic
functions h and g as

h(z) = z +
∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k |b1| < 1. (1)

Note that SH reduces to S, the class of normalized analytic univalent func-
tions, if the co-analytic part of f = h+ g is identically zero.

In 1984 Clunie and Sheil-Small [4] investigated the class SH as well as its
geometric subclasses and obtained some coefficient bounds. Since then, there
has been several related papers on SH and its subclasses such as Avcı and
Zlotkiewicz [1], Silverman [13], Silverman and Silvia [14], Jahangiri [5] studied
the harmonic univalent functions. More recently, Ahuja et al. [2] investigated
the convolutions of special harmonic univalent functions, Jahangiri et al. [7]
make use of the Alexander integral transforms of certain analytic functions
(which are starlike or convex of positive order) with a view to investigating
the construction of sense-preserving, univalent, and close to convex harmonic
functions, Yalcin [19] investigated the properties of a generalized class of har-
monic univalent functions by using modified Salagean operator and, Ahuja
[3] studied on connections between harmonic mappings and hypergeometric
functions.

The differential operator Dm (m ∈ N0) was introduced by Salagean [11].
For f = h+ g given by (1), Jahangiri et al. [6] defined the modified Salagean
operator of f as

Dmf(z) = Dmh(z) + (−1)mDmg(z),

where

Dmh(z) = z +
∞∑
k=2

kmakz
k and Dmg(z) =

∞∑
k=1

kmbkz
k.

We let the subclasses SH consisting of harmonic functions fm = h + gm
in SH so that h and gm are of the form

h(z) = z −
∞∑
k=2

akz
k, gm(z) = (−1)m

∞∑
k=1

bkz
k, ak, bk ≥ 0. (2)

We let SH(m, b) denote the subclass of SH consisting of functions fm =
h+ gm ∈ SH that satisfy the condition

Re

{
1 +

1

b

(
Dm+1f(z)

Dmf(z)
− 1

)}
> 0, b ∈ C/{0}. (3)
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We further let SH1(m, b) denote the subclass of SH consisting of functions
fm = h+ gm ∈ SH that satisfy the condition

∞∑
k=1

km ([2(k − 1 + |b|)] ak + [k + 1 + |k + 1− 2b|] bk) ≤ 4 |b| . (4)

Denote by SH2(m, b) the subclass of SH consisting of functions fm = h+gm ∈
SH that satisfy the condition

∞∑
k=1

km
([

(k − 1)
Re b

|b|
+ |b|

]
ak +

[
(k + 1)

Re b

|b|
− |b|

]
bk

)
≤ 2 |b| . (5)

The classes SH(0, 1 − α) and SH(1, 1 − α), (0 ≤ α < 1) (α is real) are
the classes of harmonic univalent functions starlike and convex of order α with
negative coefficients introduced and studied by Silverman [13].

The classes of analytic functions(normalized) starlike and convex of order
α (0 ≤ α < 1) in U were introduced by Robertson [10] (see also Srivastava and
Owa [15]) and the classes of analytic functions starlike or convex of complex
order were studied by Nasr and Aouf [8] and Wiatrowski [18], respectively.

If we take the co-analytic part of fm = h+gm of the form (2) is identically
zero and specialize the parametres m and b, we obtain the following subclasses
studied by various authors:

(i) SH(0, 1− α) = T ∗(α) and SH(1, 1− α) = C(α), α ∈ [0, 1) (Silverman
[12]);

(ii) SH(0, b) = T ∗n(b), SH1(0, b) = O∗n(b), SH2(0, b) = P ∗n(b) (Owa and
Salagean [16]);

(iii) SH(m, b) = Tn,m(b), SH1(m, b) = On,m(b), SH2(m, b) = Pn,m(b) (Owa
and Salagean [17]).

Owa [9] gave a necessary and sufficient coefficient condition of analytic
functions starlike of complex order b (b ∈ C/{0}), and then, Owa and Salagean
[16] gave an answer to this conjecture , and they derived that the classes
satisfying necessary and sufficient coefficient conditions are not coincided in
all b ∈ C/{0}. The main purpose of this paper is to give an answer to this
conjecture due to Owa in harmonic case. Here, we define three subclasses and
we investigate the relations between these classes.
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2. Main Results

Theorem 1. SH1(m, b) ⊆ SH(m, b).

Proof.

Let f ∈ SH1(m, b). According to the condition (2) we only need to show
that if (4) holds then

Re

{
(b− 1)Dmf(z) +Dm+1f(z)

bDmf(z)

}
> 0,

where b ∈ C/{0}. Using the fact that Rew > 0 if and only if |1 + w| > |1− w| ,
it suffices to show that∣∣(2b− 1)Dmf(z) +Dm+1f(z)

∣∣− ∣∣Dmf(z)−Dm+1f(z)
∣∣ > 0. (6)

Substituting for Dmf(z) and Dm+1f(z) in (6) yields∣∣∣∣∣2bz −
∞∑
k=2

km(k − 1 + 2b)akz
k + (−1)m

∞∑
k=1

km(2b− 1− k)bkzk

∣∣∣∣∣
−

∣∣∣∣∣
∞∑
k=2

km(k − 1)akz
k + (−1)2m

∞∑
k=1

km(k + 1)bkzk

∣∣∣∣∣
≥ 2 |b| |z| −

∞∑
k=2

km(k − 1 + 2 |b|)ak |z|k −
∞∑
k=1

km |k + 1− 2b| bk |z|k

−
∞∑
k=2

km(k − 1)ak |z|k −
∞∑
k=1

km(k + 1)bk |z|k

≥ 2 |b| − 2
∞∑
k=2

km(k − 1 + |b|)ak −
∞∑
k=1

km(k + 1 + |k + 1− 2b|)bk ≥ 0.

Theorem 2. SH(m, b) ⊆ SH2(m, b).

Proof.
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Let f ∈ SH(m, b). From (3) we have

Re


1

b

−
∞∑
k=2

km(k − 1)akz
k − (−1)2m

∞∑
k=1

km(k + 1)bkzk

z −
∞∑
k=2

kmakzk + (−1)2m
∞∑
k=1

kmbkzk


 > −1.

If we choose z on the real axis and z → 1− we get

∞∑
k=2

km(k − 1)ak +
∞∑
k=1

km(k + 1)bk

1−
∞∑
k=2

kmak +
∞∑
k=1

kmbk

Re b

|b|2
≤ 1,

and so,

∞∑
k=2

km(k − 1)ak +
∞∑
k=1

km(k + 1)bk ≤
|b|2

Re b

(
1−

∞∑
k=2

kmak +
∞∑
k=1

kmbk

)
,

which is equivalent to (5). Thus, f ∈ SH2(m, b).

Theorem 3. If b ∈ (0, 1] then SH1(m, b) = SH(m, b) = SH2(m, b).

Proof.

If b ∈ (0, 1] then the inequalities (4) and (5) are equivalent; hence SH1(m, b) =
SH2(m, b). By using Theorem 1 and Theorem 2, from this assertion we obtain
the conclusion of the present theorem.

Theorem 4. If b ∈ (−∞, 0) or Re b ∈ (−1/2, 0), then SH2(m, b) * SH(m, b).

Proof.

Case I: b ∈ [−1, 0).
Let

fα(z) = z − α z
2

2m
(7)
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and let α > 0. We have

∞∑
k=1

km
[
(k − 1)

Re b

|b|
+ |b|

]
ak = −b+ (−(b+ 1)α) < 2 |b| , (8)

and then fα(z) ∈ SH2(m, b).
Let now

F (z) = 1 +
1

b

(
Dm+1fα(z)

Dmfα(z)
− 1

)
, z ∈ U.

Then, by a simple computation and by using the fact that

Dmfα(z) = z − 2mα2−mz2 = z − αz2

we obtain
F (z) = 1 +

αz

b(αz − 1)
= 1 + ϕ(z),

where
ϕ(z) =

αz

b(αz − 1)
. (9)

For α > 1 we have ϕ(U) = C∞ − U(c, ρ), where U is the disk with the
center

c =
α2

b(α2 − 1)
(10)

and the radius
ρ =

α

b(1− α2)
. (11)

We have F (U) = C∞ − U(c + 1, ρ) and we deduce that ReF (z) > 0 for all
z ∈ U does not hold.

We have obtained that for α > 1, fα(z) /∈ SH(m, b) and in this case
SH2(m, b) * SH(m, b).

Case II: b ∈ (−∞,−1).
We consider the function fα(z) defined by (7) for α ∈

(
1, b

1+b

)
. In this case

the inequality (8) holds too and this implies that fα(z) ∈ SH2(m, b).
We also obtain that fα(z) /∈ SH(m, b) like in Case I.
Case III: Re b ∈ (−1/2, 0).
Let now f1 = z − 2−mz2. Then f1 ∈ SH2(m, b) because the inequality

∞∑
k=1

km
[
(k − 1)

Re b

|b|
+ |b|

]
ak = 2 |b|+ Re b/ |b| ≤ 2 |b|
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holds for all b when Re b < 0.
Now let r = Re b < 0 and let s be a negative real number such that

1 + 2r(1− s) > 0.

If we choose z0 one of the rooth of the equation

z =
b(1− s)

1 + b(1− s)
,

then z0 ∈ U and for f1we have

1 +
1

b

(
Dm+1f1(z0)

Dmf1(z0)
− 1

)
= s < 0

hence f1 /∈ SH(m, b).

Theorem 5. If b ∈ (−∞, 0) or b ∈ (1,∞) then SH(m, b) * SH1(m, b).

Proof.

Case I: b ∈ (−∞, 0).
Let fα be given by (7), where α > |b| /(1 + |b|). Then

∞∑
k=1

km [2(k − 1 + |b|)] ak = 2(|b|+ (1 + |b|)α) > 4 |b| (12)

and this implies fα /∈ SH1(m, b) for m ∈ N0 and b ∈ (−∞, 0).
We have

F (z) = 1 +
1

b

(
Dm+1fα(z)

Dmfα(z)
− 1

)
= 1 + ϕ(z),

where ϕ is given by (9).
From ϕ(U) = U(c, ρ) where c and ρ given by (10) and (11), we obtain

ReF (z) ≥ (1 + b)α + b

b(α + 1)
(13)
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If b ∈ (−∞,−1) and α ∈
(
|b|

1+|b| , 1
)
, then

(1 + b)α + b

b(α + 1)
> 0 (14)

and if b ∈ (−1, 0) and α ∈ ( |b|
1+|b| ,

|b|
|1−|b||) ∩ (0, 1), then (14) also holds. By

combining (14) with (13) and the definition of SH(m, b), we obtain that

fα ∈ SH(m, b) for α ∈
(
|b|

1 + |b|
,
|b|

|1− |b||

)
∩ (0, 1), and b ∈ (−∞, 0).

Case II: b ∈ (1,∞).
We consider the function fα defined by (7) for α ∈

(
b

1+b
, 1
)
. In this case

the inequality (12) holds too and this implies that fα /∈ SH1(m, b).
We also obtain that fα ∈ SH(m, b) for α ∈

(
b

1+b
, 1
)
.
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