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Abstract

Let ϕ be an analytic self-map of the unit disk D, H(D) the space of
analytic functions on D and g ∈ H(D). The boundedness and compact-
ness of the products of composition operators and Volterra-type integral
operators from the logarithmic Bloch spaces into the Bloch-type spaces
are investigated in this paper.
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1. Introduction

Let D denote the open unit disc of the complex plane C and H(D) the
space of all analytic functions in D. Every analytic self-map ϕ of the unit disk
D induces through composition a linear composition operator Cϕ from H(D)
to itself. It is a well-known consequence of Littlewood’s subordination princi-
ple ([27]) that the formula Cϕ(f) = f ◦ ϕ defines a bounded linear operator
on the classical Hardy and Bergman spaces. That is, Cϕ : Hp → Hp and
Cϕ : Ap → Ap are bounded operators. Some characterizations of the bound-
edness and compactness of the composition operator between various Banach
spaces of analytic functions can be found in [4, 6, 8, 12, 33, 41, 52, 53, 54].
Recently, R. Yoneda in [48] gave some necessary and sufficient conditions for
a composition operator Cϕ to be bounded and compact on the logarithmic
Bloch space defined as follows

Blog = {f ∈ H(D) : ‖f‖ = sup
z∈D

(1− |z|2)
(

log
2

1− |z|

)
|f ′(z)| <∞}.

The space Blog is a Banach space under the norm ‖f‖Blog = |f(0)| + ‖f‖. It
is obvious that there are unbounded Blog functions. For example, consider
the function f(z) = log log e

1−z . There are also bounded function that they
do not belong in Blog. In fact, the interpolating Blaschke products do not
belong in Blog. S. Ye in [44] characterized the boundedness and compactness
of the weighted composition operator uCϕ between the logarithmic Bloch space
Blog and the β-Bloch space Bβ on the unit disk, as well as the boundedness
and compactness of the weighted composition operator uCϕ between the little

logarithmic Bloch space Blog,0 and the little β-Bloch space Bβ0 on the unit disk.
A function f ∈ H(D) is said to belong to the Bloch-type space (or β-Bloch
space), denoted by Bβ = Bβ(D), if

Bβ(f) = sup
z∈D

(1− |z|2)β|f ′(z)| <∞.

The space Bβ becomes a Banach space with the norm ‖f‖β = |f(0)|+Bβ(f).

It is easily proved that for 0 < α < 1, Bα $ Blog $ B1. Let Bβ0 denote the
subspace of Bβ consisting of those f ∈ Bβ such that

lim
|z|→1

(1− |z|2)β|f ′(z)| = 0.
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This space is called the little Bloch-type space. For β = 1, we obtain the
well-known classical Bloch space and the little Bloch space, simply denoted by
B and B0. Let Blog,0 denote the subspace of Blog consisting of those f ∈ Blog
such that

lim
|z|→1

(1− |z|2)
(

log
2

1− |z|

)
|f ′(z)| = 0.

For more information about the Bβ see [55]. S. Ye in [43] proved that Blog,0 is
a closed subspace of Blog. P. Galanopoulos in [7] characterized the bounded-
ness and compactness of the composition operator Cϕ : Blog → Qp

log and the
boundedness and compactness of the weighted composition operator uCϕ :
Blog → Blog. S. Li in [13] characterized the boundedness and compactness
of the weighted composition operator uCϕ from Bergman spaces Apβ into the
logarithmic Bloch space Blog on the unit disk. S. Ye in [45] characterized the
boundedness and compactness of the weighted composition operator uCϕ from
the general function space F (p, q, s) into the logarithmic Bloch space Blog on
the unit disk. Some characterizations of the weighted composition operator
between various Bloch-type spaces can be found in [5, 19, 28, 30, 31, 32]. S. Li
and S. Stević in [20] studied the boundedness and compactness of the following
two Volterra-type integral operators

Jgf(z) =

∫ z

0

f(ξ)g′(ξ) dξ

and

Igf(z) =

∫ z

0

f ′(ξ)g(ξ) dξ

on the Zygmund space, for any g ∈ H(D). Y. Yu and Y. Liu in [50] char-
acterized the boundedness and compactness of operators Ig and Jg from the
logarithmic Bloch spaces into the Bergman-type spaces. S. Ye and J. Gao in
[46] characterized the boundedness and compactness of operators Jg between
the logarithmic Bloch spaces and the Bloch-type spaces. Boundedness and
compactness of the operators Jg and Ig, some one-dimensional, as well as their
n-dimensional extensions, acting on various function spaces were investigated
in [1, 2, 3, 9, 10, 11, 14, 16, 17, 18, 20, 21, 24, 34, 35, 36, 40, 42, 47, 49, 50, 51].
S. Stević in [37] introduce the following integral-type operator on the space
H(B) of all holomorphic functions on the unit ball B in Cn

P g
ϕ(f)(z) =

∫ 1

0

f(ϕ(tz))g(tz)
dt

t
, z ∈ B,
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where g ∈ H(B), g(0) = 0 and ϕ is a holomorphic self-map of B, and investi-
gated the boundedness and compactness of the operator P g

ϕ from the weighted
Bergman space Apα(B) to the Bloch-type spaces. S. Stević in [38] continued to
investigate the boundedness and compactness of the operator P g

ϕ from the log-
arithmic Bloch space Blog(B) and the little logarithmic Bloch space Blog,0(B)
to the Bloch-type space Bµ(B) or the little Bloch-type space Bµ,0(B). S. Stević
in [39] continued to investigate operator P g

ϕ from the Bloch space B(B) and
the little Bloch space B0(B) to the Bloch-type space Bµ(B) or the little Bloch-
type space Bµ,0(B) on the unit ball and calculated the essential norm of the
operators P g

ϕ : B(B)(or B0(B)) → Bµ(B)(or Bµ,0(B)) in an elegant way. Y.
Liu and Y. Yu in [26] investigated integral-type operator Cg

ϕ from Bloch-type
spaces into logarithmic Bloch spaces, where

Cg
ϕf(z) =

∫ z

0

f ′(ϕ(w))g(w) dw, for f, g ∈ H(D).

Products of composition operators and integral-type operators have been re-
cently introduced by S. Li and S. Stević in [15, 22, 23, 25], where they charac-
terized the boundedness and compactness of these operators between various
spaces.

Here, we shall be interested in characterizing the products of composition
operators and Volterra-type integral operators, which are defined by

(CϕJgf)(z) =

∫ ϕ(z)

0

f(w)g′(w) dw, (CϕIgf)(z) =

∫ ϕ(z)

0

f ′(w)g(w) dw

on H(D). More precisely, the boundedness and compactness of the operators
CϕJg from the logarithmic Bloch spaces into the Bloch-type spaces are studied
in this paper.

In this paper, positive constants are denoted by C. They may differ from
one occurrence to the next.

2. The Boundedness of CϕJg : Blog(orBlog,0) →
Bβ(orBβ0 )

In this section, we study the boundedness of CϕJg : Blog(orBlog,0) →
Bβ(orBβ0 ). For this purpose, we start this section by stating some lemmas
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which are used in the proofs of main results of this paper. They are incorpo-
rated in the lemmas which follow.

Lemma 1. ([44, 46]) Let f ∈ Blog, then

|f(z)| ≤ C

(
2 + log log

2

1− |z|

)
‖f‖Blog .

Lemma 2. ([44, 46]) Let f(z) =
(1−|z|) log 2

1−|z|
|1−z| log 4

|1−z|
, z ∈ D, then |f(z)| < 2.

Lemma 3. ([44, 46]) Let gt(z) =
(1−|z|) log 2

1−|z|
(1−|tz|) log 2

1−|tz|
, t ∈ [0, 1], z ∈ D, then

|gt(z)| < 2.

Lemma 4. ([44, 46]) Let f ∈ Blog,0, then

lim
|z|→1

|f(z)|
log log 2

1−|z|
= 0.

Theorem 1. Suppose 0 < β < ∞, ϕ is an analytic self-map of D and
g ∈ H(D). Then the following statements are equivalent:

(a) CϕJg : Blog → Bβ is bounded.
(b) CϕJg : Blog,0 → Bβ is bounded.
(c)

M1 = sup
z∈D

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)| <∞. (2.1)

and

M2 = sup
z∈D

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

log log
2

1− |ϕ(z)|

)
<∞. (2.2)

Proof. We first prove that (c)⇒ (a). Suppose that (2.1) and (2.2) hold. For
z ∈ D and f ∈ Blog, by Lemma 1 we have
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|(1− |z|2)β(CϕJgf)′(z)| = (1− |z|2)β|f(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

≤ C‖f‖Blog(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
≤ 2C‖f‖Blog(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|

+C‖f‖Blog(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

log log
2

1− |ϕ(z)|

)
≤ (2CM1 + CM2)‖f‖Blog .

On the other hand, note that the quantity max
|w|≤|ϕ(0)|

|g′(w)| is finite since the set

|w| ≤ |ϕ(0)| is compact in view of the fact |ϕ(0)| < 1. By Lemma 1 we have
that

|(CϕJgf)(0)| =

∣∣∣∣∣
∫ ϕ(0)

0

f(w)g′(w) dw

∣∣∣∣∣
≤ max
|w|≤|ϕ(0)|

|f(w)| max
|w|≤|ϕ(0)|

|g′(w)|

≤ C

(
2 + log log

2

1− |ϕ(0)|

)
‖f‖Blog

,

thus

‖CϕJgf‖β = |(CϕJgf)(0)|+B(CϕJgf)

≤ C‖f‖Blog ,

so that CϕJg : Blog → Bβ is bounded.
(a)⇒ (b). This implication is clear.
(b) ⇒ (c). Assume that CϕJg : Blog,0 → Bβ is bounded. By taking the

function given by f(z) = 1 we obtain (2.1). For w ∈ D, set

fw(z) = 2 + log log
4

1− ϕ(w)z
.

Since

f ′w(z) =
ϕ(w)

(1− ϕ(w)z) log 4

1−ϕ(w)z

,
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we obtain that for each w ∈ D,

(1− |z|2)
(

log
2

1− |z|

)
|f ′w(z)|

= (1− |z|2)
(

log
2

1− |z|

) ∣∣∣∣∣∣ ϕ(w)

(1− ϕ(w)z) log 4

1−ϕ(w)z

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(1− |z|2)

(
log 2

1−|z|

)
(1− |ϕ(w)|) log 2

∣∣∣∣∣∣
→ 0 (as |z| → 1).

By Lemmas 2 and 3 we have

sup
z∈D

(1− |z|2)
(

log
2

1− |z|

)
|f ′w(z)|

= sup
z∈D

(1− |z|2)
(

log
2

1− |z|

) ∣∣∣∣∣∣ ϕ(w)

(1− ϕ(w)z) log 4

1−ϕ(w)z

∣∣∣∣∣∣
≤ sup

z∈D

∣∣∣∣∣∣
(1− |z|2)

(
log 2

1−|z|

)
(1− ϕ(w)z) log 4

1−ϕ(w)z

∣∣∣∣∣∣
≤ 2 sup

z∈D

(1− |z|)
(

log 2
1−|z|

)
(1− |ϕ(w)z|) log 2

(1−|ϕ(w)z|)

(1− |ϕ(w)z|) log 2
(1−|ϕ(w)z|)

|1− ϕ(w)z| log 4

|1−ϕ(w)z|

≤ 8,

it follows that sup
w∈D
‖fw‖ ≤ 8, and fw ∈ Blog,0 for each fixed w ∈ D. From

this and the boundedness of CϕJg : Blog,0 → Bβ, we have that the following
inequality holds

(1− |w|2)β|g′(ϕ(w))||ϕ′(w)|
(

log log
2

1− |ϕ(w)|

)
≤ (1− |w|2)β|g′(ϕ(w))||fw(ϕ(w))||ϕ′(w)|
= (1− |w|2)β|(CϕJgfw)′(w)|
≤ ‖CϕJgfw‖β ≤ ‖CϕJg‖‖fw‖Blog ≤ C <∞,
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we obtain (2.2), finishing the proof of the implication.

Remark 1. In [25], for α ∈ (0, 1) and 0 < β <∞, S. Li and S. Stević proved
that the operator CϕJg : Bα(Bα0 )→ Bβ is bounded if and only if the operator
CϕJg : Bα(Bα0 )→ Bβ is compact if and only if (2.1) holds.

Theorem 2. Suppose 0 < β < ∞, ϕ is an analytic self-map of D and g ∈
H(D). Then CϕJg : Blog,0 → Bβ0 is bounded if and only if CϕJg : Blog,0 → Bβ
is bounded and

lim
|z|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)| = 0. (2.3)

Proof. Assume that CϕJg : Blog,0 → Bβ0 is bounded, Then clearly CϕJg :
Blog,0 → Bβ is bounded. Taking the test function f(z) = 1 ∈ Blog,0, we obtain
that (2.3).

Conversely, assume (2.3) holds and CϕJg : Blog,0 → Bβ is bounded. From
this it follows that for any ε > 0, there exists a δ ∈ (0, 1), such that δ < |z| < 1
implies

C(1− |z|2)β|g′(ϕ(z))||ϕ′(z)| < ε

2
, (2.4)

and

|f(z)|
log log 2

1−|z|
<

ε

2M2

, (2.5)

for each function f ∈ Blog,0 by Lemma 4. Hence writing D1 = {z ∈ D : δ <
|z| < 1}, using (2.4), (2.5) and Theorem 1, we deduce that

sup
{z∈D1:|ϕ(z)|≤δ}

(1− |z|2)β|(CϕJg)′(z)|

= sup
{z∈D1:|ϕ(z)|≤δ}

(1− |z|2)β|f(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

≤ sup
|u|≤δ
|f(u)| sup

{z∈D1:|ϕ(z)|≤δ}
(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|

≤ C sup
z∈D1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|

<
ε

2
, (2.6)
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and

sup
{z∈D1:δ<|ϕ(z)|<1}

(1− |z|2)β|(CϕJg)′(z)|

= sup
{z∈D1:δ<|ϕ(z)|<1}

(1− |z|2)β|f(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

≤ ε

2M2

sup
{z∈D1:δ<|ϕ(z)|<1}

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

log log
2

1− |ϕ(z)|

)
≤ ε

2
. (2.7)

From (2.6) and (2.7), we get that CϕJgf ∈ Blog,0, that is CϕJg : Bβ0 → Blog,0 is
bounded which finishes the proof.

Remark 2. In [25], for α ∈ (0, 1) and 0 < β <∞, S. Li and S. Stević proved
that the operator CϕJg : Bα(Bα0 )→ Bβ0 is bounded if and only if (2.3) holds.

Theorem 3. Suppose 0 < β < ∞, ϕ is an analytic self-map of D and
g ∈ H(D). If

lim
|z|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
= 0, (2.8)

then CϕJg : Blog → Bβ0 is bounded.

Proof. For any f ∈ Blog, we have

(1− |z|2)β|f(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

≤ C‖f‖Blog(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
→ 0 (as |z| → 1),

thus, CϕJgf ∈ Bβ0 . Since (2.8) implies (2,1) and (2.2), by Theorem 1, CϕJg :

Blog → Bβ is bounded, we obtain that the operator CϕJg : Blog → Bβ0 is
bounded. The proof is completed.

Theorem 4. Suppose 0 < β < ∞, ϕ is an analytic self-map of D and
g ∈ H(D). If CϕJg : Blog → Bβ0 is bounded, then

lim
|z|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− ϕ(z)

)
= 0. (2.9)
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Proof. If CϕJg : Blog → Bβ0 is bounded, we use the fact that for each function

f ∈ Blog, the analytic function CϕJgf ∈ Bβ0 . Then taking the test function
f(z) = 1 ∈ Blog and f(z) = log log 2

1−z ∈ Blog we obtain that

lim
|z|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)| = 0, (2.10)

and

lim
|z|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

log log
2

1− ϕ(z)

)
= 0. (2.11)

(2.10) and (2.11) imply (2.9) holds.

Theorem 5. Suppose 0 < β <∞, ϕ is an analytic self-map of D, g ∈ H(D)
and Ulog = {f ∈ Blog : f ′ is uniformly continuous on D}. Then CϕJg : Ulog →
Bβ0 is bounded if and only if CϕJg : Ulog → Bβ is bounded and (2.3) holds.

Proof. Necessity. If CϕJg : Ulog → Bβ0 is bounded, then CϕJg : Ulog → Bβ is
bounded. Taking the function f(z) = 1 ∈ Ulog we get (2.3).

Sufficiency. Suppose that CϕJg : Ulog → Bβ is bounded and (2.3) holds.
For each polynomial p(z) the following inequality holds

(1− |z|2)β|(CϕJgp)′(z)| = (1− |z|2)β|p(ϕ(z))||g′(ϕ(z))||ϕ′(z)|
≤ ‖p‖∞(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|.

(2.3) imply that CϕJgp ∈ Bβ0 . For any f ∈ Ulog, let ft(z) = f(tz) (0 < t < 1).
From Lemma 3 we have

(1− |z|2)
(

log
2

1− |z|

)
|f ′t(z)| = (1− |z|2)

(
log

2

1− |z|

)
|tf ′(tz)|

≤ t‖f‖Blog
(1− |z|2)

(
log 2

1−|z|

)
(1− |tz|2)

(
log 2

1−|tz|

)
≤ C‖f‖Blog

(1− |z|2)
(

log 2
1−|z|

)
(1− |t|2)

(
log 2

1−|t|

)
→ 0 (as |z| → 1),
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and for every ε > 0, there is a δ > 0 such that when 1− δ < t < 1,

(1− |z|2)
(

log
2

1− |z|

)
|(ft − f)′(z)| = (1− |z|2)

(
log

2

1− |z|

)
|tf ′(tz)− f ′(z)|

≤ (1− |z|2)
(

log
2

1− |z|

)
(|tf ′(tz)− f ′(tz)|+ |f ′(tz)− f ′(z)|)

≤ (1− t)‖f‖Blog
(1− |z|2)

(
log 2

1−|z|

)
(1− |tz|2)

(
log 2

1−|tz|

) + (1− |z|2)
(

log
2

1− |z|

)
|f ′(tz)− f ′(z)|

≤ C(1− t)‖f‖Blog + C|f ′(tz)− f ′(z)|

<
ε

2
+
ε

2
= ε.

Hence ft ∈ Blog,0 and

‖ft − f‖Blog → 0 as t→ 1.

Since the set of all polynomials is dense in Blog,0([43]), the set of all polynomials
is dense in Ulog. Thus there is a sequence of polynomials {pn} such that

‖pn − f‖Blog → 0 as n→∞.

Since

‖JgCϕpn − JgCϕf‖β ≤ ‖JgCϕ‖‖pn − f‖Blog ,

and Blog,0 is the closed subset of Blog, we see that JgCϕf ∈ Bβ0 , thus the

operator JgCϕ : Ulog → Bβ0 is bounded. The proof is completed.

3. The Compactness of CϕJg : Blog(orBlog,0) →
Bβ(orBβ0 )

Now we turn to study the compactness of CϕJg : Blog(orBlog,0)→ Bβ(orBβ0 ).
Recall that an operator is said to be compact provided it takes bounded sets
to sets with compact closure. For this purpose, we start this section by stating
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some useful lemmas. By standard arguments(see, for example, [6]) the follow-
ing lemmas follow.

Lemma 5. Suppose 0 < β <∞, ϕ is an analytic self-map of D and g ∈ H(D).
Let X = Blog or Blog,0, Y = Bβ or Bβ0 . Then CϕJg : X → Y is compact if
and only if CϕJg : X → Y is bounded and for any bounded sequence {fn} in
X which converges to zero uniformly on compact subsets of D as n → ∞, we
have ‖CϕJgfn‖Y → 0 as n→∞.

Lemma 6. Let 0 < β < ∞. A closed set K in Bβ0 is compact if and only if
K is bounded and satisfies

lim
|z|→1

sup
f∈K

(1− |z|2)β|f ′(z)| = 0.

The Lemma 6 was proved in [32]. For the case β = 1, the lemma was
proved in [29].

We begin with the following necessary and sufficient condition for the com-
pactness of CϕJg : Blog,0 → Bβ0 .

Theorem 6. Suppose 0 < β < ∞, ϕ is an analytic self-map of D and
g ∈ H(D). Then the following statements are equivalent.

(1) CϕJg : Blog → Bβ0 is compact;

(2) CϕJg : Blog,0 → Bβ0 is compact;
(3)

lim
|z|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
= 0. (3.1)

Proof. (1)⇒ (2) is obvious.
(2)⇒ (3) Since CϕJg : Blog,0 → Bβ0 is compact, we obtain by Lemma 6

lim
|z|→1

sup
‖f‖Blog≤1

(1− |z|2)β|(CϕJgf)′(z)| = 0.

Thus, for any ε > 0, there exists a δ ∈ (0, 1), such that when δ < |z| < 1,

sup
‖f‖Blog≤1

(1− |z|2)β|(CϕJgf)′(z)| < ε

C
.
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Let fz be defined in Theorem 1. It is easy to see that

1

C
≤ 1

‖fz‖Blog
.

Set hz = fz/‖fz‖, then for δ < |z| < 1,

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
≤ C(1− |z|2)β|hz(ϕ(z))||g′(ϕ(z))||ϕ′(z)|
= C(1− |z|2)β|(CϕJghz)′(z)|
≤ C sup

‖f‖Blog≤1
|(1− |z|2)β|(CϕJgf)′(z)| < ε,

which gives that

lim
|z|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
= 0.

(3)⇒ (1). For any bounded sequence {fn} in Blog with fn → 0 uniformly
on compact subsets of D, we must prove that by Lemma 5

‖CϕJgfn‖β → 0 as n→∞.

We assume that ‖fn‖Blog ≤ 1. From (3.1), given ε > 0, there exists a δ ∈ (0, 1),
when δ < |z| < 1,

C(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
<
ε

2
, (3.2)

then using (3.2), we get for δ < |z| < 1, n ∈ N

|(1− |z|2)β(CϕJgfn)′(z)| = (1− |z|2)β|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

≤ C(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
<
ε

2
. (3.3)

Since {fn} converges uniformly to 0 on a compact subset {ϕ(z) : |z| ≤ δ} of D
and sup

|z|≤δ
(1 − |z|2)β|g′(ϕ(z))||ϕ′(z)| ≤ M1, we see that there exists an N > 0,

such that for all n ≥ N

sup
|z|≤δ
|fn(ϕ(z))| < ε

2M1

.
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Therefore, for all n ≥ N , |z| ≤ δ,

|(1− |z|2)β(CϕJgfn)′(z)| = (1− |z|2)β|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

<
ε(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|

2M1

≤ ε

2
. (3.4)

On the other hand, note that the quantity max
|w|≤|ϕ(0)|

|g′(w)| is finite since the

set |w| ≤ |ϕ(0)| is compact in view of the fact |ϕ(0)| < 1. We have that

|(CϕJgfn)(0)| =

∣∣∣∣∣
∫ ϕ(0)

0

fn(w)g′(w) dw

∣∣∣∣∣
≤ max
|w|≤|ϕ(0)|

|fn(w)| max
|w|≤|ϕ(0)|

|g′(w)| (3.5)

≤ C max
|w|≤|ϕ(0)|

|fn(w)| → 0 as n→∞.

Combining (3.3), (3.4) and (3.5), we obtain

‖CϕJgfn‖β → 0 as n→∞.

The proof is complete.

Theorem 7. Suppose 0 < β < ∞, ϕ is an analytic self-map of D and
g ∈ H(D). Then CϕJg : Blog → Bβ is compact if and only if CϕJg : Blog → Bβ
is bounded and

lim
|ϕ(z)|→1

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
= 0. (3.6)

Proof. Suppose that CϕJg : Blog → Bβ is bounded and (3.6) is true. For any
sequence {fn} in Blog such that‖fn‖Blog ≤ 1 and fn → 0 uniformly on compact
subsets of D, it is required to show that by Lemma 5

‖CϕJgfn‖β → 0 as n→∞.

From (3.6), we have that for every ε > 0, there exists a δ ∈ (0, 1), such that
δ < |ϕ(z)| < 1 implies

C(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
<
ε

2
, (3.7)



Products of Composition Operators and Volterra-type Integral Operators 245

then using (3.7), we get for δ < |ϕ(z)| < 1,

|(1− |z|2)β(CϕJgfn)′(z)| = (1− |z|2)β|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

≤ C(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|
(

2 + log log
2

1− |ϕ(z)|

)
<
ε

2
. (3.8)

Since CϕJg : Blog → Bβ is bounded, using Theorem 1, we see that

M1 = sup
z∈D

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)| <∞.

Let U = {w ∈ D : |w| ≤ δ}, since {fn} converges uniformly to 0 on a compact
subset U of D, then there exists an N > 0, such that for all n ≥ N

sup
w∈U
|fn(w)| < ε

2M1

.

Therefore, for all n ≥ N

sup
{|ϕ(z)|≤δ}

|(1− |z|2)β(CϕJgfn)′(z)|

= sup
{|ϕ(z)|≤δ}

(1− |z|2)β|fn(ϕ(z))||g′(ϕ(z))||ϕ′(z)|

<
ε

2M1

sup
{|ϕ(z)|≤δ}

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|

<
ε

2M1

sup
z∈D

(1− |z|2)β|g′(ϕ(z))||ϕ′(z)|

≤ ε

2
. (3.9)

Combining (3.5), (3.8) and (3.9), we obtain

‖CϕJgfn‖β → 0 as n→∞.

Conversely, suppose that CϕJg : Blog → Bβ is compact, then CϕJg : Blog →
Bβ is bounded. Hence we only need to prove that (3.6) holds. Assume that
{zn} is a sequence in D such that lim

n→∞
|ϕ(zn)| = 1 (if such a sequence does

not exist then (3.6) is vacuously satisfied). For each n, we choose the test
functions fn defined by

fn(z) =
1

an

(
log log

4

1− ϕ(zn)z

)2

,
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where an = log log 4
1−|ϕ(zn)|2 . We see that fn converges to zero uniformly on

compact subsets of D as n→∞. Using Lemmas 2 and 3, we have ‖fn‖Blog ≤ C
for all n. In view of Lemma 5 it follows that

‖CϕJgfn‖β → 0 as n→∞.

Note that

‖CϕJgfn‖β
≥ (1− |zn|2)β|fn(ϕ(zn))||g′(ϕ(zn))||ϕ′(zn)|

= (1− |zn|2)β|g′(ϕ(zn))||ϕ′(zn)|
(

log log
4

1− |ϕ(zn)|2

)
(3.10)

≥ (1− |zn|2)β|g′(ϕ(zn))||ϕ′(zn)|
(

log log
2

1− |ϕ(zn)|

)
.

Letting n→∞ in (3.10), we obtain that

lim
n→∞

(1− |zn|2)β|g′(ϕ(zn))||ϕ′(zn)|
(

log log
2

1− |ϕ(zn)|

)
= 0. (3.11)

On the other hand, for each n, we choose the test functions gn defined by

gn(z) =
1

an

(
log log

4

1− ϕ(zn)z

)
− 1

an

(
log log

4

1− ϕ(zn)z

)2

,

where an = log log 4
1−|ϕ(zn)|2 . We see that gn converges to zero uniformly on

compact subsets of D as n→∞. Using Lemmas 2 and 3, we have ‖gn‖Blog ≤ C
for all n. In view of Lemma 5 it follows that

‖CϕJggn‖β → 0 as n→∞.

Note that

‖CϕJggn‖β
≥ (1− |zn|2)β|gn(ϕ(zn))||g′(ϕ(zn))||ϕ′(zn)|
≥ (1− |zn|2)β|g′(ϕ(zn))||ϕ′(zn)| (3.12)

−(1− |zn|2)β|g′(ϕ(zn))||ϕ′(zn)|
(

log log
4

1− |ϕ(zn)|2

)
.



Products of Composition Operators and Volterra-type Integral Operators 247

Using (3.10) and letting n→∞ in (3.12), we obtain that

lim
n→∞

(1− |zn|2)β|g′(ϕ(zn))||ϕ′(zn)| = 0. (3.13)

Hence we are done.
Similarly, we can obtain the following result. The proof of the following

theorem will be omitted.

Theorem 8. Suppose 0 < β <∞, ϕ is an analytic self-map of D, g ∈ H(D)
and CϕJg : Blog → Bβ is bounded. Then CϕJg : Blog,0 → Bβ is compact if and
only if (3.6) holds.

Remark 3. By using the same methods as in the proofs of Theorems 1-8, one
can obtain the characterizations of the boundedness and compactness of the
operators CϕIg from logarithmic Bloch spaces into Bloch-type spaces. Let’s
leave such topics to the interested readers.
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