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Abstract 
We give explicit expressions and some recurrence relations for single 

and product moments of generalized order statistics from Kumaraswamy 
distribution. The results include as particular cases the above relations for 
moments of reversed order statistics and records. Further, using a recurrence 
relation for single moments we obtain characterization of Kumaraswamy 
distribution. 
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1.  Introduction 
 

A random variable X  is said to have Kumaraswamy distribution (Kumaraswamy 
(1980)) if its pdf  is given by 

 
11 ]1[)( −− −= βααβα xxxf ,   10 ≤≤ x , 0, >βα                                (1.1) 

and the corresponding df  is 

 
βα ]1[)( xxF −= .                              (1.2) 

Therefore, in view of (1.1) and (1.2), we have 
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The Kumaraswamy distribution was originally conceived to model hydrological 
phenomena and has been used for this and also for other purposes. See, for example, 
Sundar and Subbiah (1989), Fletcher and Ponnambalam (1996), Seifi et al. (2000), 
Ganji et al. (2006), Sanchez et al. (2007) and Courard-Hauri (2007). 

In probability theory Kumaraswamy’s double bounded distribution is as versatile 
as the beta distribution, but much simpler to use especially in simulation studies as it 
has a simple closed form for both the pdf  and cdf . 

The concept of generalized order statistics )(gos was introduced by Kamps 
(1995). A variety of order models of random variables is contained in this concept. 

Let ,, 21 XX  be a sequence of independent and identically distributed )(iid  
random variables )(rv  with distribution function )(df  )(xF  and probability density 
function )( pdf  )(xf . Assuming that 0>k , Nn∈ , ℜ∈m  and 

0)1)(( >+−+= mrnkrγ . If the random variables ),,,( kmnrX , nr ,,2,1 = , 
possess a joint pdf of the form 
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on the cone )1()0( 1
1

1 −− <≤≤< FxxF n , 

then they are called generalized order statistics of a sample from a distribution with 
df )(xF . Note that in the case 0=m , 1=k , this model reduces to the joint pdf  of 
the ordinary order statistics, and when 1−=m  we get the joint pdf  of the −k th 
upper record values.On using (1.4), the pdf  of the −r th gos  is given by 
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                  (1.5) 

and the joint pdf  of ),,,( kmnrX  and ),,,( kmnsX , nsr ≤<≤1 , is 
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and 

 )0()()( mmm hxhxg −= , )1,0[∈x . 

Many authors utilized the gos  in their work, such as Kamps and Gather (1997), 
Keseling (1999), Cramer and Kamps (2000), Ahsanullah (2000), Pawlas and Szynal 
(2001), Ahmed and Fawzy (2003), Ahmed (2007), Khan, et al. (2007), Khan et al. 
(2010) have established recurrence relations for moments of generalized order 
statistics from Erlang-Truncated exponential distribution. Kamps (1998) investigated 
the importance of recurrence relations of order statistics in characterization. 
Recurrence relations for moments of −k records were investigated, among others, by 
Grudzien and Szynal (1997), Pawlas and Szynal (1998, 1999). 

In the present study, we have established explicit expressions and some recurrence 
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relations for single and product moments of generalized order statistics from the 
Kumaraswamy distribution. Further its various deductions and particular cases are 
discussed and a characterization of Kumaraswamy distribution has been obtained on 
using a recurrence relation for single moments. 

 

2. Relations for Single Moments 
We shall first establish the explicit expression for )],,,([ kmnrXE j

. Using (1.5), 
we have when 1−≠m  
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Further, on using the binomial expansion, we can rewrite (2.1) as 
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on using the (1.1) and (1.2) we get 
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and when 1−=m  that 
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Using the logarithmic expansion 
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Balakrishnan and Cohan (1991), Shawky and Bakoban (2008)], equation (2.4) can be 
expressed as  

dxx
u
k

ra
r

kknrXE rpuj
k

u p
p

u
rr

j ∫∑ ∑ −++++
−

=

∞

=







 −
−−

−
=−

1

0

2)1(
1

0 0

1
)1()1(

)!1(
)],1,,([ α

β ββα  

          
∑ ∑
−

=

∞

=







 −
−−

−
=

1

0 0

1
)1()1(

)!1(

k

u p
p

u
rr

u
k

ra
r

k β ββα

 

           ]1)1([
1

−++++
×

rpaj α .                                                    (2.5) 

Special Cases 

i) Putting  0=m , 1=k  in (2.3) the explicit formula for the single moments of  order 
statistics of the Kumaraswamy distribution can be obtained as  
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ii) Putting 1=k  in (2.5), the explicit expression for the moments of upper record 
values for the Kumaraswamy distribution can be obtained as 
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Recurrence relations for single moments of gos  from (1.2) can be obtained in the 
following theorem 

 

Theorem 2.1. For Kumaraswamy distribution given in (1.1) and Nn∈  , ℜ∈m , 
nr ≤≤2  

   )],,,1([)],,,([ kmnrXEkmnrXE jj −−  
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r
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.                             (2.6) 

Proof.   From (1.5), we have  

 dxxFgxfxFx
r
CkmnrXE r

m
jrj r ))(()()]([

)!1(
)],,,([ 111

0
1 −−− ∫−

= γ .                        (2.7) 

Integrating by parts taking )()]([ 1 xfxF r −γ  as the part to be integrated, we get 
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the constant of integration vanishes since the integral considered in (2.7) is a definite 
integral. On using (1.3), we obtain 
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and hence the result. 
Remark 2.1. Setting 0=m , 1=k  in Theorem 2.1, we obtain recurrence relations 
for single moments of order statistics of the Kumaraswamy distribution in the form 
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Remark 2.2. Putting 1−=m , 1≥k  in (2.6) , we get the recurrence relations for 
single moments of upper −k records of the Kumaraswamy distribution in the form 
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3. Relations for Product Moments 
On using (1.6) and binomial expansion, the explicit expression for the product 

moments of gos  ),,,( kmnrX  and ),,,( kmnsX , nsr <<≤1 , can be obtained when 
1−≠m  as 
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On substituting the above expression of )(xI  in (3.1), and simplifying we get 

 )],,,(),,,([ kmnsXkmnrXE ji  

      ∑ ∑ ∑ ∑
−

=

−−

=

−++

=

−−+−+

=
−

−

+−−−
=

1

0

1

0

1))1((

0

1))(1(

0
2

1
22

)1()!1()!1(

r

u

rs

v

vm

c

vursm

d
s

s s

mrsr
C γβ ββα

 

                






 −++







 −−







 −
−× +++

c
vm

v
rs

u
r sdcvu 1))1((11

)1(
γβ

 

     
)]1()][1()][1([

)]1([1))(1(
++++++++

++







 −−+−+
×

dcjidicj
cj

d
vursm

ααα
αβ

. 

                             (3.3) 
and when 1−=m  that 
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On substituting the above expression of )(xI  in (3.4) and simplifying the resulting 
equation, we obtain 
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Special Cases 

i) Putting  0=m , 1=k  in (3.3) the explicit formula for the product moments of 
order statistics of the Kumaraswamy distribution can be obtained as  
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iii) Putting 1=k  in (3.5), the explicit expression for the product moments of upper 
record values for the Kumaraswamy distribution can be obtained as. 
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Making use of (1.6), we can drive recurrence relations for product moments of gos  
from (1.1). 
Theorem 3.1. For the given Kumaraswamy distribution and Nn∈ , ℜ∈m , 

11 −<≤< nsr  
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Solving the integral in )(xI  by parts and substituting the resulting expression in (3.7), 
we get 
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the constant of integration vanishes since the integral in )(xI  is a definite integral. On 
using the relation (1.3), we obtain  
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and hence the result. 

Remark 3.1. Setting 0=m , 1=k  in (3.5), we obtain recurrence relations for 
product moments of order statistics of the Kumaraswamy distribution in the form  
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Remark 3.2. Putting 1−=m , 1≥k  in (3.5), we get the recurrence relations for 
product moments of upper −k records of the Kumaraswamy distribution in the form 
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4. Characterization 
Theorem 4.1.    Let X  be a non-negative random variable having an absolutely 
continuous distribution function )(xF  with 0)0( =F  and 1)(0 << xF  for all 0>x , 
then 
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Integrating the first integral on the right hand side of equation (4.2), by parts, we get 
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Now applying a generalization of the Müntz-Szász Theorem (Hwang and Lin, 1984) 
to equation (4.3), we get 
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which proves that  
βα ]1[)( xxF −= , 10 ≤≤ x .  

5. Conclusion 
This paper deals with the generalized order statistics from the 

Kumaraswamy distribution. Recurrence relations between the single and 
product moments are derived. Characterization of the Kumaraswamy 
distribution based on a recurrence relation for single moments is discussed. 
Special cases are also deduced. 
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