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1. Introduction

Recently fixed point theorems for multivalued maps in symmetric spaces have
been obtained by Aamri et al. [1], Aamri and Moutawakil [2], Moutawakil [25]
and Singh and Prasad [41]. The purpose of this paper is to obtain coincidence
and fixed point theorems for hybrid contractions, that is for multivalued and
single-valued maps satisfying a general type of conditions. Several results
obtained in [1], [18] and [25] are derived as special cases. As an application,
we obtain a coincidence theorem for a hybrid pair of single-valued and multi-
valued maps.

2. Preliminaries

Following Aamri et al. [1] Aamri and Moutawakil [2] Hicks and Rhoades [17],
[18] Moutawakil [25] and Wilson [45], we will use the following notations and
definitions. In all that follows, (X, d) will stand for a symmetric space and
Y an arbitrary nonempty set. By a symmetric d (also called semi-metric, cf.
Mihet,[24, p. 1413]) on a nonempty set X , as usual, we mean a nonnegative
real-valued function d on X×X such that (i). d(x, y) = 0 if and only if x = y,
and (ii). d(x, y) = d(y, x) for all x, y ∈ X.

Definitions 2.1-2.6. Let (X, d) be a symmetric space. Then:

2.1. A nonempty subset P of X is d-closed if and only if P̄d = P , where
P̄d = {x ∈ X : d(x, P ) = 0} and d(x, P ) = inf{d(x, p) : p ∈ P}.

2.2. A nonempty set P is called d-bounded if and only if δd(P ) < ∞ where
δd(P ) = sup{d(x, p) : x, p ∈ P}.

2.3. Space (X, d) is S-complete if for every d-Cauchy sequence {xn}, there
exists an x in X with limn→∞d(xn, x) = 0.

2.4. Let (X, d) be a d-bounded symmetric space and let CB(X) the set of all
nonempty d-closed subsets of X . The Hausdorff symmetric H induced
by the symmetric d is defined in the usual way:
H(A,B) = max {supb∈B d(b, A); supa∈A d(a, B)} for all A,B ∈ CB(X).

2.5. The maps f : X → X and T : X → CB(X) are compatible if and
only if fTx ∈ CB(X) for each x ∈ X and limn→∞H(fTxn, T fxn) =
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0 whenever {xn} is a sequence in X such that limn→∞Txn = M ∈
CB(X), limn→∞fxn = t ∈ M (also see [40]).

2.6. The maps f : X → X and T : X → CB(X) are weakly compatible if
they commute at their coincidence points, i.e., fTx = Tfx, whenever
fx ∈ Tx.

It is well known that the commuting maps T, f (that is, when fTx =
Tfx, x ∈ X) are weakly commuting (that is, H(fTx, Tfx) ≤ d(Tx, fx), x ∈
X), weakly commuting maps are compatible, and compatible maps T , f are
weakly compatible but there are examples in literature to show that the re-
verse implication is not true (see, for instance, [38] - [40]).

Definition 2.7. Maps f : X → X and T : X → CB(X) are (IT)-commuting
at a point x ∈ X if fTx ⊂ Tfx (Itoh and Takahashi [19]).

Definition 2.8. Maps f : X → X and T : X → CB(X) are reciprocally
continuous on X (resp. at t ∈ X) if and only if fTx ∈ CB(X) for each
x ∈ X (resp. fT t ∈ CB(X)) and limn→∞ fTxn = fM, limn→∞ Tfxn = T t
whenever {xn} is a sequence in X such that limn→∞ Txn = M ∈ CB(X),
limn→∞ fxn = t ∈ M ([40, p. 628]).

The following example shows that (IT)-commutativity of a hybrid pair T and
f at a coincidence point x ∈ X is more general than its compatibility and
weak compatibility at the same point (also see, Example 1, [39]).

Example 2.1. Let X = [0,∞) with usual metric and fx = 2x, Tx =
[x+ 2,∞), x ∈ X. Then f2 ∈ T2, fT2 = [8,∞) ⊂ [6,∞) = Tf2 and T, f are
(IT)-commuting at the coincidence point x = 2. We see that f and T are not
weakly compatible since fT2 �= Tf2.

Remark 2.1. Nonvacuous compatibility of T and f implies the existence
of at least a sequence {xn} in X such that limn→∞Txn = M ∈ CB(X),
limn→∞fxn = t ∈ M ([40]).

For details of topological preliminaries, one may refer to [15]-[17], [21], [22],
[42], [43] and [45]. We shall use the following properties essentially due to W.
A. Wilson [45] (see also [1], [2], [18] and [25]).
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(W.3) Given {xn}, x and y in X, limn→∞ d(xn, x) = 0 and limn→∞ d(xn, y) =
0 imply x = y.

(W.4) Given {xn}, {yn} and x inX, limn→∞d(xn, x) = 0 and limn→∞d(xn, yn) =
0 imply that limn→∞ d(yn, x) = 0.

The following property is due to Mihet [24].

(W) Given {xn}, {yn} and {zn} inX, d(xn, yn) → 0, d(yn, zn) → 0 ⇒ d(xn, zn) →
0.

Mihet has observed the implication (W ) ⇒ (W.4) ⇒ (W.3).

Unless stated otherwise, let N,R and R+ denote the set of natural numbers,
set of real numbers and set of nonnegative real numbers respectively. Let
f, g : Y → X;S, T : Y → CB(X). Consider the following conditions for all
x, y ∈ Y and some k ∈ (0, 1) :

(C.1) H(Tx, Ty) ≤ kd(fx, fy),

(C.2) H(Tx, Ty) ≤ kmax{d(fx, fy), d(fx, Tx), d(fy, Ty),√
d(fx, fy).d(fx, Tx),

√
d(fx, fy).d(fy, Ty),√

d(fx, Tx).d(fy, Ty)}

(C.3) H2(Sx, Ty) ≤ k.M(x, y), where
M(x, y) = max{d2(fx, gy), d2(fx, Sx), d2(gy, Ty), d(fx, gy).

d(fx, Sx), d(fx, gy).d(gy, Ty), d(fx, Sx).
d(gy, Ty), d(fx, Ty).d(gy, Sx)},

(C.4) H2(Sx, Ty) ≤ k.max{d2(fx, gy), d2(fx, Sx), d2(gy, Ty), d(fx, Ty).
d(gy, Sx)},

(C.5) H(Tx, Tiy) < Mi(x, y), i > 1, where
Mi(x, y) = max {d(fx, Tx), d(gy, Tiy), d(fx, Tiy), d(gy, Tx), d(fx, gy)} .

Let φ : R+ → R+ a nondecreasing nonnegative and upper semi continuous
function such that φ(t) < kt for each t > 0.

(C.6) H2(Sx, Ty) ≤ φ(M(x, y)), for all x, y ∈ Y .
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Remark 2.2. The condition (C.1) with Y = X and f = id, the identity
map of X, is the multivalued contraction (mvc) studied by Moutawakil [25,
Theorem 2.2.1].

Remark 2.3. Moutawakil’s mvc in symmetric spaces was essentially intro-
duced and studied by Nadler Jr. [26] in metric spaces. Nadler’s mvc has been
studied, generalized, and used extensively in nonlinear multivalued analysis
(see, for instance, [3], [4], [8], [10], [13], [14], [19], [20], [23], [27], [28], [35]-[40]).
The condition (C.1) with Y = X was first studied in metric spaces by Singh
and Kulshrestha [36]. For a historical development of hybrid contractions in
metric spaces, refer to [39] (see also, [4], [5], [7], [8], [11], [12], [19], [26], [29]-
[32], [34] and [36]-[38]).

Remark 2.4. The condition (C.1) ⇒ (C.2) but there are examples in lit-
erature to show that the reverse implication is not true.

Remark 2.5. The condition (C.3) is motivated by the conditions of Liu
et al. [22], Tan et al. [43] and Singh and Arora [42] in metric spaces. It can be
observed that the condition (C.3) reduces to (C.2) when we substitute S = T
and f = g in (C.3). Notice that the condition (C.3) is equivalent to condition
(C.4).

In this paper, our main existence results (Theorem 3.1 and 3.2) are obtained
under the condition (C.4). In the sequel, we shall need the following results:

Lemma 2.1. ([9], [25]). Let (X, d) be a d-bounded symmetric space. Let
A,B ∈ CB(X) and μ > 1. Then, for each a ∈ A, there exists an element b in
B such that: d(a, b) ≤ μH(A,B).

Lemma 2.2. Let (X, d) be a d-bounded symmetric space satisfying condi-
tion (W ). Let {yn} be a sequence in X such that d(yj, yj+1) ≤ qd(yj−1, yj), j =
1, 2, 3, ..., where 0 ≤ q < 1, then {yn} is a d-Cauchy sequence.

Lemma 2.2 is stated in [18, p.339] without the condition (W ). However, Mihet
[24] has observed that the condition (W ) is needed in the above result.
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Lemma 2.3. ([33]). Let A,B ∈ CB(X). Then for x ∈ A and for some
k ∈ (0, 1) there exists a y ∈ B such that d2(x, y) ≤ k−1/2H2(A,B).

This is essentially a modified version of Ciric’s result [9].

Aamri and Moutawakil [2] obtained a fixed point result for a pair of weakly
compatible self mappings of X. They exactly proved the following:

Theorem 2.1 [2]. Let (X, d) be a d-bounded symmetric space that satis-
fies (W.3). Let A and B be two weakly compatible self mappings of X such
that

(i) d(Ax,Ay) ≤ φ(d(Bx,By)), ∀x, y ∈ X,

(ii) AX ⊆ BX.

If the range of A or B is a S-complete subspace of X, then A and B have a
unique fixed point.

Moutawakil [25] obtained a generalization of the Nadler’s fixed point theo-
rem [26] in the settings of symmetric spaces in the following manner:

Theorem 2.2 [25]. Let (X, d) be a d-bounded and S-complete symmetric
space satisfying (W.4) and T : X → CB(X) be a multi-valued mapping such
that:
H(Tx, Ty) ≤ kd(x, y), k ∈ [0, 1), ∀x, y ∈ X. Then there exists u ∈ X such
that u ∈ Tu.

Further, Aamri et al [1] proved a common fixed point theorem as a gener-
alization of the results of Hicks and Rhoades [18]. Motivated by the works in
[1], [2], [18] and [25], we are now in a position to present our main results in
the following section.

3. Main Results

Theorem 3.1. Let Y be an arbitrary nonempty set and (X, d) a d-bounded
symmetric space satisfying condition (W ). Let f, g : Y → X and S, T : Y →
CB(X) satisfy (C.4) and
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(3.1.1) S(Y ) ⊆ g(Y ) and T (Y ) ⊆ f(Y ).

If one of S(Y ), T (Y ), g(Y ) or f(Y ) is an S-complete symmetric subspace of
X, then

(I) S and f have a coincidence, i.e., there exists a v ∈ Y such that fv ∈ Sv;

(II) T and g have a coincidence, i.e., there exists a, w ∈ Y such that gw ∈
Tw.

Further, if Y = X, then

(III) S and f have a common fixed point fv provided that ffv = fv and S
and f are (IT)-commuting at v;

(IV) T and g have a common fixed point gw provided ggw = gw and T and
g are (IT)-commuting at w;

(V) S, T, f and g have a common fixed point provided (III) and (IV) both are
true.

Proof. Pick x0 ∈ Y . Construct sequences {xn} and {yn} in the following
manner. Choose x1 ∈ Y such that y1 = gx1 ∈ Sx0. We may do so since
S(Y ) ⊆ g(Y ). Similarly we choose a point x2 ∈ Y such that y2 = fx2 ∈ Tx1

and d2(y1, y2) = d2(gx1, fx2) ≤ k−1/2H2(Sx0, Tx1). Such a choice is justified
(cf. Lemma 2.3). Continuing this process, in general, we have

y2n = fx2n ∈ Tx2n−1 and y2n+1 = gx2n+1 ∈ Sx2n

such that

d2 (y2n, y2n+1) = d2 (fx2n, gx2n+1) ≤ k−1/2H2 (Tx2n−1, Sx2n)

and

d2 (y2n+1, y2n+2) = d2 (gx2n+1, fx2n+2) ≤ k−1/2H2 (Sx2n, Tx2n+1)

By (C.4),
d2 (y2n, y2n+1) ≤ k1/2 max{d2 (fx2n, gx2n−1) , d

2 (fx2n, Sx2n) ,
d2 (gx2n−1, Tx2n−1) , d(fx2n, Tx2n−1).d(gx2n−1, Sx2n)}.

≤ k1/2 max{d2(fx2n, gx2n−1), d
2(fx2n, gx2n+1),

d2(gx2n−1, fx2n), d(fx2n, fx2n).d(gx2n−1, gx2n+1)}
= k1/2 max{d2(y2n, y2n−1), d(y2n, y2n−1).d(y2n, y2n+1), 0}.
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Thus d(y2n, y2n+1) ≤ pd(y2n−1, y2n), where p = k1/4 < 1.
Also
d2(y2n+1, y2n+2) ≤ k1/2max{d2(fx2n, gx2n+1),

d2(fx2n, Sx2n), d
2(gx2n+1, Tx2n+1),

d(fx2n, Tx2n+1).d(gx2n+1, Sx2n)},
≤ k1/2max{d2(fx2n, gx2n+1), d

2(fx2n, gx2n+1),
d2(gx2n+1, fx2n+2), d(fx2n, fx2n+2).d(gx2n−1, gx2n+1)}.

= k1/2max{d2(y2n, y2n+1), d(y2n, y2n+1).d(y2n+1, y2n+2), 0}
Thus d(y2n+1, y2n+2) ≤ pd(y2n, y2n+1). In general, we have
d(yn, yn+1) ≤ pd(yn−1, yn), n = 1, 2, 3, . . .
So, by Lemma 2.2, the sequence {yn} is a d-Cauchy sequence.
Now let f(Y ) is complete. Then the subsequence {y2n} has a limit in f(Y ),
call it u. Then there exists an element v ∈ Y such that fv = u. From (C.4),
we have
d2(Sv, y2n) ≤ k−1/2H2(Sv, Tx2n−1)

≤ k1/2 max{d2(fv, gx2n−1), d
2(fv, Sv), d2(gx2n−1, Tx2n−1),

d(fv, Tx2n−1).d(gx2n−1, Sv)}
≤ k1/2 max{d2(fv, gx2n−1), d

2(fv, Sv), d2(gx2n−1, fx2n),
d(fv, fx2n).d(gx2n−1, Sv)}.

= k1/2 max{d2(fv, y2n−1), d
2(fv, Sv), d2(y2n−1, y2n),

d(fv, y2n).d(y2n−1, Sv)}.
Making n → ∞ and noting that the subsequence {y2n−1} also converges to u,
we obtain
d2(Sv, u) ≤ k1/2max{d2(fv, u), d2(fv, Sv), d2(u, u), d(fv, u).d(u, Sv)}

= k1/2d2(fv, Sv),
yielding fv = u ∈ Sv. This proves (I).

Since the subsequence {y2n+1} converges to u, and S(Y ) ⊆ g(Y ), there ex-
ists a w ∈ Y such that gw = u.
d2(Tw, y2n+1) ≤ k−1/2H2(Sx2n, Tw)

≤ k1/2 max{d2(fx2n, gw), d
2(fx2n, Sx2n), d

2(gw, Tw),
d(fx2n, Tw).d(gw, Sx2n)}.

Making n → ∞ , we obtain

d2(Tw, u) ≤ k1/2 max{d2(u, gw), d2(u, u), d2(gw, Tw), d(u, Tw).d(gw, u)}
= k1/2d2(u, Tw),
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implying gw = u ∈ Tw. This proves (II).

If g(Y ) is complete, an analogous argument establishes (I) and (II). The other
cases are evident. If S(Y ) (respectively T (Y )) is complete, then u ∈ S(Y ) ⊆
g(Y ) (respectively u ∈ T (Y ) ⊆ f(Y )) and the above arguments prove (I) and
(II).

If Y = X, then since fv ∈ Sv and u = fv,
this imply fu = u.
Since f and S are (IT)-commuting at v, then we obtain,
u = fv = ffv ∈ fSv ⊂ Sfv = Su.

This proves (III) and analogously (IV). Now (V) is immediate from (III) and
(IV).

Remark 3.1. When we substitute Y = X , f = g = id, the identity map
and S = T , above result improves partially the result of Moutawakil [25, Th.
2.2.1]. Further, if we take f = g, Y = X and S and T single-valued on X,
we obtain the improved version of the result of Hicks and Rhoades as in their
results both the maps are commuting [18, Th. 1].

Remark 3.2. Theorem 3.1 with Y = X, S = T and f = g significantly
improves a result of Aamri et al [1, Cor. 2.1], as in their result both the maps
are weakly compatible.

The maps f and g in Theorem 3.1 may be replaced by a sequence of single-
valued maps. Now we do this.

Theorem 3.2. Let Y be an arbitrary nonempty set and (X, d) a d-bounded
symmetric space satisfying condition (W ). Let fn : Y → X and S, T : Y →
CB(X) satisfy (C.4) and

(3.2.1) S(Y ) ⊆ f2n−1(Y ) and T (Y ) ⊆ f2n(Y ).

If one of S(Y ), T (Y ), f2n−1(Y ) or f2n(Y ) is an S-complete symmetric subspace
of X, then

(I) S and f2i have a coincidence point for i ∈ N ,
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(II) T and f2i−1 have a coincidence point for i ∈ N.

Further, if Y = X, then

(III) S and f2i have a common fixed point f2iv provided f2i(f2iv) = f2iv and
S and f2i are (IT)-commuting at v such that f2iv ∈ Sv for i ∈ N,

(IV) T and f2i−1 have a common fixed point f2i−1w provided f2i−1(f2i−1w) =
f2i−1w and T and f2i−1 are (IT)-commuting at w such that f2i−1w ∈ Tw
for i ∈ N,

(V) S, T and fn(n ∈ N) have a common fixed point provided (III) and (IV)
both are true.

Proof. The proof may be completed following Singh and Mishra [38] and the
proof of the Theorem 3.1.

Remark 3.3. The coincidence points u and v guaranteed by Theorem 3.1
are different in many cases.

Example 3.1. Let X = [0,∞) be endowed with usual metric. Define
f, g, S, T : X → X such that fx = 5x2, gx = 5x4, Sx = x2 + 4/25 and Tx =
x4 + 4/25 for all x ∈ X. Then, for any x, y ∈ X, d(Sx, Ty) = 1/5d(fx, gy).
Obviously, condition (C.4) is satisfied with k = 1/5 and S(X) = T (X) =
[4/25,∞) ⊂ X = f(X) = g(X).Also, we have f(1/5) = S(1/5) and g(1/

√
5) =

T (1/
√
5), that is S and f have a coincidence at x = 1/5 and T, g have a coin-

cidence at x = 1/
√
5.

If f = g in Theorem 3.1, then we have a slight improved version.

Corollary 3.1. Let Y be an arbitrary nonempty set, (X, d) a d-bounded sym-
metric space satisfying condition (W ), f : Y → X and S, T : Y → CB(X)
satisfy

(3.1.1a) H(Sx, Ty) ≤ kmax{d(fx, fy), d(fx, Sx), d(fy, Ty),√
d(fx, fy).d(fx, Sx),

√
d(fx, fy).d(fy, Ty),√

d(fx, Sx).d(fy, Ty),
√

d(fx, Ty).d(fy, Sx)}
(3.1.1b) S(Y ) ∪ T (Y ) ⊆ f(Y ).
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If one of S(Y ) or T (Y ) or f(Y ) is an S-complete symmetric subspace of X,
then

(I) S, T and f have a coincidence.

Further, if Y = X, then

(II) S, T and f have a common fixed point fv provided ffv = fv and f is
(IT)-commuting with each of S and T at v such that fv ∈ Sv ∩ Tv.

Proof. The proof may be completed following the proof of the Theorem 3.1
as condition (3.1.1a) is contained in (C.4).

Theorem 3.3. Let Y be an arbitrary nonempty set and (X, d) a d-bounded
symmetric space satisfying condition (W ). Let f, g : Y → X and S, T :
Y → CB(X) satisfy (C.5). If one of f(Y ) or S(Y ) or T (Y ) or g(Y ) is an
S-complete symmetric subspace of X, then

(I) S and f have a coincidence, i. e., there exists a v ∈ Y such that fv ∈ Sv;

(II) T and g have a coincidence, i. e., there exists a w ∈ Y such that gw ∈
Tw.

Futher if Y = X, then

(III) S and f have a common fixed point fv provided ffv = fv and S and f
are (IT)-commuting at v;.

(IV) T and g have a common fixed point gw provided ggw = gw and T and
g are (IT)-commuting at w.

(V) S, T, f and g have a common fixed point provided (III) and (IV) both are
true.

Proof. The proof may be completed following Singh and Mishra ([39], Theo-
rem1) and the proof of the Theorem 3.1.

Theorem 3.4. Let (X, d) be a symmetric space and f, g : X → X;T, Ti :
X → CB(X), i ∈ N, satisfy (C.5) and
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(3.4.1) T (X) ⊆ g(X) and the maps T, f are reciprocally continuous and non-
vacuously compatible.

Then,

(I) Ti and f have a coincidence, i. e., there exists a z ∈ X such that fz ∈ Tiz.

(II) Ti and g have a coincidence, i. e., there exists a y ∈ X such that gy ∈ Tiy.

Further,

(III) f and T have a common fixed point fu provided that fu is a fixed point
of f and fu ∈ Tu.

(IV) g and Ti have a common fixed point gw provided that gw is a fixed point
of g and g and Ti are (IT)-commmuting at w where gw ∈ Tiw.

(V) f, g, T and Ti have a common fixed point provided (III) and (IV) both are
true.

Proof. The pair (T, f) is nonvacuously compatible. Therefore, there exists a
sequence {xn} in X such that
limn→∞ Txn = M ∈ CB(X) and limn→∞ fxn = t ∈ M and
limn→∞H(Tfxn, fTxn) = 0.
As maps T and f are reciprocally continuous then
limn→∞ fTxn = fM and limn→∞ Tfxn = T t. So, H(T t, fM) = 0. t ∈ M
implies ft ∈ T t.
Since T (X) ⊆ g(X), there exists a point x ∈ X such that ft = gx ∈ T t.
If gx /∈ Tix, then d(gx, Tix) ≤ H(T t, Tix)

< max{d(ft, T t), d(gx, Tix), d(ft, Tix), d(gx, T t),
d(ft, gx)}.

= d(gx, Tix).
Hence gx ∈ Tix. This proves (II).

Further, (IT)-commutativity of f with T at t implies that fT t ⊆ Tft.

Therefore ft = fft ∈ fT t ⊆ Tft.

This establishes (III). Similar arguments yield (IV).
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(V) is immediate from (III) and (IV).

Remark 3.4. In view of the observations made by Mihet [24], the requirement
of nonvacous compatibility (cf. (3.4.1)) is essential. Indeed, as pointed out
by Mihet [op. cit.], the routine way of producing a Cauchy sequence for four
maps satisfying (C.5) in symmetric spaces does not seem possible (see [24]).

Corollary 3.2. Let (X, d) be a symmetric space and f, g : X → X;S, T :
X → CB(X) satisfy

(3.2.1a) T (X) ⊆ g(X) and the maps T, f are reciprocally continuous and
nonvacuously compatible,

(3.2.1b) H(Sx, Ty) < max{d(fx, Sx), d(gy, Ty), d(fx, Ty), d(gy, Sx),
d(fx, gy)}.

Then,

(I) f and S have a coincidence, i. e., there exists a z ∈ X such that fz ∈ Sz.

(II) g and T have a coincidence, i. e., there exists a y ∈ X such that gy ∈ Ty.

Further,

(Ia) f and S have a common fixed point fu provided that fu is a fixed point
of f and fu ∈ Su.

(IIa) g and T have a common fixed point gw provided that gw is a fixed point
of g and g and T are (IT)-commuting at w where gw ∈ Tw.

(IIIa) f, g, S and T have a common fixed point provided (III) and (IV) both
are true.

Proof. It follows from the proof of Theorem 3.4.

4. Applications

In this section we follow the notations and definitions of Hicks and Rhoades
[18], Moutawakil [25] and Singh and Prasad [41].
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Definition 4.1. A function F : R → [0, 1] is said to be a distribution function
if
(i) F is non-decreasing, (ii) F is left continuous, and (iii) infx∈R F (x) = 0 and
supx∈R F (x) = 1.

Definition 4.2. Let X be a set and � a function defined on X × X such
that �(x, y) = F (x, y) is a distribution function. Consider the following con-
ditions:

(iv) F (x, y, 0) = 0 for all x, y ∈ X.

(v) F (x, y) = f if and only if x = y, where f is the distribution function
defined by f(x) = 0 if x ≤ 0, and f(x) = 1 if x > 0.

(vi) F (x, y) = F (y, x) for all x, y ∈ X.

(vii) If F (x, y, α) = 1 and F (y, z, β) = 1 then F (x, z, α + β) = 1, for all
x, y, z ∈ X.

If � satisfies (iv) and (v), then it is called a PPM-structure on X and the
pair (X,�) is called a PPM-space and � satisfying (vi) is said to be symmet-
ric. A symmetric PPM-structure � satisfying (vii) is a probabilistic metric
structure and the pair (X,�) is a probabilistic metric space.

Let (X,�) be a symmetric PPM-space. For α, γ > 0 and x ∈ X, let
Nx(α, γ) = {y ∈ X : F (x, y, α) > 1 − γ}. A T1 topology t(�) on X is defined
as follows:
t(�) = {U ⊆ X: for each x in U , there exists α > 0, such that Nx(α, α) ⊆ U}.

Definition 4.3. Let (X,�) be a symmetric PPM-space. A sequence {xn}
in X is called a fundamental sequence if limn,m→∞ F (xn, xm, t) = 1 for all
t > 0. The space is called F -complete if for every fundamental sequence {xn}
in X, there exists an x ∈ X such that limn→∞ F (xn, x, t) = 1 for all t > 0.

In the space (X,�), the condition (W.4) is equivalent to the following:

(P.4) limn→∞ F (xn, x, t) = 1 and limn→∞ F (xn, yn, t) = 1 imply
limn→∞ F (yn, x, t) = 1 for all t > 0.
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Definition 4.4. Let (X,�) be a symmetric PPM-space. A nonempty subset
P of X is called �-closed if and only if P� = P, where

P� = {x ∈ X : supa∈P F (x, a, t) = 1 for all t > 0}.

For the details of the topological preliminaries, one may refer to [18] and
[21]. In all that follows we denote the set of all nonempty �-closed subsets of
X by CB�(X).

The following is a slightly modified version of Moutawakil [25, Prop. 2.3.1].

Proposition 4.1 ([25]). Let (X,�) be a symmetric PPM-space. Let p be
a compatible symmetric function for t(�). For A,B ∈ CB(X), set

E(A,B, ε) = min{ inf
a∈A

sup
b∈B

F (a, b, ε); inf
b∈B

sup
a∈A

F (a, b, ε)}, ε > 0,

and
P (A,B) = max{sup

a∈A
inf
b∈B

p(a, b); sup
b∈B

inf
a∈A

p(a, b)}.

Let f : X → X and S, T : X → CB(X) and if F (fx, fy, t) > 1 − t im-
plies E(Tx, Ty, kt) > 1 − kt, 0 ≤ k < 1, for all t > 0 and all x, y ∈ X. Then,
P (Sx, Ty) ≤ kp(fx, fy).

In a symmetric PPM space (X,�), if p is a compatible symmetric function
on t(�) then CB�(X) = CB(X), where CB(X) is the set of all nonempty
p-closed subsets of (X, p).

Hicks and Rhoades [18] obtained the following result showing that each sym-
metric PPM-space admits a compatible symmetric function.

Theorem 4.1 ([18]). Let (X,�) be a symmetric PPM-space. Let p : X×X →
R+ be a function defined as follows:

p(x, y) = { 0 if y ∈ Nx(t, t) ∀t > 0
sup{t : y /∈ Nx(t, t), 0 < t < 1} otherwise

Then

(viii) p(x, y) < t if and only if F (x, y, t) > 1− t;



444 S. L. Singh, Apichai Hematulin, and Bhagwati Prasad

(ix) p is a compatible symmetric for t(�);

(x) (X,�) is F -complete if and only if (X, p) is F -complete.

Now we present the following result in a symmetric PPM-space.

Theorem 4.2. Let (X,�) be an F -complete symmetric PPM-space that sat-
isfied (P.4) and p a compatible symmetric function for t(�). Let f : Y → X
and S, T : Y → C�(X) such that F (fx, fy, t) > 1− t implies E(Sx, Ty, kt) >
1− kt, 0 ≤ k < 1, for all x, y ∈ Y.
If one of f(Y ) or S(Y ) or T (Y ) is an F -complete symmetric subspace of X,
then there exists a z ∈ Y such that fz ∈ Sz ∩ Tz.
Further, if Y = X and ffz = fz then f, S and T have a common fixed point
provided that f is (IT)-commuting with each of S and T .

Proof. Clearly (X, p) is a bounded and S-complete space and we have
p(fx, fy) < t if and only if F (fx, fy, t) > 1− t.
Given ε > 0, put t = p(fx, fy) + ε.

Then, F (fx, fy, t) > 1− t implies E(Sx, Ty, kt) > 1− kt, for all x, y ∈ Y .

From Proposition 4.1, we obtain

P (Sx, Ty) ≤ kt = kp(fx, fy) + kε
As ε > 0 is arbitrary, on letting ε tend to 0, we get
P (Sx, Ty) ≤ kp(fx, fy).

An application of Corollary 3.1 completes the proof.

Corollary 4.1. Let (X,�) be an F -complete symmetric PPM-space that sat-
isfied (P.4) and p a compatible symmetric function for t(�). Let f : Y → X
and S, T : X → C�(X) such that

F (x, y, t) > 1−t implies E(Sx, Ty, kt) > 1−kt, 0 ≤ k < 1, for all x, y ∈ Y.
Then S and T have a common fixed point.
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