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Abstract

The object of the present paper is to study φ−Ricci symmetric and
locally φ−Ricci symmetric 3-dimensional quasi-Sasakian manifolds with
structure function β =constant. Also we study η−parallel Ricci tensor
and cyclic parallel Ricci tensor with β =constant. Applications of such
manifold have been considered. The existence of 3-dimensional φ−Ricci
symmetric and locally φ−Ricci symmetric quasi-Sasakian manifolds are
also given by concrete examples.
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1. Introduction

The notion of quasi-Sasakian structure was introduced by D. E. Blair [6] to
unify Sasakian and cosymplectic structures. S. Tanno [22] also added some
remarks on quasi-Sasakian structures. The properties of quasi-Sasakian mani-
folds have been studied by several authors, viz., J. C. Gonzalez and D. Chinea
[11], S. Kanemaki [12], [13] and J. A. Oubina [20]. B. H. Kim [15] studied
quasi-Sasakian manifolds and proved that fibred Riemannian spaces with in-
variant fibres normal to the structure vector field do not admit nearly Sasakian
or contact structure but a quasi-Sasakian or cosymplectic structure. Recently,
quasi-Sasakian manifolds have been the subject of growing interest in view of
finding the significant applications to physics, in particular to super gravity
and magnetic theory [1], [2]. Quasi-Sasakian structures have wide applica-
tions in the mathematical analysis of string theory [3], [9]. Motivated by the
roles of curvature tensor and Ricci tensor of quasi-sasakian manifolds in string
theory [3] we like to study φ−Ricci symmetric quasi-Sasakian manifold and
quasi-Sasakian manifold with η−parallel and cyclic parallel Ricci tensors in
dimension three. On a 3-dimensional quasi-Sasakian manifold, the structure
function β was defined by Z. Olszak[17] and with the help of this function
he has obtained necessary and sufficient conditions for the manifold to be
conformally flat[18]. Next he has proved that if the manifold is additionally
conformally flat with β = constant, then (a) the manifold is locally a product
of R and a two-dimensional Kaehlerian space of constant Gauss curvature (the
cosymplectic case), or, (b) the manifold is of constant positive curvature (the
non-cosymplectic case, here the quasi-Sasakian structure is homothetic to a
Sasakian structure).

The present paper is to study the 3-dimensional quasi-Sasakian manifolds
with β = constant. After preliminaries in section 4 we prove that φ−symmetry
and φ− Ricci symmetry are equivalent on a 3-dimensional quasi-Sasakian man-
ifold. Section 5 and Section 6 deal with the study of 3-dimensional quasi-
Sasakian manifold with η−parallel Ricci tensor and cyclic Ricci tensor respec-
tively. In section 7 we consider the applications of quasi-Sasakian manifolds.
The last section contains some illustrative examples of a 3-dimensional non-
cosympletic quasi-Sasakian manifold with constant scalar curvature.
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2. Preliminaries

Let M be a (2n+1)-dimensional connected differentiable manifold endowed
with an almost contact metric structure (φ, ξ, η, g), where φ, ξ, η are tensor
fields on M of types (1, 1), (1, 0), (0, 1) respectively, such that [4],[5], [23].

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

g(φX, φY ) = g(X, Y )− η(X)η(Z), X, Y ∈ T (M),

where T (M) is the Lie algebra of vector fields of the manifold M .
Then also

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ).

Let Φ be the fundamental 2-form of M defined by

Φ(X, Y ) = g(X, φY ) X, Y ∈ T (M).

Then Φ(X, ξ) = 0, X ∈ T (M). M is said to be quasi-Sasakian if the almost
contact structure (φ, ξ, η) is normal and the fundamental 2-form Φ is closed,
that is, for every X, Y ∈ E (2n+1), where E (2n+1) denotes the module of vector
fields on M,

[φ, φ](X, Y ) + dη(X, Y )ξ = 0,

dΦ = 0, Φ(X, Y ) = g(X, φY ).

This was first introduced by Blair [6]. There are many types of quasi-Sasakian
structures ranging from the cosymplectic case, dη = 0(rank η = 1), to the
Sasakian case, η ∧ (dη)n �= 0 (rank η = 2n + 1, Φ = dη). The 1−form η
has rank r′ = 2p if dηp �= 0 and η ∧ (dη)p = 0, and has rank r′ = 2p + 1 if
dηp = 0 and η∧(dη)p �= 0.We also say that r′ is the rank of the quasi-Sasakian
structure. Blair[6] also proved that there are no quasi-Sasakian structure of
even rank. In order to study the properties of quasi-Sasakian manifolds Blair
[6] proved some theorems regarding Kaehlerian manifolds and existence of
quasi-Sasakian manifolds. S. Tanno [22] rectified some of these theorems.
However, while Tanno studied locally product quasi-Sasakian manifolds he
mentioned the following:
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Let M2p+1
1 (φ1, ξ1, η1, g1) be a Sasakian manifold and let M2q

2 (J2, G2) a
Kaehlerian manifold. Then M1×M2 has a quasi-Sasakian structure (φ, ξ, η, g)
of rank 2p+ 1 such that

φX = (φ1X1, J2X2), ξ = (ξ1, 0),

η(X) = η1(X1), g(X, Y ) = g1(X1, Y1) +G2(X2, Y2),

for the canonical decomposition X = (X1, X2) of a vector field X on M1×M2

[6].
Conversely,

Theorem [22]: Let M(φ, ξ, η, g) be a quasi-Sasakian manifold (more generally
a normal almost contact Riemannian manifold) of rank 2p+1. If g∗ be defined
by

2g∗(X, Y ) = −dη(X, φY ),
X, Y ∈ E2n+1, is positive definite on E2p and ∇θ = 0 with respect to the
Riemannian metric g defined by

g(X, Y ) = η(X)η(Y ) + g∗(ψ2X,ψ2Y ) + g(θ2X, θ2Y ),

where the (1, 1) tensors ψ and θ are given by

ψ(X) = φ(X) if X ∈ E2p,
= 0 if X ∈ E2q ⊕ E1,

θ(X) = φ(X) if X ∈ E2q,
= 0 if X ∈ E2p+1,

then (φ, ξ, η, g) is also a quasi-Sasakian structure of rank 2p+1 andM(φ, ξ, η, g)
is locally the product of Sasakian manifold and a Kaehler manifold.It is men-
tioned that E2p+1, E2q, E1 are submodules of E2n+1. S. Tanno [22] also gave an
example of a 3-dimensional quasi-Sasakian manifold which is not Sasakian.
For a quasi-Sasakian manifold we have the relation [7]

(∇Xφ)Y = g(∇φXξ, Y )ξ − η(Y )∇φXξ,

which generalizes the well-known conditions∇φ = 0 and (∇Xφ)Y = g(X, Y )ξ−
η(Y )X characterizing respectively cosymplectic and Sasakian manifolds. The
quasi-Sasakian condition also reflects in some properties of curvature and of
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the vector field ξ. In fact we have the following results.

Lemma[6], [19]: Let M(φ, ξ, η, g) be a quasi-Sasakian manifold. Then
(i) the vector field ξ is Killing and its integral curves are geodesics;
(ii) the Ricci curvature in the direction of ξ is given by ||∇ξ||2.

3. 3-dimensional Quasi-Sasakian Manifold

An almost contact metric manifold M is a 3-dimensional quasi-Sasakian man-
ifold if and only if [17]

∇Xξ = −βφX, X ∈ T (M), (3.1)

for a certain function β on M , such that ξβ = 0, ∇ being the operator of
the covariant differentiation with respect to the Levi-Civita connection of M .
Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if β = 0.
Here we have shown that the assumption ξβ = 0 is not necessary.

As a consequence of (3.1), we have[17]

(∇Xφ)(Y ) = β(g(X, Y )ξ − η(Y )X), X, Y ∈ T (M). (3.2)

Because of (3.1) and (3.2), we find

∇X(∇Y ξ) = −(Xβ)φY − β2{g(X, Y )ξ − η(Y )X} − βφ∇XY

which implies that

R(X, Y )ξ = −(Xβ)φY + (Y β)φX + β2{η(Y )X − η(X)Y }. (3.3)

Thus we get from (3.3)

R(X, Y, Z, ξ) = (Xβ)g(φY, Z)− (Y β)g(φX,Z)

− β2{η(Y )g(X,Z)− η(X)g(Y, Z)}, (3.4)

where R(X, Y, Z,W ) = g(R(X, Y, Z),W ).
Putting X = ξ, in (3.4) we obtain
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R(ξ, Y, Z, ξ) = β2{g(Y, Z)− η(Y )η(Z)}+ g(φY, Z)ξβ. (3.5)

Interchanging Y and Z of (3.5) yields

R(ξ, Z, Y, ξ) = β2{g(Y, Z)− η(Y )η(Z)}+ g(φZ, Y )ξβ. (3.6)

Since R(ξ, Y, Z, ξ) = R(Z, ξ, ξ, Y ) = R(ξ, Z, Y, ξ), from (3.5) and (3.6) we
have

{g(φY, Z)− g(φZ, Y )}ξβ = 0.

Therefore, we can easily verify that ξβ = 0.
In a 3-dimensional Riemannian manifold, we always have

R(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y − r

2
(g(Y, Z)X − g(X,Z)Y ), (3.7)

where Q is the Ricci operator, that is, g(QX,Y)=S(X,Y) and r is the scalar
curvature of the manifold.

Throughout this paper we consider β as a constant. Let M be a 3-
dimensional quasi-Sasakian manifold. Since β is a constant the Ricci tensor S
of M is given in [18] takes the form

S(Y, Z) = (
r

2
− β2)g(Y, Z) + (3β2 − r

2
)η(Y )η(Z), (3.8)

where r is the scalar curvature of M .
As a consequence of (3.8), we get for the Ricci operator Q

QX = (
r

2
− β2)X + (3β2 − r

2
)η(X)ξ. (3.9)

From (3.8) we have
S(X, ξ) = 2β2η(X). (3.10)

Moreover, as a consequence of (3.7)-(3.10), we find

R(X, Y )ξ = β2(η(Y )X − η(X)Y ), X, Y ∈ T (M). (3.11)

As a consequence of (3.1) we also have [17]

(∇Xη)(Y ) = g(∇Xξ, Y ) = −βg(φX, Y ). (3.12)
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Also from (3.8) it follows that

S(φX, φZ) = S(X,Z)− 2β2η(X)η(Z). (3.13)

4. φ-Ricci Symmetric 3-dimensional Quasi-Sasakian

Manifold

Definition 4.1 A quasi-Sasakian manifold M2n+1(φ, ξ, η, g) is said to be φ−
symmetric if the curvature tensor R satisfies

φ2(∇WR)(X, Y )Z = 0,

for all vector fields X, Y, Z,W ∈ T (M).
If X, Y, Z,W are orthogonal to ξ, then the manifold is said to be locally

φ− symmetric. The notion of locally φ−symmetric on a Sasakian manifold
was introduced by Takahashi [21].
Definition 4.2 A quasi-Sasakian manifold M2n+1(φ, ξ, η, g) is said to be φ−
Ricci symmetric if the Ricci operator Q satisfies

φ2(∇XQ)(Y ) = 0,

for all vector fields X, Y ∈ T (M) and S(X, Y ) = g(QX, Y ).
If X, Y are orthogonal to ξ, then the manifold is said to be locally φ−Ricci

symmetric.
From the definition it follows that φ−symmetric implies φ−Ricci symmet-

ric, but the converse, is not, in general true. φ−Ricci symmetric Sasakian
manifolds have been studied by De and Sarkar [8].

Let us suppose that the manifold is φ−Ricci symmetric. Then by definition

φ2(∇XQ)(Y ) = 0.

Using (2.1) we have from above

−(∇XQ)(Y ) + η((∇XQ)(Y ))ξ = 0. (4.1)
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From (4.1) it follows that

−g(∇XQ(Y ), Z) + S(∇XY, Z) + η((∇XQ)(Y ))η(Z) = 0. (4.2)

Putting Y = ξ, we get from (4.2)

−g(∇XQ(ξ), Z) + S(∇Xξ, Z) + η((∇XQ)ξ)η(Z) = 0. (4.3)

In view of (3.1) and (3.9), we get from (4.3)

−g(2β2∇Xξ, Z) + S(∇Xξ, Z) + η((∇XQ)(ξ))η(Z) = 0. (4.4)

Putting φZ instead of Z in (4.4) yields

2β2g(φX, φZ) = S(φX, φZ), (4.5)

since M is non-cosymplectic.
Using (3.13), (4.5) yields

S(X,Z) = 2β2g(X,Z). (4.6)

Using (4.6), in (3.7) we have

R(X, Y )Z = β2{g(Y, Z)X − g(X,Z)Y }.
Then clearly,

φ2(∇WR)(X, Y )Z = 0.

This helps us to conclude the following:

Theorem 4.1. On a 3-dimensional non-cosymplectic quasi-Sasakian manifold
φ−Ricci symmetry and φ−symmetry are equivalent provided β is a constant.

Differentiating (3.9) covariantly along W we obtain

(∇WQ)(X) =
1

2
{dr(W )X − dr(W )η(X)ξ}+ (3β2 − r

2
)(∇Wη)(X)ξ

+ (3β2 − r

2
)η(X)(∇W ξ). (4.7)

Applying φ2 on both side of (4.7) and using (2.1) we have

φ2(∇WQ)(X) =
1

2
{dr(W )(−X + η(X)ξ)

+ (6β2 − r)η(X)φ2(∇W ξ)}. (4.8)
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Now if X is orthogonal to ξ, (4.8) gives

φ2(∇WQ)(X) = −1

2
dr(W )X.

From above expression we can state

Theorem 4.2. A 3-dimensional non-cosympletic quasi-Sasakian manifold with
β = constant, is locally φ-Ricci symmetric if and only if the scalar curvature
is constant.

5. η-Parallel Ricci Tensor

Definition 5.1. The Ricci tensor S of a quasi-Sasakian manifold is called
η-parallel if it satisfies

(∇XS)(φY, φZ) = 0,

for all vector fields X, Y, Z. The notion of η-parallelity for Sasakian manifold
was introduced by Kon[16].
Definition 5.2. A 3-dimensional quasi-Sasakian manifold is said to be an
η−Einstein manifold if the Ricci tensor is of the form

S = ag + bη ⊗ η,

where a and b are smooth functions on M.
From (3.8) we get

(∇XS)(φY, φZ) =
1

2
dr(X)g(φY, φZ). (5.1)

If the Ricci tensor is η−parallel, then from (5.1)

1

2
dr(X)g(φY, φZ) = 0. (5.2)

from which it follows that

dr(X) = 0.



420 Abul Kalam Mondal and Avik De

Hence we find that the scalar curvature is constant. Moreover, β is con-
stant. Thus in view of (3.8) a 3-dimensional non-cosymplectic quasi-Sasakian
manifold M with η−parallel Ricci tensor is an η−Einstein manifold.

Conversely, if the quasi-Sasakian manifold M is η−Einstein, then

(∇XS)(φY, φZ) = 0.

Thus we can state the following:

Theorem 5.1. In a 3-dimensional non-cosymplectic quasi-Sasakian mani-
fold with β = constant, the Ricci tensor is η−parallel if and only if M is
η−Einstein.

Again the equation (5.1) yields

Theorem 5.2. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold
with β = constant, the Ricci tensor is η−parallel if and only if the scalar
curvature is constant .

From Theorem 4.2 and Theorem 5.2 we can state the following:

Corollary 5.1. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold
with β = constant, the Ricci tensor is η−parallel if and only if the manifold is
locally φ−Ricci symmetric.

6. Cyclic Parallel Ricci Tensor

A. Gray [10] introduced two classes of Riemannian manifold determined by
covariant derivative of Ricci tensor. The class A consisting of all Riemannian
manifold whose Ricci tensor S is a Codazzi tensor, that is,

(∇XS)(Y, Z) = (∇Y S)(X,Z).

The class B consisting of all Riemannian manifolds whose Ricci tensor is
cyclic parallel, that is,

(∇XS)(Y, Z) + (∇Y S)(X,Z) + (∇ZS)(X, Y ) = 0. (6.1)
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A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the
Ricci tensor is non-zero and satisfies the condition (6.1). It is known [14] that
Cartan hypersurface are manifolds with non-parallel Ricci tensor satisfying the
condition (6.1).

From (6.1), it follows that r = constant.
Differentiating (3.8) covariantly along X , using (3.12) we have

(∇XS)(Y, Z) =
1

2
dr(X)(g(Y, Z)− η(Y )η(Z)) + (3β2

− r

2
)((∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y ))

= −β(3β2 − r

2
){g(φX, Y )η(Z)− g(φX,Z)η(Y )}. (6.2)

Using (6.2), clearly

(∇XS)(Y, Z) + (∇Y S)(X,Z) + (∇ZS)(X, Y ) = 0.

Thus we are in a position to state the following:

Theorem 6.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold
with β = constant, satisfies cyclic parallel Ricci tensor if and only if the scalar
curvature is constant.

From Theorem 4.2 and Theorem 6.1 we have the following:

Corollary 6.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold
with β = constant, satisfies cyclic parallel Ricci tensor if and only if it is
locally φ−Ricci symmetric.

From Corollary 5.1 and Corollary 6.1 we have the following:

Theorem 6.2. A 3-dimensional non-cosymplectic quasi-Sasakian manifold
with β = constant, satisfies cyclic parallel Ricci tensor if and only if it satisfies
η−parallel Ricci tensor.
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7. Example of 3-dimensional Quasi-Sasakian

Manifolds

Example 1. It is known [17] that a conformally flat 3-dimensional quasi-
Sasakian manifold is of positive constant curvature, hence it is an Einstein
manifold and therefore the manifold is φ-Ricci symmetric.

Example 2. We consider the three-dimensional manifold M = {(x, y, z) ∈
R

3, (x, y, z) �= 0}, where (x, y, z) are standard co-ordinate of R3.

The vector fields

e1 =
∂

∂z
− y

∂

∂x
, e2 =

∂

∂y
, e3 = 2

∂

∂x

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ T (M).

Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ T (M).

Thus for e3 = ξ , the structure (φ, ξ, η, g) defines an almost contact metric
structure on M .
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Let ∇ be the Levi-Civita connection with respect to the metric g. Then
we have

[e1, e2] = e1e2 − e2e1

= (
∂

∂z
− y

∂

∂x
)
∂

∂y
− ∂

∂y
(
∂

∂z
− y

∂

∂x
)

=
∂

∂x

=
1

2
e3.

Similarly,
[e1, e3] = 0 and [e2, e3] = 0.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]) (7.1)

which is known as Koszul’s formula.
Using (7.1) we have

2g(∇e1e3, e1) = 0 = 2g(
1

4
e2, e1). (7.2)

Again by (7.1)

2g(∇e1e3, e2) = −g(−1

2
e3, e3) = 2g(

1

4
e2, e2) (7.3)

and

2g(∇e1e3, e3) = 0 = 2g(
1

4
e2, e3). (7.4)

From (7.2), (7.3) and (7.4) we obtain

2g(∇e1e3, X) = 2g(
1

4
e2, X),

for all X ∈ T (M).
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Thus

∇e1e3 =
1

4
e2.

(7.1) further yields

∇e1e3 =
1

4
e2, ∇e1e2 = −1

4
e3, ∇e1e1 = 0,

∇e2e3 = −1

4
e1, ∇e2e2 = 0, ∇e2e1 =

1

4
e3,

∇e3e3 = 0, ∇e3e2 = −1

4
e1, ∇e3e1 =

1

4
e2. (7.5)

We see that the structure (φ, ξ, η, g) satisfies the formula ∇Xξ = −βφX for
β = 1

4
. Hence the manifold is a 3-dimensional quasi-Sasakian manifold with

the constant structure function β = 1
4
.

It is known that

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

With the help of the above formula and using (7.5) it can be easily verified
that

R(e1, e2)e3 = 0, R(e2, e3)e3 =
1

16
e2, R(e1, e3)e3 =

1

16
e1,

R(e1, e2)e2 = − 3

16
e1, R(e2, e3)e2 = − 1

16
e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 =
3

16
e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = − 1

16
e3.

From the above expression of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1)

= −1

8
.

Similarly we have

S(e2, e2) = −1

8
and S(e3, e3) =

1

8
.
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Now clearly

φ2(∇XQ)(Y ) = 0,

for all X and Y ∈ T (M).
Hence M is locally φ−Ricci symmetric.
Also,

r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −1

8
.

Therefore the scalar curvature r is constant. So Theorem 4.2 is verified. It
is straight forword to verify that the Ricci tensor of M is η−parallel, cyclic
parallel and η−Einstein.

Acknowledgement. The authors are thankful to the referee for his valuable
suggestions towards the improvement of the paper.
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