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Abstract

The object of the present paper is to study ¢—Ricci symmetric and
locally ¢p—Ricci symmetric 3-dimensional quasi-Sasakian manifolds with
structure function 8 =constant. Also we study n—parallel Ricci tensor
and cyclic parallel Ricci tensor with 8 =constant. Applications of such
manifold have been considered. The existence of 3-dimensional ¢p—Ricci
symmetric and locally ¢—Ricci symmetric quasi-Sasakian manifolds are
also given by concrete examples.
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1. Introduction

The notion of quasi-Sasakian structure was introduced by D. E. Blair [6] to
unify Sasakian and cosymplectic structures. S. Tanno [22] also added some
remarks on quasi-Sasakian structures. The properties of quasi-Sasakian mani-
folds have been studied by several authors, viz., J. C. Gonzalez and D. Chinea
[11], S. Kanemaki [12], [13] and J. A. Oubina [20]. B. H. Kim [15] studied
quasi-Sasakian manifolds and proved that fibred Riemannian spaces with in-
variant fibres normal to the structure vector field do not admit nearly Sasakian
or contact structure but a quasi-Sasakian or cosymplectic structure. Recently,
quasi-Sasakian manifolds have been the subject of growing interest in view of
finding the significant applications to physics, in particular to super gravity
and magnetic theory [1], [2]. Quasi-Sasakian structures have wide applica-
tions in the mathematical analysis of string theory [3], [9]. Motivated by the
roles of curvature tensor and Ricci tensor of quasi-sasakian manifolds in string
theory [3] we like to study ¢—Ricci symmetric quasi-Sasakian manifold and
quasi-Sasakian manifold with n—parallel and cyclic parallel Ricci tensors in
dimension three. On a 3-dimensional quasi-Sasakian manifold, the structure
function  was defined by Z. Olszak[17] and with the help of this function
he has obtained necessary and sufficient conditions for the manifold to be
conformally flat[18]. Next he has proved that if the manifold is additionally
conformally flat with 5 = constant, then (a) the manifold is locally a product
of R and a two-dimensional Kaehlerian space of constant Gauss curvature (the
cosymplectic case), or, (b) the manifold is of constant positive curvature (the
non-cosymplectic case, here the quasi-Sasakian structure is homothetic to a
Sasakian structure).

The present paper is to study the 3-dimensional quasi-Sasakian manifolds
with 8 = constant. After preliminaries in section 4 we prove that ¢—symmetry
and ¢— Ricci symmetry are equivalent on a 3-dimensional quasi-Sasakian man-
ifold. Section 5 and Section 6 deal with the study of 3-dimensional quasi-
Sasakian manifold with n—parallel Ricci tensor and cyclic Ricci tensor respec-
tively. In section 7 we consider the applications of quasi-Sasakian manifolds.
The last section contains some illustrative examples of a 3-dimensional non-
cosympletic quasi-Sasakian manifold with constant scalar curvature.
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2. Preliminaries

Let M be a (2n+1)-dimensional connected differentiable manifold endowed
with an almost contact metric structure (¢,&,n,g), where ¢, £, n are tensor
fields on M of types (1,1), (1,0), (0, 1) respectively, such that [4],[5], [23].

g(¢X7 (bY) = g(X7 Y) - U(X)H(Z)a XY € T(M>7

where T'(M) is the Lie algebra of vector fields of the manifold M.
Then also

p€¢ =0, nogp=0, nX)=g(X,9).
Let ® be the fundamental 2-form of M defined by
O(X,Y) = g(X,0Y) X,Y € T(M).

Then ®(X,&) =0, X € T(M). M is said to be quasi-Sasakian if the almost
contact structure (¢, &, n) is normal and the fundamental 2-form ® is closed,
that is, for every X,Y € £2*tD where £t denotes the module of vector
fields on M,

6, 8(X,Y) + dn(X,Y)é =0,

dd =0, B(X,Y)=g(X,Y).

This was first introduced by Blair [6]. There are many types of quasi-Sasakian
structures ranging from the cosymplectic case, dn = O(rank n = 1), to the
Sasakian case, n A (dn)" # 0 (rank n = 2n + 1, & = dn). The 1—form 7
has rank " = 2p if dn? # 0 and n A (dn)? = 0, and has rank " = 2p + 1 if
dn? = 0 and nA(dn)? # 0. We also say that 7’ is the rank of the quasi-Sasakian
structure. Blair[6] also proved that there are no quasi-Sasakian structure of
even rank. In order to study the properties of quasi-Sasakian manifolds Blair
[6] proved some theorems regarding Kaehlerian manifolds and existence of
quasi-Sasakian manifolds. S. Tanno [22] rectified some of these theorems.
However, while Tanno studied locally product quasi-Sasakian manifolds he
mentioned the following:
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Let Mlzpﬂ(gbl,fl, N1, g1) be a Sasakian manifold and let M22q(J2, Gs) a
Kaehlerian manifold. Then M; x M, has a quasi-Sasakian structure (¢, &, 7, g)
of rank 2p + 1 such that

¢X = (01 X1, 12 X2), &= (&,0),

U(X) = 771(X1)7 Q(Xa Y) = gl(Xl,Yl) + G2(X2,Y2),
for the canonical decomposition X = (Xj, X3) of a vector field X on M; x M;

[6].

Conversely,
Theorem [22]: Let M(¢,&,n,g) be a quasi-Sasakian manifold (more generally
a normal almost contact Riemannian manifold) of rank 2p+1. If g* be defined

by

X,Y € &>FL s positive definite on £ and VO = 0 with respect to the
Riemannian metric g defined by

9(X,Y) =n(X)In(Y) + g" (*X,9%Y) + g(6° X, 6°Y),
where the (1,1) tensors 1 and 0 are given by
¥(X)

&(X) if X € &%,
0 if X € EXq &L,

0(X)

P(X) if X € &%,
0 if X € £w+1,

then (6,&,1n,9) is also a quasi-Sasakian structure of rank 2p+1 and M (¢$,£,1,9)
is locally the product of Sasakian manifold and a Kaehler manifold.It is men-
tioned that E*1 29 EY are submodules of E¥" 1. S. Tanno [22] also gave an
example of a 3-dimensional quasi-Sasakian manifold which is not Sasakian.
For a quasi-Sasakian manifold we have the relation [7]

(Vxo)Y = 9(V¢X§> Y)§ — n(Y)Vw{f,

which generalizes the well-known conditions Vo = 0 and (Vxo)Y = g(X,Y)E{—
n(Y)X characterizing respectively cosymplectic and Sasakian manifolds. The
quasi-Sasakian condition also reflects in some properties of curvature and of
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the vector field &. In fact we have the following results.

Lemmal|6], [19]: Let M(¢,&,n, g) be a quasi-Sasakian manifold. Then
(i) the vector field & is Killing and its integral curves are geodesics;
(11) the Ricci curvature in the direction of & is given by ||VE||?.

3. 3-dimensional Quasi-Sasakian Manifold

An almost contact metric manifold M is a 3-dimensional quasi-Sasakian man-
ifold if and only if [17]

Vxé =X, X e€T(M), (3.1)

for a certain function § on M, such that £6 = 0, V being the operator of
the covariant differentiation with respect to the Levi-Civita connection of M.
Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if § = 0.
Here we have shown that the assumption £5 = 0 is not necessary.

As a consequence of (3.1), we have[17]

(Vx¢)(Y) = B(g(X,YV)E = n(Y)X), XY eT(M). (3.2)
Because of (3.1) and (3.2), we find
Vx(Vy€) = —(XB)Y — f{g(X,Y)E —=n(Y)X} — BoVxY
which implies that
R(X,Y)§ = —(XB)Y + (Y B)oX + 8{n(Y)X —n(X)Y}. (3.3)
Thus we get from (3.3)

R(X,)Y,Z,§) = (XB)g(¢Y,Z) — (YB)g(oX,Z)
BHn(Y)g(X, Z) —n(X)g(Y, Z)}, (3.4)

where R(X,Y, Z, W) = g(R(X,Y, Z),W).
Putting X = ¢, in (3.4) we obtain



416 Abul Kalam Mondal and Avik De

R(EY,Z,€) = f{g(Y.Z) = n(Y)n(Z)} + 9(¢Y, Z)&B. (3.5)
Interchanging Y and Z of (3.5) yields

R(§,2,Y,6) = B*{g(Y. Z) = n(Y)n(Z)} + g(6Z,Y )P (3.6)
Since R(§,Y,Z,&) = R(Z,£,£,Y) = R(&,Z,Y,€), from (3.5) and (3.6) we
have

{9(8Y,Z) — g(¢Z,Y)}¢B = 0.

Therefore, we can easily verify that £ = 0.
In a 3-dimensional Riemannian manifold, we always have

RX,)Y)Z = g(Y.2)QX —g(X,Z2)QY + S(Y,2)X
- S(X,2)Y - S((V.2)X —g(X.2)Y),  (37)
where @ is the Ricci operator, that is, g(QX,Y)=S(X,Y) and r is the scalar
curvature of the manifold.
Throughout this paper we consider [ as a constant. Let M be a 3-

dimensional quasi-Sasakian manifold. Since 3 is a constant the Ricci tensor S
of M is given in [18] takes the form

r

S(Y.2) = (5-B9(Y,2)+ (38" = (¥ )n(2), (3.8)

where 7 is the scalar curvature of M.
As a consequence of (3.8), we get for the Ricci operator @

QX = (5-A)X + (36"~ Dn(X)e. (3.9)

From (3.8) we have
S(X,€) = 26%n(X). (3.10)

Moreover, as a consequence of (3.7)-(3.10), we find
RIX,Y)E= F(YV)X —n(X)Y), X, Y eT(M).  (311)
As a consequence of (3.1) we also have [17]

(Vxn)(Y) = g(VxEY) = =Bg(¢X,Y). (3.12)
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Also from (3.8) it follows that

S(9X,07) = S(X, Z) = 28°n(X)n(2). (3.13)

4. ¢p-Ricci Symmetric 3-dimensional Quasi-Sasakian
Manifold

Definition 4.1 A quasi-Sasakian manifold M?*"*1(¢, £ n, g) is said to be ¢—
symmetric if the curvature tensor R satisfies

¢*(VwR)(X,Y)Z =0,

for all vector fields X, Y, Z, W € T(M).

If X,Y,Z W are orthogonal to &, then the manifold is said to be locally
¢— symmetric. The notion of locally ¢—symmetric on a Sasakian manifold
was introduced by Takahashi [21].

Definition 4.2 A quasi-Sasakian manifold M?*"*1(¢, £ n, g) is said to be ¢—
Ricci symmetric if the Ricci operator () satisfies

¢*(VxQ)(Y) =0,

for all vector fields X, Y € T(M) and S(X,Y) = g(QX,Y).

If X, Y are orthogonal to &, then the manifold is said to be locally ¢—Ricci
symmetric.

From the definition it follows that ¢—symmetric implies ¢—Ricci symmet-
ric, but the converse, is not, in general true. ¢—Ricci symmetric Sasakian
manifolds have been studied by De and Sarkar [§].

Let us suppose that the manifold is ¢—Ricci symmetric. Then by definition

¢2(VXQ)(Y) =0.

Using (2.1) we have from above

—(VxQ)(Y) +n((VxQ)(Y))¢ = 0. (4.1)
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From (4.1) it follows that

—9(VxQ(Y),2) + 5(VxY,Z) + n((VxQ)(Y))n(Z) = 0. (4.2)
Putting Y = ¢, we get from (4.2)

—9(VxQ(§), Z) + S(Vx¢, Z) + n((VxQ)§)n(Z) = 0. (4.3)
In view of (3.1) and (3.9), we get from (4.3)
—9(26°Vx€,Z) + S(Vx&, Z) + 1((VxQ)())n(Z) = 0. (4.4)

Putting ¢Z instead of Z in (4.4) yields

26%9(¢X, 9Z) = S(¢X, 9Z), (4.5)
since M is non-cosymplectic.
Using (3.13), (4.5) yields

S(X,7) =28%(X, 2). (4.6)
Using (4.6), in (3.7) we have
R(X,Y)Z = B*{g(Y,Z)X — g(X, Z)Y}.

Then clearly,
»*(VwR)(X,Y)Z = 0.

This helps us to conclude the following:

Theorem 4.1. On a 3-dimensional non-cosymplectic quasi-Sasakian manifold
o— Ricci symmetry and ¢—symmetry are equivalent provided [ is a constant.

Differentiating (3.9) covariantly along W we obtain

(VwQ)X) = S{dr(W)X = dr(W)n(X)} + (38° = 2)(Tun)(X)¢

£ (38 = D) (Twe). (47)

Applying ¢? on both side of (4.7) and using (2.1) we have

FTwQ)(X) = Sdr(W)(=X +5(X)e)
b 65— n(X)F(TwE)). (4
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Now if X is orthogonal to &, (4.8) gives

FTwQ)(X) = —5dr(IW)X,

From above expression we can state

Theorem 4.2. A 3-dimensional non-cosympletic quasi-Sasakian manifold with
B = constant, is locally ¢-Ricci symmetric if and only if the scalar curvature
1$ constant.

5. n-Parallel Ricci Tensor

Definition 5.1. The Ricci tensor S of a quasi-Sasakian manifold is called

n-parallel if it satisfies
(VxS)(oY,0Z) =0,

for all vector fields X, Y, Z. The notion of n-parallelity for Sasakian manifold
was introduced by Kon[16].

Definition 5.2. A 3-dimensional quasi-Sasakian manifold is said to be an
n—Einstein manifold if the Ricci tensor is of the form

S=ag+bmen,

where a and b are smooth functions on M.
From (3.8) we get

1
(V8)(6Y.02) = Ldr(X)g(0Y. 6Z). (5.1
If the Ricci tensor is n—parallel, then from (5.1)
1
Sdr(X)g(@Y, 67) = 0. (5.2)
from which it follows that

dr(X) = 0.
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Hence we find that the scalar curvature is constant. Moreover,  is con-
stant. Thus in view of (3.8) a 3-dimensional non-cosymplectic quasi-Sasakian
manifold M with n—parallel Ricci tensor is an n—FEinstein manifold.

Conversely, if the quasi-Sasakian manifold M is n—Einstein, then

(VxS)(¢Y,0Z) = 0.
Thus we can state the following:

Theorem 5.1. In a 3-dimensional non-cosymplectic quasi-Sasakian mani-
fold with B = constant, the Ricci tensor is n—parallel if and only if M s
n— Einstein.

Again the equation (5.1) yields

Theorem 5.2. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold
with B = constant, the Ricci tensor is n—parallel if and only if the scalar
curvature s constant .

From Theorem 4.2 and Theorem 5.2 we can state the following:

Corollary 5.1. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold
with B = constant, the Ricci tensor is n—parallel if and only if the manifold s
locally p— Ricci symmetric.

6. Cyclic Parallel Ricci Tensor

A. Gray [10] introduced two classes of Riemannian manifold determined by
covariant derivative of Ricci tensor. The class A consisting of all Riemannian
manifold whose Ricci tensor S is a Codazzi tensor, that is,

The class B consisting of all Riemannian manifolds whose Ricci tensor is
cyclic parallel, that is,

(VxS)(Y, Z) + (VyS)(X, Z) + (V2S)(X,Y) = 0. (6.1)
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A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the
Ricci tensor is non-zero and satisfies the condition (6.1). It is known [14] that
Cartan hypersurface are manifolds with non-parallel Ricci tensor satisfying the
condition (6.1).

From (6.1), it follows that r = constant.

Differentiating (3.8) covariantly along X, using (3.12) we have

(VxS)(Y,2) = 5dr(X)(o(Y, Z) ~ n(Y)n(Z)) + (36"
— D)V )(2) + (Txn)(Zpn(¥)

= —B(BB — {9(eX.YIn(Z) — 9(6X. Z)n(Y)}. (6.2)

Using (6.2), clearly

(VxS)(Y, Z) + (VyS)(X, Z) + (V259)(X,Y) = 0.
Thus we are in a position to state the following:

Theorem 6.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold
with B = constant, satisfies cyclic parallel Ricci tensor if and only if the scalar
curvature 1s constant.

From Theorem 4.2 and Theorem 6.1 we have the following:

Corollary 6.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold
with B = constant, satisfies cyclic parallel Ricci tensor if and only if it is
locally p— Ricci symmetric.

From Corollary 5.1 and Corollary 6.1 we have the following;:

Theorem 6.2. A 3-dimensional non-cosymplectic quasi-Sasakian manifold
with B = constant, satisfies cyclic parallel Ricci tensor if and only if it satisfies
n—parallel Ricci tensor.
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7. Example of 3-dimensional Quasi-Sasakian
Manifolds

Example 1. It is known [17] that a conformally flat 3-dimensional quasi-
Sasakian manifold is of positive constant curvature, hence it is an Einstein
manifold and therefore the manifold is ¢-Ricci symmetric.

Example 2. We consider the three-dimensional manifold M = {(x,y,z2) €
R3, (z,y, 2) # 0}, where (z,y, 2) are standard co-ordinate of R3.
The vector fields

0 0 0 0
e =— —Y=—, € =—, €3=2—

0z ox’ oy’ ox

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g(e1,e3) = gler, e2) = g(ea, e3) =0

gler,er) = g(ea,ea) = g(es,e3) =1

Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € T(M).
Let ¢ be the (1,1) tensor field defined by

P(e1) = —ea, @(ez) =e1, ¢(e3) =0.
Then using the linearity of ¢ and g, we have
nles) =1,
$*Z = —~Z +1(Z)es,

9(@Z, W) = g(Z,W) = n(Z)n(W),

for any Z,W € T'(M).
Thus for e3 = £ , the structure (¢, &, n, g) defines an almost contact metric
structure on M.
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Let V be the Levi-Civita connection with respect to the metric g. Then
we have

le1,e2] = eres —ezeq
_ 000 80 0
Y0z y@x dy Oy 0z y@x

Similarly,
le1,e3) =0 and [eq, e3] = 0.

The Riemannian connection V of the metric ¢ is given by
29(VxY, Z2) = Xg(Y,Z2)+Yg(Z,X) - Zg(X,Y)

which is known as Koszul’s formula.
Using (7.1) we have

1

29(Ve,e3,61) =0 = 29(162, e1). (7.2)
Again by (7.1)
1 1
29(Ve,e3,€2) = —9(—563763) = 29(162762) (7.3)
and
1
2g(Ve,e3,e3) =0 = 2g(162, es). (7.4)
From (7.2), (7.3) and (7.4) we obtain
1
2g(Ve,e3,X) = 29(162, X),

for all X € T'(M).
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Thus 1
Veleg 162
(7.1) further yields
1
Ve, e3 = 1 Ve, 2 = e Ve, e1 =0,
1
V6263 = _Zela V6262 = 07 Vezel = Ze?n
1 1
Vees =0, Veen = —Zel, Ve,e1 = 162.

(7.5)

We see that the structure (¢, &, n,g) satisfies the formula Vy& = —f¢X for
g = i. Hence the manifold is a 3-dimensional quasi-Sasakian manifold with

the constant structure function § = i.
It is known that

R(X,Y)Z =VxVyZ — VyVxZ — Vixy 2.

With the help of the above formula and using (7.5) it can be easily verified

that

1
R(elu 62>€3 = 07 R(€27 63)63 = 1_6627 R(€17 63)63 =
Rler, e2)es = —er, Rles,eser = —o
€1,€2)C3 = 1661’ €2,€3)€ = 16
3
R(ei,ez)er = —ea, R(eg,ez)er =0, R(er,ez)er =

16

From the above expression of the curvature tensor we obtain

S(ei,e1) = g(R(eq,ex)es, e1) + g(R(er,e3)es, eq)

1

g

Similarly we have

1 1
S(eg, e9) = ~3 and S(es, e3) = 3

€3, R(€1,€3)62 - Oa
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Now clearly
¢*(VxQ)(Y) =0,

for all X and Y € T'(M).
Hence M is locally ¢—Ricci symmetric.

Also,

1
r = 5(617 61) + 5(62,62) + 5(63, 63) — _g

Therefore the scalar curvature r is constant. So Theorem 4.2 is verified. It
is straight forword to verify that the Ricci tensor of M is n—parallel, cyclic
parallel and n—Einstein.

Acknowledgement. The authors are thankful to the referee for his valuable
suggestions towards the improvement of the paper.
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