Some Theorems on 3-dimensional Quasi-Sasakian Manifolds*

Abul Kalam Mondal ${ }^{\dagger}$
Department of Mathematics, Dum Dum Motijheel
Rabindra Mahavidyalaya 208/B/2, Dum Dum Road, Kolkata-700074, West Bengal, India

and

Avik De ${ }^{\ddagger}$
Department of Pure Mathematics, University of Calcutta
35, B.C.Road, Kolkata-700019, West Bengal, India

Received January 15, 2010, Accepted February 21, 2011.

Abstract

The object of the present paper is to study ϕ-Ricci symmetric and locally ϕ-Ricci symmetric 3 -dimensional quasi-Sasakian manifolds with structure function $\beta=$ constant. Also we study $\eta-$ parallel Ricci tensor and cyclic parallel Ricci tensor with $\beta=$ constant. Applications of such manifold have been considered. The existence of 3-dimensional ϕ-Ricci symmetric and locally ϕ-Ricci symmetric quasi-Sasakian manifolds are also given by concrete examples.

Keywords and Phrases: Quasi-Sasakians manifold, Structure function, $\phi-$ symmetric, $\eta-$ parallel Ricci tensor, Cyclic parallel Ricci tensor.

[^0]
1. Introduction

The notion of quasi-Sasakian structure was introduced by D. E. Blair [6] to unify Sasakian and cosymplectic structures. S. Tanno [22] also added some remarks on quasi-Sasakian structures. The properties of quasi-Sasakian manifolds have been studied by several authors, viz., J. C. Gonzalez and D. Chinea [11], S. Kanemaki [12], [13] and J. A. Oubina [20]. B. H. Kim [15] studied quasi-Sasakian manifolds and proved that fibred Riemannian spaces with invariant fibres normal to the structure vector field do not admit nearly Sasakian or contact structure but a quasi-Sasakian or cosymplectic structure. Recently, quasi-Sasakian manifolds have been the subject of growing interest in view of finding the significant applications to physics, in particular to super gravity and magnetic theory [1], [2]. Quasi-Sasakian structures have wide applications in the mathematical analysis of string theory [3], [9]. Motivated by the roles of curvature tensor and Ricci tensor of quasi-sasakian manifolds in string theory [3] we like to study ϕ-Ricci symmetric quasi-Sasakian manifold and quasi-Sasakian manifold with η-parallel and cyclic parallel Ricci tensors in dimension three. On a 3-dimensional quasi-Sasakian manifold, the structure function β was defined by Z. Olszak[17] and with the help of this function he has obtained necessary and sufficient conditions for the manifold to be conformally flat[18]. Next he has proved that if the manifold is additionally conformally flat with $\beta=$ constant, then (a) the manifold is locally a product of R and a two-dimensional Kaehlerian space of constant Gauss curvature (the cosymplectic case), or, (b) the manifold is of constant positive curvature (the non-cosymplectic case, here the quasi-Sasakian structure is homothetic to a Sasakian structure).

The present paper is to study the 3-dimensional quasi-Sasakian manifolds with $\beta=$ constant. After preliminaries in section 4 we prove that ϕ-symmetry and ϕ - Ricci symmetry are equivalent on a 3-dimensional quasi-Sasakian manifold. Section 5 and Section 6 deal with the study of 3 -dimensional quasiSasakian manifold with η-parallel Ricci tensor and cyclic Ricci tensor respectively. In section 7 we consider the applications of quasi-Sasakian manifolds. The last section contains some illustrative examples of a 3 -dimensional noncosympletic quasi-Sasakian manifold with constant scalar curvature.

2. Preliminaries

Let M be a $(2 \mathrm{n}+1)$-dimensional connected differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g), where ϕ, ξ, η are tensor fields on M of types $(1,1),(1,0),(0,1)$ respectively, such that [4],[5], [23].

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Z), \quad X, Y \in T(M),
\end{gather*}
$$

where $T(M)$ is the Lie algebra of vector fields of the manifold M.
Then also

$$
\phi \xi=0, \quad \eta \circ \phi=0, \quad \eta(X)=g(X, \xi) .
$$

Let Φ be the fundamental 2 -form of M defined by

$$
\Phi(X, Y)=g(X, \phi Y) \quad X, Y \in T(M)
$$

Then $\Phi(X, \xi)=0, \quad X \in T(M) . M$ is said to be quasi-Sasakian if the almost contact structure (ϕ, ξ, η) is normal and the fundamental 2 -form Φ is closed, that is, for every $X, Y \in \mathcal{E}^{(2 n+1)}$, where $\mathcal{E}^{(2 n+1)}$ denotes the module of vector fields on M,

$$
\begin{gathered}
{[\phi, \phi](X, Y)+d \eta(X, Y) \xi=0,} \\
d \Phi=0, \quad \Phi(X, Y)=g(X, \phi Y)
\end{gathered}
$$

This was first introduced by Blair [6]. There are many types of quasi-Sasakian structures ranging from the cosymplectic case, $d \eta=0(\operatorname{rank} \eta=1)$, to the Sasakian case, $\eta \wedge(d \eta)^{n} \neq 0(\operatorname{rank} \eta=2 n+1, \Phi=d \eta)$. The 1 -form η has rank $r^{\prime}=2 p$ if $d \eta^{p} \neq 0$ and $\eta \wedge(d \eta)^{p}=0$, and has rank $r^{\prime}=2 p+1$ if $d \eta^{p}=0$ and $\eta \wedge(d \eta)^{p} \neq 0$. We also say that r^{\prime} is the rank of the quasi-Sasakian structure. Blair[6] also proved that there are no quasi-Sasakian structure of even rank. In order to study the properties of quasi-Sasakian manifolds Blair [6] proved some theorems regarding Kaehlerian manifolds and existence of quasi-Sasakian manifolds. S. Tanno [22] rectified some of these theorems. However, while Tanno studied locally product quasi-Sasakian manifolds he mentioned the following:

Let $M_{1}^{2 p+1}\left(\phi_{1}, \xi_{1}, \eta_{1}, g_{1}\right)$ be a Sasakian manifold and let $M_{2}^{2 q}\left(J_{2}, G_{2}\right)$ a Kaehlerian manifold. Then $M_{1} \times M_{2}$ has a quasi-Sasakian structure (ϕ, ξ, η, g) of rank $2 p+1$ such that

$$
\begin{gathered}
\phi X=\left(\phi_{1} X_{1}, J_{2} X_{2}\right), \quad \xi=\left(\xi_{1}, 0\right) \\
\eta(X)=\eta_{1}\left(X_{1}\right), \quad g(X, Y)=g_{1}\left(X_{1}, Y_{1}\right)+G_{2}\left(X_{2}, Y_{2}\right),
\end{gathered}
$$

for the canonical decomposition $X=\left(X_{1}, X_{2}\right)$ of a vector field X on $M_{1} \times M_{2}$ [6].

Conversely,
Theorem [22]: Let $M(\phi, \xi, \eta, g)$ be a quasi-Sasakian manifold (more generally a normal almost contact Riemannian manifold) of rank $2 p+1$. If g^{*} be defined by

$$
2 g^{*}(X, Y)=-d \eta(X, \phi Y),
$$

$X, Y \in \mathcal{E}^{2 n+1}$, is positive definite on $\mathcal{E}^{2 p}$ and $\bar{\nabla} \theta=0$ with respect to the Riemannian metric \bar{g} defined by

$$
\bar{g}(X, Y)=\eta(X) \eta(Y)+g^{*}\left(\psi^{2} X, \psi^{2} Y\right)+g\left(\theta^{2} X, \theta^{2} Y\right),
$$

where the $(1,1)$ tensors ψ and θ are given by

$$
\begin{aligned}
\psi(X) & =\phi(X) & & \text { if } X \in \mathcal{E}^{2 p}, \\
& =0 & & \text { if } X \in \mathcal{E}^{2 q} \oplus \mathcal{E}^{1}, \\
& & & \\
\theta(X) & =\phi(X) & & \text { if } X \in \mathcal{E}^{2 q}, \\
& =0 & & \text { if } X \in \mathcal{E}^{2 p+1},
\end{aligned}
$$

then $(\phi, \xi, \eta, \bar{g})$ is also a quasi-Sasakian structure of rank $2 p+1$ and $M(\phi, \xi, \eta, \bar{g})$ is locally the product of Sasakian manifold and a Kaehler manifold.It is mentioned that $\mathcal{E}^{2 p+1}, \mathcal{E}^{2 q}, \mathcal{E}^{1}$ are submodules of $\mathcal{E}^{2 n+1}$. S. Tanno [22] also gave an example of a 3-dimensional quasi-Sasakian manifold which is not Sasakian. For a quasi-Sasakian manifold we have the relation [7]

$$
\left(\nabla_{X} \phi\right) Y=g\left(\nabla_{\phi X} \xi, Y\right) \xi-\eta(Y) \nabla_{\phi X} \xi,
$$

which generalizes the well-known conditions $\nabla \phi=0$ and $\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-$ $\eta(Y) X$ characterizing respectively cosymplectic and Sasakian manifolds. The quasi-Sasakian condition also reflects in some properties of curvature and of
the vector field ξ. In fact we have the following results.
Lemma[6], [19]: Let $M(\phi, \xi, \eta, g)$ be a quasi-Sasakian manifold. Then
(i) the vector field ξ is Killing and its integral curves are geodesics;
(ii) the Ricci curvature in the direction of ξ is given by $\|\nabla \xi\|^{2}$.

3. 3-dimensional Quasi-Sasakian Manifold

An almost contact metric manifold M is a 3 -dimensional quasi-Sasakian manifold if and only if [17]

$$
\begin{equation*}
\nabla_{X} \xi=-\beta \phi X, \quad X \in T(M), \tag{3.1}
\end{equation*}
$$

for a certain function β on M, such that $\xi \beta=0, \nabla$ being the operator of the covariant differentiation with respect to the Levi-Civita connection of M. Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if $\beta=0$. Here we have shown that the assumption $\xi \beta=0$ is not necessary.

As a consequence of (3.1), we have[17]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=\beta(g(X, Y) \xi-\eta(Y) X), \quad X, Y \in T(M) . \tag{3.2}
\end{equation*}
$$

Because of (3.1) and (3.2), we find

$$
\nabla_{X}\left(\nabla_{Y} \xi\right)=-(X \beta) \phi Y-\beta^{2}\{g(X, Y) \xi-\eta(Y) X\}-\beta \phi \nabla_{X} Y
$$

which implies that

$$
\begin{equation*}
R(X, Y) \xi=-(X \beta) \phi Y+(Y \beta) \phi X+\beta^{2}\{\eta(Y) X-\eta(X) Y\} . \tag{3.3}
\end{equation*}
$$

Thus we get from (3.3)

$$
\begin{align*}
R(X, Y, Z, \xi) & =(X \beta) g(\phi Y, Z)-(Y \beta) g(\phi X, Z) \\
& -\beta^{2}\{\eta(Y) g(X, Z)-\eta(X) g(Y, Z)\}, \tag{3.4}
\end{align*}
$$

where $R(X, Y, Z, W)=g(R(X, Y, Z), W)$.
Putting $X=\xi$, in (3.4) we obtain

$$
\begin{equation*}
R(\xi, Y, Z, \xi)=\beta^{2}\{g(Y, Z)-\eta(Y) \eta(Z)\}+g(\phi Y, Z) \xi \beta . \tag{3.5}
\end{equation*}
$$

Interchanging Y and Z of (3.5) yields

$$
\begin{equation*}
R(\xi, Z, Y, \xi)=\beta^{2}\{g(Y, Z)-\eta(Y) \eta(Z)\}+g(\phi Z, Y) \xi \beta . \tag{3.6}
\end{equation*}
$$

Since $R(\xi, Y, Z, \xi)=R(Z, \xi, \xi, Y)=R(\xi, Z, Y, \xi)$, from (3.5) and (3.6) we have

$$
\{g(\phi Y, Z)-g(\phi Z, Y)\} \xi \beta=0
$$

Therefore, we can easily verify that $\xi \beta=0$.
In a 3 -dimensional Riemannian manifold, we always have

$$
\begin{align*}
R(X, Y) Z & =g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X \\
& -S(X, Z) Y-\frac{r}{2}(g(Y, Z) X-g(X, Z) Y) \tag{3.7}
\end{align*}
$$

where Q is the Ricci operator, that is, $\mathrm{g}(\mathrm{QX}, \mathrm{Y})=\mathrm{S}(\mathrm{X}, \mathrm{Y})$ and r is the scalar curvature of the manifold.

Throughout this paper we consider β as a constant. Let M be a 3 dimensional quasi-Sasakian manifold. Since β is a constant the Ricci tensor S of M is given in [18] takes the form

$$
\begin{equation*}
S(Y, Z)=\left(\frac{r}{2}-\beta^{2}\right) g(Y, Z)+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(Y) \eta(Z) \tag{3.8}
\end{equation*}
$$

where r is the scalar curvature of M.
As a consequence of (3.8), we get for the Ricci operator Q

$$
\begin{equation*}
Q X=\left(\frac{r}{2}-\beta^{2}\right) X+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(X) \xi \tag{3.9}
\end{equation*}
$$

From (3.8) we have

$$
\begin{equation*}
S(X, \xi)=2 \beta^{2} \eta(X) \tag{3.10}
\end{equation*}
$$

Moreover, as a consequence of (3.7)-(3.10), we find

$$
\begin{equation*}
R(X, Y) \xi=\beta^{2}(\eta(Y) X-\eta(X) Y), \quad X, Y \in T(M) \tag{3.11}
\end{equation*}
$$

As a consequence of (3.1) we also have [17]

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=g\left(\nabla_{X} \xi, Y\right)=-\beta g(\phi X, Y) \tag{3.12}
\end{equation*}
$$

Also from (3.8) it follows that

$$
\begin{equation*}
S(\phi X, \phi Z)=S(X, Z)-2 \beta^{2} \eta(X) \eta(Z) . \tag{3.13}
\end{equation*}
$$

4. ϕ-Ricci Symmetric 3-dimensional Quasi-Sasakian Manifold

Definition 4.1 A quasi-Sasakian manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ is said to be $\phi-$ symmetric if the curvature tensor R satisfies

$$
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0,
$$

for all vector fields $X, Y, Z, W \in T(M)$.
If X, Y, Z, W are orthogonal to ξ, then the manifold is said to be locally $\phi-$ symmetric. The notion of locally ϕ-symmetric on a Sasakian manifold was introduced by Takahashi [21].
Definition 4.2 A quasi-Sasakian manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ is said to be $\phi-$ Ricci symmetric if the Ricci operator Q satisfies

$$
\phi^{2}\left(\nabla_{X} Q\right)(Y)=0,
$$

for all vector fields $X, Y \in T(M)$ and $S(X, Y)=g(Q X, Y)$.
If X, Y are orthogonal to ξ, then the manifold is said to be locally ϕ-Ricci symmetric.

From the definition it follows that ϕ-symmetric implies ϕ-Ricci symmetric, but the converse, is not, in general true. ϕ-Ricci symmetric Sasakian manifolds have been studied by De and Sarkar [8].

Let us suppose that the manifold is ϕ-Ricci symmetric. Then by definition

$$
\phi^{2}\left(\nabla_{X} Q\right)(Y)=0 .
$$

Using (2.1) we have from above

$$
\begin{equation*}
-\left(\nabla_{X} Q\right)(Y)+\eta\left(\left(\nabla_{X} Q\right)(Y)\right) \xi=0 \tag{4.1}
\end{equation*}
$$

From (4.1) it follows that

$$
\begin{equation*}
-g\left(\nabla_{X} Q(Y), Z\right)+S\left(\nabla_{X} Y, Z\right)+\eta\left(\left(\nabla_{X} Q\right)(Y)\right) \eta(Z)=0 . \tag{4.2}
\end{equation*}
$$

Putting $Y=\xi$, we get from (4.2)

$$
\begin{equation*}
-g\left(\nabla_{X} Q(\xi), Z\right)+S\left(\nabla_{X} \xi, Z\right)+\eta\left(\left(\nabla_{X} Q\right) \xi\right) \eta(Z)=0 \tag{4.3}
\end{equation*}
$$

In view of (3.1) and (3.9), we get from (4.3)

$$
\begin{equation*}
-g\left(2 \beta^{2} \nabla_{X} \xi, Z\right)+S\left(\nabla_{X} \xi, Z\right)+\eta\left(\left(\nabla_{X} Q\right)(\xi)\right) \eta(Z)=0 \tag{4.4}
\end{equation*}
$$

Putting ϕZ instead of Z in (4.4) yields

$$
\begin{equation*}
2 \beta^{2} g(\phi X, \phi Z)=S(\phi X, \phi Z), \tag{4.5}
\end{equation*}
$$

since M is non-cosymplectic.
Using (3.13), (4.5) yields

$$
\begin{equation*}
S(X, Z)=2 \beta^{2} g(X, Z) \tag{4.6}
\end{equation*}
$$

Using (4.6), in (3.7) we have

$$
R(X, Y) Z=\beta^{2}\{g(Y, Z) X-g(X, Z) Y\} .
$$

Then clearly,

$$
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0
$$

This helps us to conclude the following:
Theorem 4.1. On a 3-dimensional non-cosymplectic quasi-Sasakian manifold ϕ-Ricci symmetry and ϕ-symmetry are equivalent provided β is a constant.

Differentiating (3.9) covariantly along W we obtain

$$
\begin{align*}
\left(\nabla_{W} Q\right)(X) & =\frac{1}{2}\{d r(W) X-d r(W) \eta(X) \xi\}+\left(3 \beta^{2}-\frac{r}{2}\right)\left(\nabla_{W} \eta\right)(X) \xi \\
& +\left(3 \beta^{2}-\frac{r}{2}\right) \eta(X)\left(\nabla_{W} \xi\right) \tag{4.7}
\end{align*}
$$

Applying ϕ^{2} on both side of (4.7) and using (2.1) we have

$$
\begin{align*}
\phi^{2}\left(\nabla_{W} Q\right)(X) & =\frac{1}{2}\{d r(W)(-X+\eta(X) \xi) \\
& \left.+\left(6 \beta^{2}-r\right) \eta(X) \phi^{2}\left(\nabla_{W} \xi\right)\right\} . \tag{4.8}
\end{align*}
$$

Now if X is orthogonal to ξ, (4.8) gives

$$
\phi^{2}\left(\nabla_{W} Q\right)(X)=-\frac{1}{2} d r(W) X .
$$

From above expression we can state
Theorem 4.2. A 3-dimensional non-cosympletic quasi-Sasakian manifold with $\beta=$ constant, is locally ϕ-Ricci symmetric if and only if the scalar curvature is constant.

5. η-Parallel Ricci Tensor

Definition 5.1. The Ricci tensor S of a quasi-Sasakian manifold is called η-parallel if it satisfies

$$
\left(\nabla_{X} S\right)(\phi Y, \phi Z)=0,
$$

for all vector fields X, Y, Z. The notion of η-parallelity for Sasakian manifold was introduced by Kon[16].
Definition 5.2. A 3 -dimensional quasi-Sasakian manifold is said to be an η-Einstein manifold if the Ricci tensor is of the form

$$
S=a g+b \eta \otimes \eta
$$

where a and b are smooth functions on M.
From (3.8) we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(\phi Y, \phi Z)=\frac{1}{2} d r(X) g(\phi Y, \phi Z) \tag{5.1}
\end{equation*}
$$

If the Ricci tensor is η-parallel, then from (5.1)

$$
\begin{equation*}
\frac{1}{2} d r(X) g(\phi Y, \phi Z)=0 \tag{5.2}
\end{equation*}
$$

from which it follows that

$$
d r(X)=0
$$

Hence we find that the scalar curvature is constant. Moreover, β is constant. Thus in view of (3.8) a 3-dimensional non-cosymplectic quasi-Sasakian manifold M with η-parallel Ricci tensor is an η-Einstein manifold.

Conversely, if the quasi-Sasakian manifold M is η-Einstein, then

$$
\left(\nabla_{X} S\right)(\phi Y, \phi Z)=0
$$

Thus we can state the following:
Theorem 5.1. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold with $\beta=$ constant, the Ricci tensor is η-parallel if and only if M is η-Einstein.

Again the equation (5.1) yields
Theorem 5.2. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold with $\beta=$ constant, the Ricci tensor is η-parallel if and only if the scalar curvature is constant.

From Theorem 4.2 and Theorem 5.2 we can state the following:
Corollary 5.1. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold with $\beta=$ constant, the Ricci tensor is η-parallel if and only if the manifold is locally ϕ-Ricci symmetric.

6. Cyclic Parallel Ricci Tensor

A. Gray [10] introduced two classes of Riemannian manifold determined by covariant derivative of Ricci tensor. The class \mathcal{A} consisting of all Riemannian manifold whose Ricci tensor S is a Codazzi tensor, that is,

$$
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)
$$

The class \mathcal{B} consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, that is,

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(X, Z)+\left(\nabla_{Z} S\right)(X, Y)=0 \tag{6.1}
\end{equation*}
$$

A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the Ricci tensor is non-zero and satisfies the condition (6.1). It is known [14] that Cartan hypersurface are manifolds with non-parallel Ricci tensor satisfying the condition (6.1).

From (6.1), it follows that $r=$ constant.
Differentiating (3.8) covariantly along X, using (3.12) we have

$$
\begin{align*}
\left(\nabla_{X} S\right)(Y, Z) & =\frac{1}{2} d r(X)(g(Y, Z)-\eta(Y) \eta(Z))+\left(3 \beta^{2}\right. \\
& \left.-\frac{r}{2}\right)\left(\left(\nabla_{X} \eta\right)(Y) \eta(Z)+\left(\nabla_{X} \eta\right)(Z) \eta(Y)\right) \\
& =-\beta\left(3 \beta^{2}-\frac{r}{2}\right)\{g(\phi X, Y) \eta(Z)-g(\phi X, Z) \eta(Y)\} \tag{6.2}
\end{align*}
$$

Using (6.2), clearly

$$
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(X, Z)+\left(\nabla_{Z} S\right)(X, Y)=0
$$

Thus we are in a position to state the following:
Theorem 6.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold with $\beta=$ constant, satisfies cyclic parallel Ricci tensor if and only if the scalar curvature is constant.

From Theorem 4.2 and Theorem 6.1 we have the following:
Corollary 6.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold with $\beta=$ constant, satisfies cyclic parallel Ricci tensor if and only if it is locally ϕ-Ricci symmetric.

From Corollary 5.1 and Corollary 6.1 we have the following:
Theorem 6.2. A 3-dimensional non-cosymplectic quasi-Sasakian manifold with $\beta=$ constant, satisfies cyclic parallel Ricci tensor if and only if it satisfies η-parallel Ricci tensor.

7. Example of 3-dimensional Quasi-Sasakian Manifolds

Example 1. It is known [17] that a conformally flat 3-dimensional quasiSasakian manifold is of positive constant curvature, hence it is an Einstein manifold and therefore the manifold is ϕ-Ricci symmetric.

Example 2. We consider the three-dimensional manifold $M=\{(x, y, z) \in$ $\left.\mathbb{R}^{3},(x, y, z) \neq 0\right\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^{3}.

The vector fields

$$
e_{1}=\frac{\partial}{\partial z}-y \frac{\partial}{\partial x}, \quad e_{2}=\frac{\partial}{\partial y}, \quad e_{3}=2 \frac{\partial}{\partial x}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0 \\
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
\end{aligned}
$$

Let η be the 1-form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in T(M)$.
Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=-e_{2}, \quad \phi\left(e_{2}\right)=e_{1}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of ϕ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=1, \\
\phi^{2} Z=-Z+\eta(Z) e_{3} \\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W),
\end{gathered}
$$

for any $Z, W \in T(M)$.
Thus for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\begin{aligned}
{\left[e_{1}, e_{2}\right] } & =e_{1} e_{2}-e_{2} e_{1} \\
& =\left(\frac{\partial}{\partial z}-y \frac{\partial}{\partial x}\right) \frac{\partial}{\partial y}-\frac{\partial}{\partial y}\left(\frac{\partial}{\partial z}-y \frac{\partial}{\partial x}\right) \\
& =\frac{\partial}{\partial x} \\
& =\frac{1}{2} e_{3} .
\end{aligned}
$$

Similarly,

$$
\left[e_{1}, e_{3}\right]=0 \quad \text { and } \quad\left[e_{2}, e_{3}\right]=0
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y]) \tag{7.1}
\end{align*}
$$

which is known as Koszul's formula.
Using (7.1) we have

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right)=0=2 g\left(\frac{1}{4} e_{2}, e_{1}\right) \tag{7.2}
\end{equation*}
$$

Again by (7.1)

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{2}\right)=-g\left(-\frac{1}{2} e_{3}, e_{3}\right)=2 g\left(\frac{1}{4} e_{2}, e_{2}\right) \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)=0=2 g\left(\frac{1}{4} e_{2}, e_{3}\right) \tag{7.4}
\end{equation*}
$$

From (7.2), (7.3) and (7.4) we obtain

$$
2 g\left(\nabla_{e_{1}} e_{3}, X\right)=2 g\left(\frac{1}{4} e_{2}, X\right),
$$

for all $X \in T(M)$.

Thus

$$
\nabla_{e_{1}} e_{3}=\frac{1}{4} e_{2}
$$

(7.1) further yields

$$
\begin{align*}
& \nabla_{e_{1}} e_{3}=\frac{1}{4} e_{2}, \quad \nabla_{e_{1}} e_{2}=-\frac{1}{4} e_{3}, \quad \nabla_{e_{1}} e_{1}=0 \\
& \nabla_{e_{2}} e_{3}=-\frac{1}{4} e_{1}, \quad \nabla_{e_{2}} e_{2}=0, \quad \nabla_{e_{2}} e_{1}=\frac{1}{4} e_{3}, \\
& \nabla_{e_{3}} e_{3}=0, \quad \nabla_{e_{3}} e_{2}=-\frac{1}{4} e_{1}, \quad \nabla_{e_{3}} e_{1}=\frac{1}{4} e_{2} \tag{7.5}
\end{align*}
$$

We see that the structure (ϕ, ξ, η, g) satisfies the formula $\nabla_{X} \xi=-\beta \phi X$ for $\beta=\frac{1}{4}$. Hence the manifold is a 3 -dimensional quasi-Sasakian manifold with the constant structure function $\beta=\frac{1}{4}$.

It is known that

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
$$

With the help of the above formula and using (7.5) it can be easily verified that

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) e_{3}=0, \quad R\left(e_{2}, e_{3}\right) e_{3}=\frac{1}{16} e_{2}, \quad R\left(e_{1}, e_{3}\right) e_{3}=\frac{1}{16} e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2}=-\frac{3}{16} e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{2}=-\frac{1}{16} e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=\frac{3}{16} e_{2}, \quad R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{1}, e_{3}\right) e_{1}=-\frac{1}{16} e_{3} .
\end{gathered}
$$

From the above expression of the curvature tensor we obtain

$$
\begin{aligned}
S\left(e_{1}, e_{1}\right) & =g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right) \\
& =-\frac{1}{8}
\end{aligned}
$$

Similarly we have

$$
S\left(e_{2}, e_{2}\right)=-\frac{1}{8} \quad \text { and } \quad S\left(e_{3}, e_{3}\right)=\frac{1}{8}
$$

Now clearly

$$
\phi^{2}\left(\nabla_{X} Q\right)(Y)=0,
$$

for all X and $Y \in T(M)$.
Hence M is locally ϕ-Ricci symmetric.
Also,

$$
r=S\left(e_{1}, e_{1}\right)+S\left(e_{2}, e_{2}\right)+S\left(e_{3}, e_{3}\right)=-\frac{1}{8} .
$$

Therefore the scalar curvature r is constant. So Theorem 4.2 is verified. It is straight forword to verify that the Ricci tensor of M is η-parallel, cyclic parallel and η-Einstein.

Acknowledgement. The authors are thankful to the referee for his valuable suggestions towards the improvement of the paper.

References

[1] B. S. Acharya, Figurea A-O'Farrell, C. M. Hull, and B. J. Spence, Branes at Canonical singularities and holography, Adv. Theor. Math. Phys., 2(1999), 1249-1286.
[2] I. Agricola and T. Friedrich, Killing spinors in supergravity with 4-fluxes, Class. Quant. Grav., 20(2003), 4707-4717.
[3] I. Agricola, T. Friedrich, P. A. Nagy, and C. Puhle, On the Ricci tensor in the common sector of type II, string theoty, Class. Quantum Grav., 22(2005), 2569-2577.
[4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Note in Mathematics, 509, Springer-Verlag, Berlin-New York, 1976.
[5] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematic, 203, Birkhauser Boston, Inc., Boston, 2002.
[6] D. E. Blair, The theory of quasi-Sasakian structure, J. Differential Geom., 1(1967), 331-345.
[7] Calin,C., Foliation and complemented framed structures, Bull. of the Belgian Math. Soc. Simon Stevin, 17(2010), 499-512.
[8] U. C. De and A. Sarkar, ϕ-Ricci symmetric Sasakian manifolds, Proce. Jangjeon Math. Society, 11(2008), 47-52.
[9] T. Friedrich and S. Ivanov, Almost contact manifolds, connections with torsion and parallel spinors, J. Reine Angew. Math., 559, 217-236.
[10] A. Gray, Two class of Riemannian manifolds, Geom. Dedicata, 7(1978), 259-280.
[11] J. C. Gonzalez and D. Chinea, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group $H(p, 1)$, Proc. Amer. Math. Soc, 105(1989), 173-184.
[12] S. Kanemaki, Quasi-Sasakian manifolds, Tohoku Math. J., 29(1977), 227233.
[13] S. Kanemaki, On quas-Sasakian manifolds, Differential Geometry Banach center publications, 12(1984), 95-125.
[14] U. H. Ki and H. Nakagawa, A characterization of the Cartan hypersurface in a sphere, Tohoku Math. J., 39(1987), 27-40.
[15] B. H. Kim, Fibred Riemannian spaces with quasi-Sasakian structure, Hiroshima Math. J., 20(1990), 477-513.
[16] M. Kon, Invariat submanifolds in Sasakian manifolds, Math. Ann., 219(1976), 277-290.
[17] Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math., 47(1986), 41-50.
[18] Z. Olszak,, On three-dimensional conformally flat quasi-Sasakian manifolds, Period, Math. Hungar., 33 no. 2 (1996), 105-113.
[19] Z. Olszak, Curvature properties of quasi-Sasakian manifolds, Tensor, 38(1982), 19-28.
[20] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debreceen, 32(1985), 187-193.
[21] T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku math. J., 29(1977), 91-113.
[22] S. Tanno, Quasi-Sasakian structure of rank $2 p+1$, J. Differential Geom., 5(1971), 317-324.
[23] K. Yano and M. Kon, Structure on manifolds, World scientific, 1984.

[^0]: *2000 Mathematics Subject Classification. Primary 53C15, 53C40.
 ${ }^{\dagger}$ E-mail: kalam_ju@yahoo.co.in
 ${ }^{\ddagger}$ Corresponding author. E-mail: de.math@gmail.com

