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Abstract

Let D be an acyclic orientation of a simple graph G. An arc is called
dependent if its reversal creates a directed cycle. Let d(D) denote the
number of dependent arcs in D. Define dmin(G) to be the minimum
number of d(D) over all acyclic orientations D of G. Let Cn denote the
cycle on n vertices. The cube C3

n is the graph defined on the same vertex
set of Cn such that any two distinct vertices u and v are adjacent in C3

n

if and only if their distance in Cn is at most 3. In this paper, we study
the structure of C3

3k to determine its minimum number of dependent
arcs.

Keywords and Phrases: Acyclic orientation, Dependent arc, Cycle, Cube.

∗2000 Mathematics Subject Classification. Primary 05C15.
†Research supported partially by NSFC (No.10771097)
‡Corresponding author. E-mail: makwlih@sinica.edu.tw



398 Fengwei Xu, Weifan Wang, and Ko-Wei Lih

1. Introduction

Graphs considered in this paper are finite, without loops, or multiple edges.
For a graph G, we denote its vertex set, edge set, and the degree of a vertex
v by V (G), E(G), and d(v), respectively. If V1 is a nonempty set of vertices
of G, then we use G[V1] to denote the induced subgraph of G with vertex set
V1. If E1 is a set of edges of G, then we use G − E1 to denote the spanning
subgraph of G with edge set E(G) − E1. An orientation D of G assigns a
direction to each edge of G and it is called acyclic if there does not exist
any directed cycle. An arc of D is called dependent if its reversal creates a
directed cycle. Let d(D) denote the number of dependent arcs of D. We
use dmin(G) and dmax(G) to denote the minimum and maximum number of
d(D) over all acyclic orientations D of G, respectively. It is known ([2]) that
dmax(G) = ∥G∥ − |G|+ c for a graph G having c components.

A proper k-coloring of a graph G is a mapping f from V (G) to the set
{1, 2, . . . , k} such that f(x) ̸= f(y) for each edge xy ∈ E(G). The chromatic
number χ(G) is the smallest integer k such that G has a k-coloring. The girth
g(G) is the minimum length of a cycle in a graph G if there is any, and is ∞
if G possesses no cycles.

An interpolation question asks whether G has an acyclic orientation with
exactly k dependent arcs for each k satisfying dmin(G) 6 k 6 dmax(G). The
graph G is called fully orientable if its interpolation question has an affirmative
answer.

West [7] showed that complete bipartite graphs are fully orientable. Fisher
et al. [2] showed that G is fully orientable if χ(G) < g(G), and dmin(G) = 0 in
this case. Since it is well-known [3] that every planar graph G with g(G) > 4
is 3-colorable, planar graphs of girth at least 4 are fully orientable.

The full orientability for a few classes of special graphs has been recently in-
vestigated. Lih, Lin, and Tong [6] showed that outerplanar graphs are fully ori-
entable. This has been generalized by Lai, Chang, and Lih [4] to 2-degenerate
graphs. A graph G is called 2-degenerate if every subgraph H of G contains
a vertex of degree at most 2 in H. Lai and Lih [5] gave further examples
of fully orientable graphs, such as subdivisions of Halin graphs and graphs of
maximum degree at most three. Let Kr(n) denote the complete r-partite graph
each of whose partite sets has n vertices. Chang, Lin, and Tong [1] proved
that Kr(n) is not fully orientable if r > 3 and n > 2. These are the only known
graphs that are not fully orientable.
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Suppose that G is a connected graph. For m > 2, the mth power of G,
denoted Gm, is the graph defined on the same vertex set V (G) such that two
distinct vertices u and v are adjacent in Gm if and only if their distance in G
is at most m. In particular, G2 is called the square of G and G3 is called the
cube of G. Assume that Cn, n > 3, is the cycle v0, v1, . . . , vn−1, v0. A problem
posed in [8] states as follows. For a given integer m > 2, does there exist a
smallest constant c(m) such that Cm

n is fully orientable when n > c(m)? In
this paper, we give a proof for the determination of dmin(C

3
3k). We have worked

out a proof for the full orientability of C3
n. However, it is too lengthy to be

included here.

2. Results

Given an acyclic orientation D of G, we denote by u → v the arc with tail u
and head v. If we do not know which of u, v is the head, we still use uv to
denote the oriented version of uv in D. We make the convention that the script
letter G is used to denote an acyclically oriented version of G if the orientation
is tacitly understood. The in-degree d−D(v) of a vertex v in D is the number of
arcs with head v; the out-degree d+D(v) of v in D is the number of arcs with tail
v. We call v a source if d+D(v) = dG(v) and v a sink if d−D(v) = dG(v), where
dG(v) is the degree of v in G. Let R(D) denote the set of dependent arcs in
D. If we reverse all arcs in D, we denote the new orientation by D−. It is easy
to see that D− is also an acyclic orientation and an arc is dependent in D if
and only if its reversal is dependent in D−. If D′ is a subdigraph of D, then
we write D′ ⊆ D. The complete graph on n vertices is denoted by Kn.

The following two Lemmas are evident.

Lemma 1. Let D′ ⊆ D. If an arc is a dependent arc in D′, then it is a
dependent arc in D.

Lemma 2. For any acyclic orientation D of K3, the number of dependent
arcs is 1. Any vertex v ∈ V (K3) is a source or a sink in D if and only if v is
incident with a dependent arc.

Lemma 3. For any acyclic orientation D of K4, the number of dependent arcs
is 3. Furthermore, every vertex of K4 is incident with at least one dependent
arc.
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Proof. It is well-known [7] that dmin(Kn) = dmax(Kn) = (n − 2)(n − 1)/2.
Hence, dmin(K4) = dmax(K4) = 3. For any acyclic orientation D of the un-
derlying graph K4, d

+
D(v) > 2 or d−D(v) > 2. So v is a source or a sink in

an acyclic orientation D′ ⊆ D of a certain subgraph K3. By Lemma 2, v is
incident with at least one dependent arc.

In C3
n, any two subgraphs induced by the same number of vertices that are

consecutive on Cn are isomorphic. In particular, every subgraph induced by
three consecutive vertices is isomorphic to K3, and every subgraph induced by
four consecutive vertices is isomorphic to K4. Denote by Gi, i = 0, 1, . . . , k−1,
the subgraph of C3

3k induced by the vertex set {v3i, v3i+1, v3i+2, v3i+3, v3i+4, v3i+5},
where indices are taken modulo 3k. These are k isomorphic subgraphs of C3

3k.
Let H denote G0 for short. Let H1 = G[v0, v1, v2], H2 = G[v3, v4, v5], and
H3 = H − (E(H1) ∪ E(H2)).

For an acyclic orientation D of C3
3k, we use d1, d2, and d3 to denote the

number of dependent arcs of E(H1), E(H2), and E(H3) in D, respectively.
According to the convention made at the beginning of this section, let H be
an acyclically oriented version of H. Let d′(H) = d3 +

1
2
(d1 + d2), and we

always abbreviate d′(H) to d′.

Remark. If H ⊆ G and G is an acyclically oriented version of G, then d′(H)
evaluated in G is greater than or equal to d′(H) evaluated in H by Lemma 1.

Lemma 4. For any acyclic orientation D of H, d′(H) > 4.

Proof. Since H1 and H2 are triangles, d1 > 1 and d2 > 1 in any acyclic orien-
tation D of H. Let G[v0, v1, v2, v3] be the subgraph of G induced by the vertex
set {v0, v1, v2, v3}. Since G[v0, v1, v2, v3] ∼= K4, at least one of v0v3, v1v3, v2v3 is
dependent in D by Lemmas 1 and 3. So d3 > 1.

Case 1. d3 = 1.

Since G[v0, v1, v2, v3] ∼= G[v2, v3, v4, v5] ∼= K4, at least one of v0v3, v1v3, v2v3
and at least one of v2v3, v2v4, v2v5 are dependent by Lemmas 1 and 3. Since
d3 = 1, v2v3 is the only dependent edge of E(H3).

We may assume that v2 → v3.
By Lemma 2 and Lemma 3, we can determine the orientation of the fol-

lowing arcs: v2 → v0, v2 → v1, v2 → v4, v4 → v1, v4 → v3, v5 → v3, v1 → v3,
v3 → v0, v1 → v0, v5 → v2, v5 → v4. It follows that v2 → v0, v2 → v1, v1 → v0,
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v4 → v3, v5 → v3, and v5 → v4 are dependent. So d1 = 3 and d2 = 3. Thus
d′ = d3 +

1
2
(d1 + d2) = 1 + 1

2
(3 + 3) = 4.

Case 2. d3 = 2.

Case 2.1. d1 = 1. (By symmetry, the case d2 = 1 is similar.)

At least three arcs in G[v0, v1, v2, v3] are dependent by Lemma 3. Since
d3 = 2 and d1 = 1, two arcs of v0v3, v1v3, and v2v3 in D are dependent and
none of v1v4, v2v4, and v2v5 is dependent. So from G[v1, v2, v4], neither v0v1
nor v0v2 is dependent since v1v2 is dependent.

We may assume that v2 → v3.
Then v5 → v3, v4 → v3, v1 → v3, v0 → v3.

Case 2.1.1. Assume v1 → v2.

Then v1 → v0, v0 → v2, v1 → v4, v4 → v2, v2 → v5, v4 → v5. It follows that
v0 → v3, v1 → v3, and v2 → v3 are dependent, contradicting the assumption
that d3 = 2.

Case 2.1.2. Assume v2 → v1.

By Lemma 2 and Lemma 3, v0 → v1, v2 → v0, v4 → v1, v2 → v4, v5 → v2,
v5 → v4. It follows that v5 → v4, v5 → v3, and v4 → v3 are dependent, i.e.,
d2 = 3. So d′ = d3 +

1
2
(d1 + d2) = 2 + 1

2
(1 + 3) = 4.

Case 2.2. d1 > 2 and d2 > 2.

In this subcase d′ = d3 +
1
2
(d1 + d2) > 2 + 1

2
(2 + 2) = 4.

Case 3. d3 > 3.

Since d1 > 1 and d2 > 1, d′ = d3 +
1
2
(d1 + d2) > 3 + 1

2
(1 + 1) = 4.

By Lemma 4, we know that d′ > 4 in any acyclic orientations D of H. Now
we are going to determine all the cases for which d′ = 4.

Lemma 5. Let D be an acyclic orientation of H. If we suppose that v2 → v3
in D, then there are only 12 possible cases for D for which d′(H) = 4.

Proof. We again use d′ to abbreviate d′(H) in the following proof.

Case 1. d3 = 1.

Since d′ = 4, we have d1 = 3 and d2 = 3. By Case 1 of Lemma 4, we have
v2 → v0, v2 → v1, v2 → v4, v4 → v1, v4 → v3, v5 → v3, v1 → v3, v3 → v0,
v1 → v0, v5 → v2, v5 → v4.
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We denote by Q1 this directed version of H.

Case 2. d3 = 2.

Case 2.1. d1 = 1.

Since d′ = 4, we have d2 = 3. By Case 2.1 of Lemma 4, we have v5 →
v3, v4 → v3, v1 → v3, v0 → v3, v2 → v1, v0 → v1, v2 → v0, v4 → v1, v2 → v4,
v5 → v2, v5 → v4.

We denote by Q2 this directed version of H.

Case 2.2. d1 = 2.

Since d′ = 4, we have d2 = 2.

Case 2.2.1. v2 → v3 is dependent.

Case 2.2.1.1. v0v3 is dependent.

Since d3 = 2, none of v1v3, v1v4, v2v4, and v2v5 is dependent. From G[v1, v2, v3, v4],
v1v2 and v3v4 are dependent by Lemma 3. From G[v2, v4, v5], v4v5 is dependent
by Lemma 2. Since d2 = 2, v3v5 is not dependent. Then v2 → v5, v5 → v3,
v4 → v2, v4 → v5, v4 → v3, v1 → v4, v1 → v2, v1 → v3. It follows that v1 → v3
is dependent, and hence d3 > 3, a contradiction.

Case 2.2.1.2. v2v5 is dependent.

By symmetry, this case is similar to the case 2.2.1.1, and there does not
exist any acyclic orientation to satisfy the conditions of this case.

Case 2.2.1.3. v1v3 is dependent.

Since d3 = 2, none of v0v3, v1v4, v2v4, and v2v5 is dependent. From G[v1, v2, v3, v4],
v1v2 and v3v4 are dependent. From G[v2, v4, v5], v4v5 is dependent. So v3v5 is
not dependent. Then v2 → v5, v5 → v3, v4 → v2, v4 → v5, v4 → v3, v1 → v4,
v1 → v2, v1 → v3, v2 → v0, v1 → v0. It follows that v1 → v0 is dependent, and
hence v2 → v0 is not dependent. Then v0 → v3.

We denote by Q3 this directed version of H.

Case 2.2.1.4. v2v4 is dependent.

By symmetry, this case is similar to the case 2.2.1.3.
Then v2 → v0, v0 → v3, v3 → v1, v0 → v1, v2 → v1, v1 → v4, v3 → v4,

v2 → v4, v5 → v3, v5 → v4, v2 → v5.
We denote by Q4 this directed version of H.
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Case 2.2.1.5. v1v4 is dependent.

Since d3 = 2, none of v0v3, v1v3, v2v4, and v2v5 is dependent. From G[v0, v1, v2],
v0v1 is dependent. From G[v2, v4, v5], v4v5 is dependent.

Case 2.2.1.5.1. v0v2 is dependent.

Since d1 = 2, v1v2 is not dependent. From G[v1, v2, v3, v4], v3v4 is depen-
dent. Then v2 → v1, v1 → v3, v3 → v0, v2 → v0, v1 → v0, v4 → v2, v4 → v1,
v4 → v3, v2 → v5, v4 → v5, v5 → v3.

We denote by Q5 this directed version of H.

Case 2.2.1.5.2. v0v2 is not dependent.

Since d1 = 2, v1v2 is dependent. Then v2 → v0, v0 → v3, v3 → v1, v0 → v1,
v2 → v1, v4 → v1, v4 → v3, v5 → v3. If v4 → v5 in this case, then v4 → v2,
v2 → v5. We denote by Q6 this directed version of H. If v5 → v4 in this case,
then v5 → v2, v2 → v4. We denote by Q7 this directed version of H.

Case 2.2.2. v2 → v3 is not dependent.

From G[v0, v1, v2, v3] and G[v2, v3, v4, v5], at least one of v0v3 and v1v3 and
at least one of v2v4 and v2v5 are dependent by Lemma 3. Since d3 = 2, only
one of v0v3 and v1v3 is dependent, only one of v2v4, v2v5 is dependent and v1v4
is not dependent.

From G[v1, v2, v3, v4], at least one of v1v3 and v2v4 is dependent.

Case 2.2.2.1. Only one of v1v3 and v2v4 is dependent.

From G[v1, v2, v3, v4], both v1v2 and v3v4 are dependent.
Case 2.2.2.1.1. v1v3 is dependent.

So v2v4 is not dependent. v2v5 is dependent and v0v3 is not dependent.
Then v4 → v2, v4 → v3, v1 → v4, v1 → v2, v3 → v0, v2 → v0, v1 → v0. It
follows that v1 → v0, v2 → v0 and v1 → v2 are dependent, contradicting the
assumption that d1 = 2.

Case 2.2.2.1.2. v1v3 is not dependent.

So v2v4 is dependent. By symmetry, this case is similar to the case 2.2.2.1.1,
and there does not exist any acyclic orientation to satisfy the conditions of this
case.

Case 2.2.2.2. Both v1v3 and v2v4 are dependent.
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Since d3 = 2, neither v0v3 nor v2v5 is dependent. From G[v0, v2, v3], v0v2 is
dependent. From G[v2, v3, v5], v3v5 is dependent.

Case 2.2.2.2.1. v0v1 is dependent.

So v1v2 is not dependent. Then v3 → v0, v2 → v0, v1 → v2, v1 → v3,
v1 → v0, v4 → v1, v4 → v2, v4 → v3. It follows that v4 → v3 is dependent, and
hence v4v5 is not dependent. Then v4 → v5, v5 → v2, and v5 → v3.

We denote by Q8 this directed version of H.

Case 2.2.2.2.2. v0v1 is not dependent.

So v1v2 is dependent. Then v3 → v0, v2 → v0, v0 → v1, v3 → v1, v2 → v1,
v5 → v2, v5 → v3, v2 → v4, v5 → v4. It follows that v5 → v4 is dependent, and
hence v3v4 is not dependent. Then v3 → v4 and v4 → v1.

We denote by Q9 this directed version of H.

Case 2.3. d1 = 3.

Since d′ = 4, d2 = 1. Then v2 → v5, v2 → v4, v4 → v5, v5 → v3, v4 → v3,
v4 → v1, v1 → v3, v3 → v0, v1 → v0, v2 → v1, v2 → v0.

We denote by Q10 this directed version of H.

Case 3. d3 = 3.

Since d′ = 4, d1 = 1, and d2 = 1. So at least two of v0v3, v1v3, and v2v3
are dependent and at least two of v2v3, v2v4, and v2v5 are dependent. Since
d3 = 3, v2v3 is dependent. Only one of v0v3 and v1v3 is dependent, only one
of v2v4 and v2v5 is dependent, and v1v4 is not dependent.

Case 3.1. v0v3 is dependent.

So v1v3 is not dependent. From G[v1, v3, v4], v3v4 is dependent. Since d2 =
1, neither v3v5 nor v4v5 is dependent. From G[v2, v3, v4, v5], v2v5 is dependent.
So v2v4 is not dependent. From G[v1, v2, v4], v1v2 is dependent. Since d1 = 1,
neither v0v1 nor v0v2 is dependent. Then v2 → v1, v2 → v4, v4 → v1, v2 →
v0, v0 → v1, v0 → v3, v1 → v3, v4 → v3, v4 → v5, v5 → v3, v2 → v5.

We denote by Q11 this directed version of H.

Case 3.2. v0v3 is not dependent.

So v1v3 is dependent. From G[v0, v1, v2, v3], at least one of v0v1 and v0v2
is dependent. Since d1 = 1, v1v2 is not dependent. From G[v1, v2, v4], v2v4
is dependent. So v2v5 is not dependent. From G[v2, v3, v4, v5], at least one
of v3v5 and v4v5 is dependent. Since d2 = 1, v3v4 is not dependent. Then
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v2 → v0, v1 → v3, v1 → v0, v1 → v4, v4 → v3, v2 → v1, v2 → v4, v5 → v3,
v5 → v4. It follows that v5 → v3 and v2 → v0 are dependent, and hence
v5 → v4 and v1 → v0 are not dependent. Then v0 → v3, v2 → v5.

We denote by Q12 this directed version of H.

Remark. By Lemma 5 and assuming v2 → v3 in D, there are only 12 possible
choices for D to make d′(H) = 4. If we assume that v3 → v2 in D, there are
another 12 possible choices for D to make d′(H) = 4 and they are actually
Q−

i for i = 1, 2, . . . , 12. Since the structures of Qi and Q−
i are essentially the

same, we use Qi to represent Qi and Q−
i unless otherwise stated.

It is easy to see that C3
n
∼= Kn for 3 6 n 6 7. Thus, dmin(C

3
3k) = 1 when

k = 1 and dmin(C
3
3k) = 10 when k = 2.

Theorem 6. If k > 3 then dmin(C
3
3k) = 4k + 1.

Proof. We first prove that dmin(C
3
3k) > 4k + 1. Suppose to the contrary that

dmin(C
3
3k) < 4k + 1. In the paragraph after Lemma 3, we defined Gi to be the

subgraph of C3
3k induced by the vertex set {v3i, v3i+1, v3i+2, v3i+3, v3i+4, v3i+5}

for i = 0, 1, . . . , k − 1 and H to be G0. Any two of these Gi’s are isomorphic.
Since Gi

∼= H, d′(Gi) > 4 for all i by Lemma 4. So for any acyclic orien-
tation D of C3

3k, d(D) =
∑k−1

i=0 d
′(Gi) > 4k. The assumption that dmin(C

3
3k) <

4k + 1 implies that dmin(C
3
3k) = 4k. Hence, there exists an acyclic orientation

D of C3
3k such that d(D) = 4k and d′(Gi) = 4 for all i.

If G0 is Qj for some j ∈ {7, 10, 11}, then d′(G1) > 4 by Lemma 5, a
contradiction. Since Gi

∼= G0 for all i, every Gi is different from Qj for j ∈
{7, 10, 11}.

If G0 is Qj for some j ∈ {2, 5}, then d′(Gk−1) > 4 by Lemma 5, a contra-
diction. Hence, all Gi must be different from Qj for j ∈ {2, 5}.

If G0 is Q6, then, for i = 1, 2, . . . , k − 2, d′(Gi) = 4 only when Gi is Q3

by Lemma 5. But then d′(Gk−1) > 4, a contradiction. Hence, all Gi must be
different from Q6.

If G0 is Q1, then, for i = 1, 2, . . . , k − 1, d′(Gi) = 4 only when Gi is Q1 by
Lemma 5. Assume that v2 → v3 in G0. Then a directed cycle v0 → vn−3 →
vn−6 · · · → v3 → v0 is produced, contradicting to the acyclicity of D. Hence,
all Gi must be different from Q1.

If G0 is Q3, then, for i = 1, 2, . . . , k − 1, d′(Gi) = 4 only when Gi is Q3 by
Lemma 5. Assume that v2 → v3 in G0. Then a directed cycle v0 → v3 →
v6 · · · → vn−3 → v0 is produced, contradicting to the acyclicity of D. Hence,
all Gi must be different from Q3.
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If G0 is Q4, then, for i = 1, 2, . . . , k − 1, d′(Gi) = 4 only when Gi is Q4 by
Lemma 5. Assume that v2 → v3 in G0. Then a directed cycle v0 → v3 →
v6 · · · → vn−3 → v0 is produced, contradicting to the acyclicity of D. Hence,
all Gi must be different from Q4.

If G0 is Q8, then, for i = 1, 2, . . . , k − 1, d′(Gi) = 4 only when Gi is Q8 by
Lemma 5. Assume that v2 → v3 in G0. Then a directed cycle v0 → vn−3 →
vn−6 · · · → v3 → v0 is produced, contradicting to the acyclicity of D. Hence,
all Gi must be different from Q8.

If G0 is Q9, then, for i = 1, 2, . . . , k − 1, d′(Gi) = 4 only when Gi is Q9 by
Lemma 5. Assume that v2 → v3 in G0. Then a directed cycle v0 → vn−3 →
vn−6 · · · → v3 → v0 is produced, contradicting to the acyclicity of D. Hence,
all Gi must be different from Q9.

If G0 is Q12, then, for i = 1, 2, . . . , k − 1, d′(Gi) = 4 only when Gi is Q12

by Lemma 5. Assume that v2 → v3 in G0. Then a directed cycle v0 → v3 →
v6 · · · → vn−3 → v0 is produced, contradicting to the acyclicity of D. Hence,
all Gi must be different from Q12.

In summary, for any orientation D, there exist i0 ∈ {0, 1, 2 · · · k − 1} such
that d′(Gi0) > 4. Hence, dmin(C

3
3k) > 4k + 1.

In the second part, we are going to prove that dmin(C
3
3k) 6 4k+1. In fact,

an acyclic orientation D0 of G will be constructed so that d(D0) = 4k + 1.
Let D0 be defined as follows.
v3 → v1 → v0, v1 → v2 → v0, v3 → v0, v3k−1 → v1 → v3k−2 → v0 → v3k−3,

v3k−1 → v0, v3k−1 → v2, v1 → v4, v3 → v2 → v4, v5 → v2, v3 → v5 → v4,
v3 → v4, v3 → v6;

v3i → v3i−3 for each i = 3, 4, . . . , k − 1;
v3i+2 → v3i−1 → v3i+1 → v3i−2 → v3i for each i = 2, 3, . . . , k − 1;
v3i+2 → v3i+1 → v3i for each i = 2, 3, . . . , k − 1;
v3i−1 → v3i and v3i+2 → v3i for each i = 2, 3, . . . , k − 1.
Clearly, D0 is an acyclic orientation of C3

3k such that the set of dependent
arcs is as follows.

R(D0) = {v3k−1 → v0, v3k−1 → v2, v1 → v0, v3 → v0, v1 → v4, v3 →
v2, v3 → v4, v5 → v4, v3 → v6} ∪ {v3i+2 → v3i+1, v3i+1 → v3i, v3i+2 → v3i, v3i−1 →
v3i | i = 2, . . . , k − 1}.

Therefore, d(D0) = |R(D0)| = 4k + 1. This completes the proof of the
theorem.

In this paper, we have only determined the minimum number of dependent



The Minimum Number of Dependent Arcs in C3
3k 407

arcs of C3
3k. A complete proof for the determination of the minimum number

of dependent arcs and the full orientability of C3
n is too lengthy to be included

here. However, the proof methods used in the present paper fully illustrate
the techniques that would be employed in a complete proof.
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Appendix

Note 1. Let G0 and G1 be the induced subgraphs defined in Theorem 6.
Suppose that G0 is Qi and G1 is Qj. We say that Qi and Qj can be pasted
together if there exists an acyclic orientation D of G0 ∪G1 such that (i)

Qi, Qj ⊂ D; (ii) an edge of G0 ∩G1 is a dependent edge in D if and only if it
is a dependent edge in Qi and Qj. In Table 1, a tick in the (i, j) cell

represents that Qi and Qj can be pasted together.

Note 2. All digraphs Q1 to Q12 are depicted at the end of this appendix.
Under each Qi, the three rows of pairs (i, j) represent all the dependent arcs

of E(H1), E(H2), and E(H3) in Qi, respectively.

Table 1: Whether Qi and Qj can be pasted together.
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Q1

√ √

Q2

√ √

Q3

√

Q4

√ √ √

Q5

√

Q6

√

Q7

Q8

√

Q9

√

Q10

Q11

Q12

√
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3
Q

4
Q

5
Q

6
Q

(1,0)   (2,0)   (2,1)

(4,3)   (5,3)   (5,4)

(2,3)

 (2,1)

(4,3)   (5,3)   (5,4)

(0,3)    (2,3)

(1,0)     (1,2)

(4,3)     (4,5)

(1,3)     (2,3)

(0,1)     (2,1)

(3,4)     (5,4)

(2,3)     (2,4)

(0,1)     (2,1)

(4,3)     (4,5)

(2,3)     (4,1)

(1,0)     (2,0)

(4,3)     (4,5)

(2,3)     (4,1)

1
Q

2
Q
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(0,1)     (2,1)

(5,3)     (5,4)

(2,3)     (4,1)

7
Q 8

Q (1,0)     (2,0)

(4,3)     (5,3)

(1,3)     (4,2)

9
Q (2,0)     (2,1)

(5,3)     (5,4)

(3,1)     (2,4)

10
Q

(1,0)   (2,0)   (2,1)

(4,3)

(2,3)    (2,5)

11
Q

12
Q(2,1)

(4,3)

(0,3)   (2,3)   (2,5)

(2,0)

(5,3)

(1,3)   (2,3)   (2,4)


