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Abstract

Let D be an acyclic orientation of a simple graph GG. An arc is called
dependent if its reversal creates a directed cycle. Let d(D) denote the
number of dependent arcs in D. Define d,;,(G) to be the minimum
number of d(D) over all acyclic orientations D of G. Let C), denote the
cycle on n vertices. The cube C? is the graph defined on the same vertex
set of C), such that any two distinct vertices u and v are adjacent in C3
if and only if their distance in C), is at most 3. In this paper, we study
the structure of Cgk to determine its minimum number of dependent
arcs.
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1. Introduction

Graphs considered in this paper are finite, without loops, or multiple edges.
For a graph GG, we denote its vertex set, edge set, and the degree of a vertex
v by V(G), E(G), and d(v), respectively. If V} is a nonempty set of vertices
of G, then we use G[V4] to denote the induced subgraph of G with vertex set
Vi. If E; is a set of edges of GG, then we use G — F; to denote the spanning
subgraph of G with edge set E(G) — Ey. An orientation D of G assigns a
direction to each edge of GG and it is called acyclic if there does not exist
any directed cycle. An arc of D is called dependent if its reversal creates a
directed cycle. Let d(D) denote the number of dependent arcs of D. We
use dpin(G) and dpax(G) to denote the minimum and maximum number of
d(D) over all acyclic orientations D of G, respectively. It is known ([2]) that
dmax (G) = |G| — |G| + ¢ for a graph G having ¢ components.

A proper k-coloring of a graph G is a mapping f from V(G) to the set
{1,2,...,k} such that f(x) # f(y) for each edge xy € E(G). The chromatic
number x(G) is the smallest integer k such that G has a k-coloring. The girth
g(@G) is the minimum length of a cycle in a graph G if there is any, and is co
if G possesses no cycles.

An interpolation question asks whether G has an acyclic orientation with
exactly k dependent arcs for each k satisfying duin(G) < k < dpax(G). The
graph G is called fully orientable if its interpolation question has an affirmative
answer.

West [7] showed that complete bipartite graphs are fully orientable. Fisher
et al. [2] showed that G is fully orientable if x(G) < ¢(G), and dyin(G) = 0 in
this case. Since it is well-known [3] that every planar graph G with ¢(G) > 4
is 3-colorable, planar graphs of girth at least 4 are fully orientable.

The full orientability for a few classes of special graphs has been recently in-
vestigated. Lih, Lin, and Tong [6] showed that outerplanar graphs are fully ori-
entable. This has been generalized by Lai, Chang, and Lih [4] to 2-degenerate
graphs. A graph G is called 2-degenerate if every subgraph H of G contains
a vertex of degree at most 2 in H. Lai and Lih [5] gave further examples
of fully orientable graphs, such as subdivisions of Halin graphs and graphs of
maximum degree at most three. Let K, (,) denote the complete r-partite graph
each of whose partite sets has n vertices. Chang, Lin, and Tong [1] proved
that K, is not fully orientable if » > 3 and n > 2. These are the only known
graphs that are not fully orientable.
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Suppose that GG is a connected graph. For m > 2, the mth power of G,
denoted G™, is the graph defined on the same vertex set V(G) such that two
distinct vertices u and v are adjacent in G™ if and only if their distance in G
is at most m. In particular, G? is called the square of G and G? is called the
cube of G. Assume that C,,, n > 3, is the cycle vy, vy, ...,v,_1,v9. A problem
posed in [8] states as follows. For a given integer m > 2, does there exist a
smallest constant ¢(m) such that C* is fully orientable when n > ¢(m)? In
this paper, we give a proof for the determination of dyi, (C3;). We have worked
out a proof for the full orientability of C3. However, it is too lengthy to be
included here.

2. Results

Given an acyclic orientation D of (G, we denote by u — v the arc with tail u
and head v. If we do not know which of u,v is the head, we still use uv to
denote the oriented version of uv in D. We make the convention that the script
letter G is used to denote an acyclically oriented version of G if the orientation
is tacitly understood. The in-degree dj,(v) of a vertex v in D is the number of
arcs with head v; the out-degree d},(v) of v in D is the number of arcs with tail
v. We call v a source if df(v) = dg(v) and v a sink if d(v) = dg(v), where
dg(v) is the degree of v in G. Let R(D) denote the set of dependent arcs in
D. If we reverse all arcs in D, we denote the new orientation by D~. It is easy
to see that D~ is also an acyclic orientation and an arc is dependent in D if
and only if its reversal is dependent in D~. If D’ is a subdigraph of D, then
we write D’ C D. The complete graph on n vertices is denoted by K.
The following two Lemmas are evident.

Lemma 1. Let D' C D. If an arc is a dependent arc in D', then it is a
dependent arc in D.

Lemma 2. For any acyclic orientation D of Kz, the number of dependent
arcs is 1. Any vertex v € V(K3) is a source or a sink in D if and only if v is
incident with a dependent arc.

Lemma 3. For any acyclic orientation D of Ky, the number of dependent arcs
1s 3. Furthermore, every vertex of K, is incident with at least one dependent
arc.
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Proof. It is well-known [7] that dpn(K,) = dnax(Ky) = (n —2)(n — 1)/2.
Hence, dpin(K4) = dmax(K4) = 3. For any acyclic orientation D of the un-
derlying graph Kj, df(v) > 2 or d(v) = 2. So v is a source or a sink in
an acyclic orientation D" C D of a certain subgraph K3. By Lemma 2, v is
incident with at least one dependent arc.

In C3, any two subgraphs induced by the same number of vertices that are
consecutive on (), are isomorphic. In particular, every subgraph induced by
three consecutive vertices is isomorphic to K3, and every subgraph induced by
four consecutive vertices is isomorphic to K4. Denote by G;, ¢ =0,1,...,k—1,
the subgraph of C3, induced by the vertex set {vs;, Usi1, V3it2, V313, Usita, U3its }s
where indices are taken modulo 3k. These are k isomorphic subgraphs of C3,.
Let H denote Gq for short. Let Hy = Gluvg,v1,vs], Hy = G[vs,vg,v5], and
Hy = H — (E(Hy) U E(H2)).

For an acyclic orientation D of C%,, we use dy, do, and d3 to denote the
number of dependent arcs of E(H;), E(Hs), and E(Hs3) in D, respectively.
According to the convention made at the beginning of this section, let H be
an acyclically oriented version of H. Let d'(H) = ds + 3(di + d»), and we
always abbreviate d'(H) to d'.

Remark. If # C G and G is an acyclically oriented version of G, then d'(H)
evaluated in G is greater than or equal to d'(#) evaluated in ‘H by Lemma 1.

Lemma 4. For any acyclic orientation D of H, d'(H) > 4.

Proof. Since H; and H, are triangles, d; > 1 and dy > 1 in any acyclic orien-
tation D of H. Let Glvg, v1, v2,v3] be the subgraph of G induced by the vertex
set {vg, v1, V2, v3}. Since Glug, v1, v9, v3] = Ky, at least one of vyvs, v1v3, vov3 18
dependent in D by Lemmas 1 and 3. So d3 > 1.

Case 1. d3=1.

Since Glvg, v1, Vg, v3] = Glug, v3, v4, V5] = Ky, at least one of vyvs, v1v3, Vav3
and at least one of vyus, v9vy, Vou5 are dependent by Lemmas 1 and 3. Since
ds3 = 1, vavg is the only dependent edge of E(Hs3).

We may assume that vy — v3.

By Lemma 2 and Lemma 3, we can determine the orientation of the fol-
lOWil’lg arcs: Vg — Vg, U2 — U1, Uy — VU4, Vg — V1, Ug4 — VU3, U5 — V3, U1 — U3,
VU3 — Vg, V1 — Vg, Us — Vg, U5 —> vy. It follows that vy — vy, v9 — vy, V1 — vy,
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vy — U3, U5 — v3, and vs — vy are dependent. So d; = 3 and dy = 3. Thus
d=ds+1(d+do) =1+ 3(3+3) =4.

Case 2. d3 = 2.

Case 2.1. d; = 1. (By symmetry, the case dy = 1 is similar.)

At least three arcs in Glvg, vq, v9, v3] are dependent by Lemma 3. Since
d3 = 2 and d; = 1, two arcs of vgvs, v1v3, and vevs in D are dependent and
none of vjvy, vovy, and wveus is dependent. So from Glvy, ve, vy, neither vouy
nor vy, is dependent since v,vy is dependent.

We may assume that vy — v3.

Then vs — vz, v4 — v3, V1 — V3, Vg — V3.

Case 2.1.1. Assume v; — vs.

Then v; — vg, Vg — V2, V1 —> Uy, Vg —> Vg, Vg — Us, Vg — vs. It follows that
vy — U3, v — v3, and vy — vz are dependent, contradicting the assumption
that dg = 2.

Case 2.1.2. Assume vy — v;.

By Lemma 2 and Lemma 3, vg — vy, V3 — Vg, Vg —> U1, Vs —> Uy, U5 — Vs,
vs — vy. It follows that vs — v4, v5 — w3, and vy — v3 are dependent, i.e.,
dy=3.Sod =ds+ 3(di +do) =2+ 1(1+3) = 4.

Case 2.2. d; > 2 and dy > 2.
In this subcase d' = ds + 2 (dy +do) > 2+ 3(2+2) = 4.
Case 3. d3 > 3.
Since d; > 1 and dy > 1, d’:dg—l—%(dl—{—dg) 23+%(1+1):4.

By Lemma 4, we know that d’ > 4 in any acyclic orientations D of H. Now
we are going to determine all the cases for which d' = 4.

Lemma 5. Let D be an acyclic orientation of H. If we suppose that vy — v3
in D, then there are only 12 possible cases for D for which d'(H) = 4.
Proof. We again use d’ to abbreviate d’ (H) in the following proof.

Case 1. d; =1.

Since d’ = 4, we have d; = 3 and dy = 3. By Case 1 of Lemma 4, we have
Vo — Vg, V2 — U1, Vg —> V4, Vg4 — V1, U4 — V3, Us — U3, U1 — V3, U3 — U,
V1 — Vg, Us — V2, Us — U4.
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We denote by ), this directed version of H.
Case 2. d3 = 2.
Case 2.1. d; = 1.

Since d’ = 4, we have dy = 3. By Case 2.1 of Lemma 4, we have vs —
U3, Vg4 — VU3,V1 —> U3, Vg —2 U3, U2 —7 V1, Vg — VU1, V2 —7 Vg, U4 —7 V1, V2 —2 Uy,
Vs — Vg, U5 — V4.

We denote by @, this directed version of H.

Case 2.2. d; = 2.

Since d’ = 4, we have dy = 2.
Case 2.2.1. vy — v3 is dependent.
Case 2.2.1.1. wvyvs is dependent.

Since d3 = 2, none of vv3, V104, Vav4, and vov; is dependent. From Gluy, ve, v3, V4],
v1v9 and v3vy are dependent by Lemma 3. From Glvy, vy, vs], v4v5 is dependent
by Lemma 2. Since dy = 2, vzvs is not dependent. Then vy — vs, v5 — w3,
Vg —> Vg, Vg — Vs, Uy — U3, U] — Uy, U1 — Vg, U1 — v3. It follows that v; — vs
is dependent, and hence d3 > 3, a contradiction.

Case 2.2.1.2. wvyv5 is dependent.

By symmetry, this case is similar to the case 2.2.1.1, and there does not
exist any acyclic orientation to satisfy the conditions of this case.

Case 2.2.1.3. wvyv3 is dependent.

Since d3 = 2, none of vyvs, V104, Vav4, and vovy is dependent. From Glvy, ve, v3, v4],
v1ve and wvzvy are dependent. From Glvg, vy, vs], v4vs is dependent. So vzvs is
not dependent. Then vy — vy, v5 — V3, V4 — Vo, V4 — Vs, Vg — U3, V1 —> Uy,
V1 — Vg, U1 — U3, Uy — Vg, V1 — vg. It follows that v; — vy is dependent, and
hence vy — vy is not dependent. Then vy — vs.

We denote by Q3 this directed version of H.

Case 2.2.1.4. wvyv, is dependent.

By symmetry, this case is similar to the case 2.2.1.3.

Then vy — vy, vo = V3, V3 — V1, Vg —> V1, Vg —> V1, U] — Uy, U3 —> Uy,
Vo —> U4, U5 —> U3, V5 —> U4, U2 —> Us.

We denote by @, this directed version of H.
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Case 2.2.1.5. wvjv, is dependent.

Since d3 = 2, none of vgvs, V103, Vav4, and vavs is dependent. From Glvg, vy, v,
vy is dependent. From Glvy, vy, vs], v4v5 is dependent.

Case 2.2.1.5.1. wvgvy is dependent.

Since d; = 2, vjvg is not dependent. From Glvy, va, v, v4], v3v4 is depen-
dent. Then vy — vy, v1 — v3, V3 — Vg, Vg —> Vg, V1 — Vg, Vg — Vg, Vg — U1,
Vg4 — V3, Vg — Vs, Vg — VU5, Us —> U3.

We denote by Q5 this directed version of H.

Case 2.2.1.5.2. wvyvs is not dependent.

Since d; = 2, v1v9 is dependent. Then vy — vy, v9 — V3, V3 — V1, Vg — V1,
Vg —» V1, Vg — U1, Uy — U3, U5 —> v3. If vy — v5 in this case, then vy — vo,
vy — v5. We denote by Qg this directed version of H. If v5 — vy in this case,
then vs — v9, v9 — v4. We denote by Q)7 this directed version of H.

Case 2.2.2. vy — w3 is not dependent.

From G|vg, v1, v2, v3] and Glua, v, v4, vs], at least one of vyvs and viv3 and
at least one of vyvy and vyvs are dependent by Lemma 3. Since d3 = 2, only
one of vyguz and vyv3 is dependent, only one of vovy, vov5 is dependent and vy vy
is not dependent.

From G[vy, vg, v3,v4], at least one of vyvs and vyvy is dependent.

Case 2.2.2.1. Only one of vjv3 and vevy is dependent.

From G[vy, va, v, v4], both vjve and vsv, are dependent.
Case 2.2.2.1.1. wvjv3 is dependent.

So vy is not dependent. wvyvs is dependent and wvgus is not dependent.
Then vy — vo, V4 — V3, V1 — Vg, V1 —> Vg, V3 —> Uy, Vs — Vg, V3 —> Vg. It
follows that v; — vg,v9 — vg and v; — v, are dependent, contradicting the
assumption that d; = 2.

Case 2.2.2.1.2. wvyv3 is not dependent.

So vyvy is dependent. By symmetry, this case is similar to the case 2.2.2.1.1,
and there does not exist any acyclic orientation to satisfy the conditions of this
case.

Case 2.2.2.2. Both v;v3 and vyv, are dependent.
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Since d3 = 2, neither vgvs nor vyvs is dependent. From Gvg, va, v3], vovg is
dependent. From G[vy, v3, vs], v3v5 is dependent.

Case 2.2.2.2.1. wvgv; is dependent.

So v1vy is not dependent. Then vy — vy, vo — vy, V1 — Vg, V] — Vs,
V1 — Vg, Vg — V1, Vg — Vg, U4 — v3. It follows that vy, — v3 is dependent, and
hence v4v5 is not dependent. Then vy — vs5, v5 — v, and vy — v3.

We denote by Qg this directed version of H.

Case 2.2.2.2.2. wvyv; is not dependent.

So v1vy is dependent. Then vs — vy, V9 — Vg, Vg — V1, U3 —> V1, Uy — U1,
Vs — Vg, Us — U3, Uy —> Uy, U5 — 4. It follows that vs — v, is dependent, and
hence v3v4 is not dependent. Then v3 — v4 and v4 — vy.

We denote by Qg this directed version of H.

Case 2.3. d; = 3.

Since d’ = 4, dy = 1. Then vy — v5, V9 —> Vy, Vg —> Us, Vs — V3, Vg —> U3,
V4 — U1, V1 — V3, V3 — Vg, V1 — Vg, Vg — V1, Vg — Vp.
We denote by Q¢ this directed version of H.

Case 3. d3 = 3.

Since d = 4, d; = 1, and dy = 1. So at least two of vgvs, v1v3, and vyvs
are dependent and at least two of wyvs, vovy, and vevs are dependent. Since
d3 = 3, vous is dependent. Only one of vgvs and vyv3 is dependent, only one
of vovy and vevs is dependent, and vyv4 is not dependent.

Case 3.1. wvyvs3 is dependent.

So vyv3 is not dependent. From Glvy, vs, v4], v3v4 is dependent. Since dy =
1, neither vzvs nor vyvs is dependent. From Glvg, v3, vy, v5], vovs is dependent.
So vevy is not dependent. From Gvy, vg, vy4], v1vy is dependent. Since d; = 1,
neither vyv; nor vgvy is dependent. Then vy — wvi,v9 — V4,04 — v1,V9 —>
Vo, Vg — V1,V9 — U3,V1 — VU3, V4 — V3, Vg4 — Vs, V5 — V3, Vg — VUs.

We denote by @17 this directed version of H.

Case 3.2. wgus3 is not dependent.

So vyvz is dependent. From Gvg, vq, v, v3], at least one of vyvy and vyve
is dependent. Since d; = 1, vjvy is not dependent. From Glvy, vg, vy], vovy4
is dependent. So wyvs is not dependent. From Gluvg, vs, vy, v5], at least one
of vsgvs and wvyvs is dependent. Since dy = 1, vsvy is not dependent. Then
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Vo — Vg,V1 — V3,V1 — Vg,V1 —> VUg,VUq4 —> VU3,V —» V1,V —> U4,V — Uz,
vs — vy. It follows that vs — vz and vy — vy are dependent, and hence
vs — v4 and v; — vg are not dependent. Then vy — wv3, vy — vs.

We denote by Q15 this directed version of H.

Remark. By Lemma 5 and assuming v, — v3 in D, there are only 12 possible
choices for D to make d'(H) = 4. If we assume that v — ve in D, there are
another 12 possible choices for D to make d'(H) = 4 and they are actually
Q; fori=1,2,...,12. Since the structures of ); and (); are essentially the
same, we use (); to represent (); and (); unless otherwise stated.

It is easy to see that C2 = K, for 3 < n < 7. Thus, dyin(C5,) = 1 when
k=1 and dpyin(Cs,) = 10 when k = 2.

Theorem 6. If k > 3 then dy(C3,) = 4k + 1.

Proof. We first prove that dp,(Cs;.) = 4k + 1. Suppose to the contrary that
dmin(C3,) < 4k + 1. In the paragraph after Lemma 3, we defined G; to be the
subgraph of C%, induced by the vertex set {vs;, Usii1, Usit2, U313, Usitd, Usits }
fori=0,1,...,k—1and H to be Gy. Any two of these GG;’s are isomorphic.

Since G; = H, d'(G;) > 4 for all i by Lemma 4. So for any acyclic orien-
tation D of C3,, d(D) = Y5 1d'(G;) = 4k. The assumption that dy,(C3,) <
4k + 1 implies that dmin(C’gk) = 4k. Hence, there exists an acyclic orientation
D of C3, such that d(D) = 4k and d'(G;) = 4 for all 1.

If Gy is Q; for some j € {7,10,11}, then d'(G;) > 4 by Lemma 5, a
contradiction. Since G; = Gy for all i, every G; is different from @); for j €
{7,10,11}.

If Gy is @, for some j € {2,5}, then d'(Gx—1) > 4 by Lemma 5, a contra-
diction. Hence, all G; must be different from @Q; for j € {2,5}.

If Gy is Qg, then, for i = 1,2,...,k — 2, d'(G;) = 4 only when G; is Q3
by Lemma 5. But then d'(Gy_1) > 4, a contradiction. Hence, all G; must be
different from Q.

If Gy is @1, then, for i =1,2,...,k — 1, d'(G;) = 4 only when G, is @1 by
Lemma 5. Assume that vy — wvs in Gy. Then a directed cycle vy — v,_3 —
Un_g -+ — U3 — vg is produced, contradicting to the acyclicity of D. Hence,
all G; must be different from ;.

If Gy is @3, then, for i =1,2,...,k — 1, d'(G;) = 4 only when G, is Q3 by
Lemma 5. Assume that vy — v3 in Gy. Then a directed cycle vg — vy —
Vg — U,_3 — v is produced, contradicting to the acyclicity of D. Hence,
all G; must be different from Q5.
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If Gy is Qq, then, for i =1,2,...,k — 1, d'(G;) = 4 only when G, is Q4 by
Lemma 5. Assume that vy — v3 in Gg. Then a directed cycle vg — v3 —
Vg — U,_3 — vg is produced, contradicting to the acyclicity of D. Hence,
all G; must be different from Q).

If Gy is Qs, then, for i =1,2,...,k — 1, d'(G;) = 4 only when G, is Qg by
Lemma 5. Assume that vy — wvs in Gy. Then a directed cycle vy — v,_3 —
Un_g -+ — U3 — vg is produced, contradicting to the acyclicity of D. Hence,
all G; must be different from Qs.

If Gy is Qo, then, for i =1,2,...,k — 1, d'(G;) = 4 only when G, is Q9 by
Lemma 5. Assume that v9 — w3 in Gy. Then a directed cycle vy — v, 3 —
Up_g "+ — v3 — vg is produced, contradicting to the acyclicity of D. Hence,
all G; must be different from Q).

If Gy is @12, then, for i = 1,2,... k — 1, d'(G;) = 4 only when G; is Q12
by Lemma 5. Assume that v, — vz in Gy. Then a directed cycle vy — v3 —
Vg — Up_3 — vg is produced, contradicting to the acyclicity of D. Hence,
all G; must be different from 15.

In summary, for any orientation D, there exist ig € {0,1,2--+k — 1} such
that d'(G;,) > 4. Hence, dpin(Csy) = 4k + 1.

In the second part, we are going to prove that dmm(Og’k) < 4k + 1. In fact,
an acyclic orientation Dy of G will be constructed so that d(Dy) = 4k + 1.

Let Dy be defined as follows.

V3 — V1 — Vg, V1 — Uy — Vg, V3 — Vg, U3k—1 —» U1 — U3g—2 —> Vg — U3k—3,
V3k—1 — Vg, U3k—1 —> U2, U1 —> Vg, V3 —» Vg — Vg, Us —» VU, V3 —> Us —» U4,
V3 —> V4, U3 — Vg;

v3; — Us3;_3 for eachi:3,4,...,k5—1;

U3iro — Usj_1 — Usir1 —> Usi_o — v3; foreach 1 =2,3,... k — 1;
U3iro — Usip1 — vUs; foreach i1 =2,3,....k —1;

v3;_1 — v3; and vg;,0 — v3; for each 1 =2,3,... k — 1.

Clearly, Dy is an acyclic orientation of Cf, such that the set of dependent
arcs is as follows.

R(Dy) = {vsg—1 — v0,V3p—1 — V2,U1 — Vg, V3 —> Vo,V — Vs, V3 —
U, Ug — Vg, U5 — Vg, U3 — U6} U {U3i40 = VU3i41, Vg1 —> V34, Ugigo —> V3;, Vg1 —
’U3l|’L:2,,l€—1}

Therefore, d(Dy) = |R(Do)| = 4k + 1. This completes the proof of the
theorem.

In this paper, we have only determined the minimum number of dependent
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arcs of C3,. A complete proof for the determination of the minimum number
of dependent arcs and the full orientability of C? is too lengthy to be included
here. However, the proof methods used in the present paper fully illustrate
the techniques that would be employed in a complete proof.
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Appendix

Note 1. Let GGy and G be the induced subgraphs defined in Theorem 6.
Suppose that Gy is ); and G; is @);. We say that ); and @); can be pasted
together if there exists an acyclic orientation D of Gy U Gy such that (i)
Qi, Q; C D; (ii) an edge of Gy N Gy is a dependent edge in D if and only if it
is a dependent edge in @); and @;. In Table 1, a tick in the (4, j) cell
represents that (); and ); can be pasted together.

Note 2. All digraphs @1 to (012 are depicted at the end of this appendix.
Under each @, the three rows of pairs (i, j) represent all the dependent arcs
of E(Hy), E(H,), and E(Hj3) in Q;, respectively.

Table 1: Whether @); and (); can be pasted together.

Qi | Qo | Q3| Qs | Qs | Qs | Q7| Qs | Qo | Quo| Qui | Q2
Qi |V Vv
Q2 | V v
Qs V
Qa v R
Qs
Qs
Q7
Qs Vv
Qo v
Q1o
Qu
Q12 v

|
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