Tamsui Oxford Journal of Information and Mathematical Sciences **27(4)** (2011) 397-410 Aletheia University

# The Minimum Number of Dependent Arcs in $C_{3k}^{3 *}$

Fengwei Xu and Weifan Wang<sup>†</sup> Department of Mathematics, Zhejiang Normal University Jinhua 321004, China

and

Ko-Wei Lih<sup>‡</sup>

Institute of Mathematics, Academia Sinica Taipei 10699, Taiwan

Received December 23, 2009, Accepted December 22, 2010.

#### Abstract

Let D be an acyclic orientation of a simple graph G. An arc is called *dependent* if its reversal creates a directed cycle. Let d(D) denote the number of dependent arcs in D. Define  $d_{\min}(G)$  to be the minimum number of d(D) over all acyclic orientations D of G. Let  $C_n$  denote the cycle on n vertices. The cube  $C_n^3$  is the graph defined on the same vertex set of  $C_n$  such that any two distinct vertices u and v are adjacent in  $C_n^3$  if and only if their distance in  $C_n$  is at most 3. In this paper, we study the structure of  $C_{3k}^3$  to determine its minimum number of dependent arcs.

Keywords and Phrases: Acyclic orientation, Dependent arc, Cycle, Cube.

<sup>\*2000</sup> Mathematics Subject Classification. Primary 05C15.

<sup>&</sup>lt;sup>†</sup>Research supported partially by NSFC (No.10771097)

<sup>&</sup>lt;sup>‡</sup>Corresponding author. E-mail: makwlih@sinica.edu.tw

## 1. Introduction

Graphs considered in this paper are finite, without loops, or multiple edges. For a graph G, we denote its vertex set, edge set, and the degree of a vertex v by V(G), E(G), and d(v), respectively. If  $V_1$  is a nonempty set of vertices of G, then we use  $G[V_1]$  to denote the induced subgraph of G with vertex set  $V_1$ . If  $E_1$  is a set of edges of G, then we use  $G - E_1$  to denote the spanning subgraph of G with edge set  $E(G) - E_1$ . An orientation D of G assigns a direction to each edge of G and it is called *acyclic* if there does not exist any directed cycle. An arc of D is called *dependent* if its reversal creates a directed cycle. Let d(D) denote the number of dependent arcs of D. We use  $d_{\min}(G)$  and  $d_{\max}(G)$  to denote the minimum and maximum number of d(D) over all acyclic orientations D of G, respectively. It is known ([2]) that  $d_{\max}(G) = ||G|| - |G| + c$  for a graph G having c components.

A proper k-coloring of a graph G is a mapping f from V(G) to the set  $\{1, 2, \ldots, k\}$  such that  $f(x) \neq f(y)$  for each edge  $xy \in E(G)$ . The chromatic number  $\chi(G)$  is the smallest integer k such that G has a k-coloring. The girth g(G) is the minimum length of a cycle in a graph G if there is any, and is  $\infty$  if G possesses no cycles.

An interpolation question asks whether G has an acyclic orientation with exactly k dependent arcs for each k satisfying  $d_{\min}(G) \leq k \leq d_{\max}(G)$ . The graph G is called *fully orientable* if its interpolation question has an affirmative answer.

West [7] showed that complete bipartite graphs are fully orientable. Fisher et al. [2] showed that G is fully orientable if  $\chi(G) < g(G)$ , and  $d_{\min}(G) = 0$  in this case. Since it is well-known [3] that every planar graph G with  $g(G) \ge 4$ is 3-colorable, planar graphs of girth at least 4 are fully orientable.

The full orientability for a few classes of special graphs has been recently investigated. Lih, Lin, and Tong [6] showed that outerplanar graphs are fully orientable. This has been generalized by Lai, Chang, and Lih [4] to 2-degenerate graphs. A graph G is called 2-*degenerate* if every subgraph H of G contains a vertex of degree at most 2 in H. Lai and Lih [5] gave further examples of fully orientable graphs, such as subdivisions of Halin graphs and graphs of maximum degree at most three. Let  $K_{r(n)}$  denote the complete r-partite graph each of whose partite sets has n vertices. Chang, Lin, and Tong [1] proved that  $K_{r(n)}$  is not fully orientable if  $r \ge 3$  and  $n \ge 2$ . These are the only known graphs that are not fully orientable. Suppose that G is a connected graph. For  $m \ge 2$ , the *m*th power of G, denoted  $G^m$ , is the graph defined on the same vertex set V(G) such that two distinct vertices u and v are adjacent in  $G^m$  if and only if their distance in G is at most m. In particular,  $G^2$  is called the square of G and  $G^3$  is called the *cube* of G. Assume that  $C_n$ ,  $n \ge 3$ , is the cycle  $v_0, v_1, \ldots, v_{n-1}, v_0$ . A problem posed in [8] states as follows. For a given integer  $m \ge 2$ , does there exist a smallest constant c(m) such that  $C_n^m$  is fully orientable when  $n \ge c(m)$ ? In this paper, we give a proof for the determination of  $d_{\min}(C_{3k}^3)$ . We have worked out a proof for the full orientability of  $C_n^3$ . However, it is too lengthy to be included here.

### 2. Results

Given an acyclic orientation D of G, we denote by  $u \to v$  the arc with tail uand head v. If we do not know which of u, v is the head, we still use uv to denote the oriented version of uv in D. We make the convention that the script letter  $\mathcal{G}$  is used to denote an acyclically oriented version of G if the orientation is tacitly understood. The *in-degree*  $d_D^-(v)$  of a vertex v in D is the number of arcs with head v; the *out-degree*  $d_D^+(v)$  of v in D is the number of arcs with tail v. We call v a source if  $d_D^+(v) = d_G(v)$  and v a sink if  $d_D^-(v) = d_G(v)$ , where  $d_G(v)$  is the degree of v in G. Let R(D) denote the set of dependent arcs in D. If we reverse all arcs in D, we denote the new orientation by  $D^-$ . It is easy to see that  $D^-$  is also an acyclic orientation and an arc is dependent in D if and only if its reversal is dependent in  $D^-$ . If D' is a subdigraph of D, then we write  $D' \subseteq D$ . The complete graph on n vertices is denoted by  $K_n$ .

The following two Lemmas are evident.

**Lemma 1.** Let  $D' \subseteq D$ . If an arc is a dependent arc in D', then it is a dependent arc in D.

**Lemma 2.** For any acyclic orientation D of  $K_3$ , the number of dependent arcs is 1. Any vertex  $v \in V(K_3)$  is a source or a sink in D if and only if v is incident with a dependent arc.

**Lemma 3.** For any acyclic orientation D of  $K_4$ , the number of dependent arcs is 3. Furthermore, every vertex of  $K_4$  is incident with at least one dependent arc.

**Proof.** It is well-known [7] that  $d_{\min}(K_n) = d_{\max}(K_n) = (n-2)(n-1)/2$ . Hence,  $d_{\min}(K_4) = d_{\max}(K_4) = 3$ . For any acyclic orientation D of the underlying graph  $K_4$ ,  $d_D^+(v) \ge 2$  or  $d_D^-(v) \ge 2$ . So v is a source or a sink in an acyclic orientation  $D' \subseteq D$  of a certain subgraph  $K_3$ . By Lemma 2, v is incident with at least one dependent arc.

In  $C_n^3$ , any two subgraphs induced by the same number of vertices that are consecutive on  $C_n$  are isomorphic. In particular, every subgraph induced by three consecutive vertices is isomorphic to  $K_3$ , and every subgraph induced by four consecutive vertices is isomorphic to  $K_4$ . Denote by  $G_i$ ,  $i = 0, 1, \ldots, k-1$ , the subgraph of  $C_{3k}^3$  induced by the vertex set  $\{v_{3i}, v_{3i+1}, v_{3i+2}, v_{3i+3}, v_{3i+4}, v_{3i+5}\}$ , where indices are taken modulo 3k. These are k isomorphic subgraphs of  $C_{3k}^3$ . Let H denote  $G_0$  for short. Let  $H_1 = G[v_0, v_1, v_2]$ ,  $H_2 = G[v_3, v_4, v_5]$ , and  $H_3 = H - (E(H_1) \cup E(H_2))$ .

For an acyclic orientation D of  $C_{3k}^3$ , we use  $d_1$ ,  $d_2$ , and  $d_3$  to denote the number of dependent arcs of  $E(H_1)$ ,  $E(H_2)$ , and  $E(H_3)$  in D, respectively. According to the convention made at the beginning of this section, let  $\mathcal{H}$  be an acyclically oriented version of H. Let  $d'(\mathcal{H}) = d_3 + \frac{1}{2}(d_1 + d_2)$ , and we always abbreviate  $d'(\mathcal{H})$  to d'.

**Remark**. If  $\mathcal{H} \subseteq \mathcal{G}$  and  $\mathcal{G}$  is an acyclically oriented version of G, then  $d'(\mathcal{H})$  evaluated in  $\mathcal{G}$  is greater than or equal to  $d'(\mathcal{H})$  evaluated in  $\mathcal{H}$  by Lemma 1.

**Lemma 4.** For any acyclic orientation D of H,  $d'(\mathcal{H}) \ge 4$ .

**Proof.** Since  $H_1$  and  $H_2$  are triangles,  $d_1 \ge 1$  and  $d_2 \ge 1$  in any acyclic orientation D of H. Let  $G[v_0, v_1, v_2, v_3]$  be the subgraph of G induced by the vertex set  $\{v_0, v_1, v_2, v_3\}$ . Since  $G[v_0, v_1, v_2, v_3] \cong K_4$ , at least one of  $v_0v_3, v_1v_3, v_2v_3$  is dependent in D by Lemmas 1 and 3. So  $d_3 \ge 1$ .

#### Case 1. $d_3 = 1$ .

Since  $G[v_0, v_1, v_2, v_3] \cong G[v_2, v_3, v_4, v_5] \cong K_4$ , at least one of  $v_0v_3, v_1v_3, v_2v_3$ and at least one of  $v_2v_3, v_2v_4, v_2v_5$  are dependent by Lemmas 1 and 3. Since  $d_3 = 1, v_2v_3$  is the only dependent edge of  $E(H_3)$ .

We may assume that  $v_2 \rightarrow v_3$ .

By Lemma 2 and Lemma 3, we can determine the orientation of the following arcs:  $v_2 \rightarrow v_0, v_2 \rightarrow v_1, v_2 \rightarrow v_4, v_4 \rightarrow v_1, v_4 \rightarrow v_3, v_5 \rightarrow v_3, v_1 \rightarrow v_3, v_3 \rightarrow v_0, v_1 \rightarrow v_0, v_5 \rightarrow v_2, v_5 \rightarrow v_4$ . It follows that  $v_2 \rightarrow v_0, v_2 \rightarrow v_1, v_1 \rightarrow v_0$ ,

401

 $v_4 \to v_3, v_5 \to v_3$ , and  $v_5 \to v_4$  are dependent. So  $d_1 = 3$  and  $d_2 = 3$ . Thus  $d' = d_3 + \frac{1}{2}(d_1 + d_2) = 1 + \frac{1}{2}(3 + 3) = 4$ .

Case 2.  $d_3 = 2$ .

**Case 2.1.**  $d_1 = 1$ . (By symmetry, the case  $d_2 = 1$  is similar.)

At least three arcs in  $\mathcal{G}[v_0, v_1, v_2, v_3]$  are dependent by Lemma 3. Since  $d_3 = 2$  and  $d_1 = 1$ , two arcs of  $v_0v_3, v_1v_3$ , and  $v_2v_3$  in D are dependent and none of  $v_1v_4, v_2v_4$ , and  $v_2v_5$  is dependent. So from  $\mathcal{G}[v_1, v_2, v_4]$ , neither  $v_0v_1$  nor  $v_0v_2$  is dependent since  $v_1v_2$  is dependent.

We may assume that  $v_2 \rightarrow v_3$ .

Then  $v_5 \rightarrow v_3, v_4 \rightarrow v_3, v_1 \rightarrow v_3, v_0 \rightarrow v_3$ .

Case 2.1.1. Assume  $v_1 \rightarrow v_2$ .

Then  $v_1 \to v_0$ ,  $v_0 \to v_2$ ,  $v_1 \to v_4$ ,  $v_4 \to v_2$ ,  $v_2 \to v_5$ ,  $v_4 \to v_5$ . It follows that  $v_0 \to v_3$ ,  $v_1 \to v_3$ , and  $v_2 \to v_3$  are dependent, contradicting the assumption that  $d_3 = 2$ .

Case 2.1.2. Assume  $v_2 \rightarrow v_1$ .

By Lemma 2 and Lemma 3,  $v_0 \to v_1$ ,  $v_2 \to v_0$ ,  $v_4 \to v_1$ ,  $v_2 \to v_4$ ,  $v_5 \to v_2$ ,  $v_5 \to v_4$ . It follows that  $v_5 \to v_4$ ,  $v_5 \to v_3$ , and  $v_4 \to v_3$  are dependent, i.e.,  $d_2 = 3$ . So  $d' = d_3 + \frac{1}{2}(d_1 + d_2) = 2 + \frac{1}{2}(1 + 3) = 4$ .

Case 2.2.  $d_1 \ge 2$  and  $d_2 \ge 2$ .

In this subcase  $d' = d_3 + \frac{1}{2}(d_1 + d_2) \ge 2 + \frac{1}{2}(2+2) = 4$ .

Case 3.  $d_3 \ge 3$ .

Since 
$$d_1 \ge 1$$
 and  $d_2 \ge 1$ ,  $d' = d_3 + \frac{1}{2}(d_1 + d_2) \ge 3 + \frac{1}{2}(1+1) = 4$ .

By Lemma 4, we know that  $d' \ge 4$  in any acyclic orientations D of H. Now we are going to determine all the cases for which d' = 4.

**Lemma 5.** Let D be an acyclic orientation of H. If we suppose that  $v_2 \rightarrow v_3$  in D, then there are only 12 possible cases for D for which  $d'(\mathcal{H}) = 4$ .

**Proof.** We again use d' to abbreviate  $d'(\mathcal{H})$  in the following proof.

**Case 1.**  $d_3 = 1$ .

Since d' = 4, we have  $d_1 = 3$  and  $d_2 = 3$ . By Case 1 of Lemma 4, we have  $v_2 \rightarrow v_0, v_2 \rightarrow v_1, v_2 \rightarrow v_4, v_4 \rightarrow v_1, v_4 \rightarrow v_3, v_5 \rightarrow v_3, v_1 \rightarrow v_3, v_3 \rightarrow v_0, v_1 \rightarrow v_0, v_5 \rightarrow v_2, v_5 \rightarrow v_4.$ 

We denote by  $Q_1$  this directed version of H.

Case 2.  $d_3 = 2$ .

Case 2.1.  $d_1 = 1$ .

Since d' = 4, we have  $d_2 = 3$ . By Case 2.1 of Lemma 4, we have  $v_5 \rightarrow v_3, v_4 \rightarrow v_3, v_1 \rightarrow v_3, v_0 \rightarrow v_3, v_2 \rightarrow v_1, v_0 \rightarrow v_1, v_2 \rightarrow v_0, v_4 \rightarrow v_1, v_2 \rightarrow v_4, v_5 \rightarrow v_2, v_5 \rightarrow v_4.$ 

We denote by  $Q_2$  this directed version of H.

Case 2.2.  $d_1 = 2$ .

Since d' = 4, we have  $d_2 = 2$ .

Case 2.2.1.  $v_2 \rightarrow v_3$  is dependent.

Case 2.2.1.1.  $v_0v_3$  is dependent.

Since  $d_3 = 2$ , none of  $v_1v_3$ ,  $v_1v_4$ ,  $v_2v_4$ , and  $v_2v_5$  is dependent. From  $\mathcal{G}[v_1, v_2, v_3, v_4]$ ,  $v_1v_2$  and  $v_3v_4$  are dependent by Lemma 3. From  $\mathcal{G}[v_2, v_4, v_5]$ ,  $v_4v_5$  is dependent by Lemma 2. Since  $d_2 = 2$ ,  $v_3v_5$  is not dependent. Then  $v_2 \rightarrow v_5$ ,  $v_5 \rightarrow v_3$ ,  $v_4 \rightarrow v_2$ ,  $v_4 \rightarrow v_5$ ,  $v_4 \rightarrow v_3$ ,  $v_1 \rightarrow v_4$ ,  $v_1 \rightarrow v_2$ ,  $v_1 \rightarrow v_3$ . It follows that  $v_1 \rightarrow v_3$ is dependent, and hence  $d_3 \ge 3$ , a contradiction.

Case 2.2.1.2.  $v_2v_5$  is dependent.

By symmetry, this case is similar to the case 2.2.1.1, and there does not exist any acyclic orientation to satisfy the conditions of this case.

Case 2.2.1.3.  $v_1v_3$  is dependent.

Since  $d_3 = 2$ , none of  $v_0v_3$ ,  $v_1v_4$ ,  $v_2v_4$ , and  $v_2v_5$  is dependent. From  $\mathcal{G}[v_1, v_2, v_3, v_4]$ ,  $v_1v_2$  and  $v_3v_4$  are dependent. From  $\mathcal{G}[v_2, v_4, v_5]$ ,  $v_4v_5$  is dependent. So  $v_3v_5$  is not dependent. Then  $v_2 \to v_5$ ,  $v_5 \to v_3$ ,  $v_4 \to v_2$ ,  $v_4 \to v_5$ ,  $v_4 \to v_3$ ,  $v_1 \to v_4$ ,  $v_1 \to v_2$ ,  $v_1 \to v_3$ ,  $v_2 \to v_0$ ,  $v_1 \to v_0$ . It follows that  $v_1 \to v_0$  is dependent, and hence  $v_2 \to v_0$  is not dependent. Then  $v_0 \to v_3$ .

We denote by  $Q_3$  this directed version of H.

Case 2.2.1.4.  $v_2v_4$  is dependent.

By symmetry, this case is similar to the case 2.2.1.3.

Then  $v_2 \to v_0, v_0 \to v_3, v_3 \to v_1, v_0 \to v_1, v_2 \to v_1, v_1 \to v_4, v_3 \to v_4, v_2 \to v_4, v_5 \to v_3, v_5 \to v_4, v_2 \to v_5.$ 

We denote by  $Q_4$  this directed version of H.

403

Case 2.2.1.5.  $v_1v_4$  is dependent.

Since  $d_3 = 2$ , none of  $v_0v_3$ ,  $v_1v_3$ ,  $v_2v_4$ , and  $v_2v_5$  is dependent. From  $\mathcal{G}[v_0, v_1, v_2]$ ,  $v_0v_1$  is dependent. From  $\mathcal{G}[v_2, v_4, v_5]$ ,  $v_4v_5$  is dependent.

Case 2.2.1.5.1.  $v_0v_2$  is dependent.

Since  $d_1 = 2$ ,  $v_1v_2$  is not dependent. From  $\mathcal{G}[v_1, v_2, v_3, v_4]$ ,  $v_3v_4$  is dependent. dent. Then  $v_2 \rightarrow v_1$ ,  $v_1 \rightarrow v_3$ ,  $v_3 \rightarrow v_0$ ,  $v_2 \rightarrow v_0$ ,  $v_1 \rightarrow v_0$ ,  $v_4 \rightarrow v_2$ ,  $v_4 \rightarrow v_1$ ,  $v_4 \rightarrow v_3$ ,  $v_2 \rightarrow v_5$ ,  $v_4 \rightarrow v_5$ ,  $v_5 \rightarrow v_3$ .

We denote by  $Q_5$  this directed version of H.

Case 2.2.1.5.2.  $v_0v_2$  is not dependent.

Since  $d_1 = 2$ ,  $v_1v_2$  is dependent. Then  $v_2 \to v_0$ ,  $v_0 \to v_3$ ,  $v_3 \to v_1$ ,  $v_0 \to v_1$ ,  $v_2 \to v_1$ ,  $v_4 \to v_1$ ,  $v_4 \to v_3$ ,  $v_5 \to v_3$ . If  $v_4 \to v_5$  in this case, then  $v_4 \to v_2$ ,  $v_2 \to v_5$ . We denote by  $Q_6$  this directed version of H. If  $v_5 \to v_4$  in this case, then  $v_5 \to v_2$ ,  $v_2 \to v_4$ . We denote by  $Q_7$  this directed version of H.

**Case 2.2.2.**  $v_2 \rightarrow v_3$  is not dependent.

From  $\mathcal{G}[v_0, v_1, v_2, v_3]$  and  $\mathcal{G}[v_2, v_3, v_4, v_5]$ , at least one of  $v_0v_3$  and  $v_1v_3$  and at least one of  $v_2v_4$  and  $v_2v_5$  are dependent by Lemma 3. Since  $d_3 = 2$ , only one of  $v_0v_3$  and  $v_1v_3$  is dependent, only one of  $v_2v_4$ ,  $v_2v_5$  is dependent and  $v_1v_4$ is not dependent.

From  $\mathcal{G}[v_1, v_2, v_3, v_4]$ , at least one of  $v_1v_3$  and  $v_2v_4$  is dependent.

**Case 2.2.2.1.** Only one of  $v_1v_3$  and  $v_2v_4$  is dependent.

From  $\mathcal{G}[v_1, v_2, v_3, v_4]$ , both  $v_1v_2$  and  $v_3v_4$  are dependent. Case 2.2.2.1.1.  $v_1v_3$  is dependent.

So  $v_2v_4$  is not dependent.  $v_2v_5$  is dependent and  $v_0v_3$  is not dependent. Then  $v_4 \rightarrow v_2$ ,  $v_4 \rightarrow v_3$ ,  $v_1 \rightarrow v_4$ ,  $v_1 \rightarrow v_2$ ,  $v_3 \rightarrow v_0$ ,  $v_2 \rightarrow v_0$ ,  $v_1 \rightarrow v_0$ . It follows that  $v_1 \rightarrow v_0$ ,  $v_2 \rightarrow v_0$  and  $v_1 \rightarrow v_2$  are dependent, contradicting the assumption that  $d_1 = 2$ .

Case 2.2.2.1.2.  $v_1v_3$  is not dependent.

So  $v_2v_4$  is dependent. By symmetry, this case is similar to the case 2.2.2.1.1, and there does not exist any acyclic orientation to satisfy the conditions of this case.

**Case 2.2.2.2.** Both  $v_1v_3$  and  $v_2v_4$  are dependent.

Since  $d_3 = 2$ , neither  $v_0v_3$  nor  $v_2v_5$  is dependent. From  $\mathcal{G}[v_0, v_2, v_3]$ ,  $v_0v_2$  is dependent. From  $\mathcal{G}[v_2, v_3, v_5]$ ,  $v_3v_5$  is dependent.

#### Case 2.2.2.2.1. $v_0v_1$ is dependent.

So  $v_1v_2$  is not dependent. Then  $v_3 \to v_0$ ,  $v_2 \to v_0$ ,  $v_1 \to v_2$ ,  $v_1 \to v_3$ ,  $v_1 \to v_0$ ,  $v_4 \to v_1$ ,  $v_4 \to v_2$ ,  $v_4 \to v_3$ . It follows that  $v_4 \to v_3$  is dependent, and hence  $v_4v_5$  is not dependent. Then  $v_4 \to v_5$ ,  $v_5 \to v_2$ , and  $v_5 \to v_3$ .

We denote by  $Q_8$  this directed version of H.

Case 2.2.2.2.2.  $v_0v_1$  is not dependent.

So  $v_1v_2$  is dependent. Then  $v_3 \to v_0$ ,  $v_2 \to v_0$ ,  $v_0 \to v_1$ ,  $v_3 \to v_1$ ,  $v_2 \to v_1$ ,  $v_5 \to v_2$ ,  $v_5 \to v_3$ ,  $v_2 \to v_4$ ,  $v_5 \to v_4$ . It follows that  $v_5 \to v_4$  is dependent, and hence  $v_3v_4$  is not dependent. Then  $v_3 \to v_4$  and  $v_4 \to v_1$ .

We denote by  $Q_9$  this directed version of H.

#### Case 2.3. $d_1 = 3$ .

Since d' = 4,  $d_2 = 1$ . Then  $v_2 \to v_5$ ,  $v_2 \to v_4$ ,  $v_4 \to v_5$ ,  $v_5 \to v_3$ ,  $v_4 \to v_3$ ,  $v_4 \to v_1$ ,  $v_1 \to v_3$ ,  $v_3 \to v_0$ ,  $v_1 \to v_0$ ,  $v_2 \to v_1$ ,  $v_2 \to v_0$ .

We denote by  $Q_{10}$  this directed version of H.

#### **Case 3.** $d_3 = 3$ .

Since d' = 4,  $d_1 = 1$ , and  $d_2 = 1$ . So at least two of  $v_0v_3, v_1v_3$ , and  $v_2v_3$  are dependent and at least two of  $v_2v_3, v_2v_4$ , and  $v_2v_5$  are dependent. Since  $d_3 = 3$ ,  $v_2v_3$  is dependent. Only one of  $v_0v_3$  and  $v_1v_3$  is dependent, only one of  $v_2v_4$  and  $v_2v_5$  is dependent, and  $v_1v_4$  is not dependent.

Case 3.1.  $v_0v_3$  is dependent.

So  $v_1v_3$  is not dependent. From  $\mathcal{G}[v_1, v_3, v_4]$ ,  $v_3v_4$  is dependent. Since  $d_2 = 1$ , neither  $v_3v_5$  nor  $v_4v_5$  is dependent. From  $\mathcal{G}[v_2, v_3, v_4, v_5]$ ,  $v_2v_5$  is dependent. So  $v_2v_4$  is not dependent. From  $\mathcal{G}[v_1, v_2, v_4]$ ,  $v_1v_2$  is dependent. Since  $d_1 = 1$ , neither  $v_0v_1$  nor  $v_0v_2$  is dependent. Then  $v_2 \to v_1, v_2 \to v_4, v_4 \to v_1, v_2 \to v_0, v_0 \to v_1, v_0 \to v_3, v_1 \to v_3, v_4 \to v_3, v_4 \to v_5, v_5 \to v_3, v_2 \to v_5$ .

We denote by  $Q_{11}$  this directed version of H.

Case 3.2.  $v_0v_3$  is not dependent.

So  $v_1v_3$  is dependent. From  $\mathcal{G}[v_0, v_1, v_2, v_3]$ , at least one of  $v_0v_1$  and  $v_0v_2$  is dependent. Since  $d_1 = 1$ ,  $v_1v_2$  is not dependent. From  $\mathcal{G}[v_1, v_2, v_4]$ ,  $v_2v_4$  is dependent. So  $v_2v_5$  is not dependent. From  $\mathcal{G}[v_2, v_3, v_4, v_5]$ , at least one of  $v_3v_5$  and  $v_4v_5$  is dependent. Since  $d_2 = 1$ ,  $v_3v_4$  is not dependent. Then

 $v_2 \rightarrow v_0, v_1 \rightarrow v_3, v_1 \rightarrow v_0, v_1 \rightarrow v_4, v_4 \rightarrow v_3, v_2 \rightarrow v_1, v_2 \rightarrow v_4, v_5 \rightarrow v_3, v_5 \rightarrow v_4$ . It follows that  $v_5 \rightarrow v_3$  and  $v_2 \rightarrow v_0$  are dependent, and hence  $v_5 \rightarrow v_4$  and  $v_1 \rightarrow v_0$  are not dependent. Then  $v_0 \rightarrow v_3, v_2 \rightarrow v_5$ .

We denote by  $Q_{12}$  this directed version of H.

**Remark.** By Lemma 5 and assuming  $v_2 \to v_3$  in D, there are only 12 possible choices for D to make  $d'(\mathcal{H}) = 4$ . If we assume that  $v_3 \to v_2$  in D, there are another 12 possible choices for D to make  $d'(\mathcal{H}) = 4$  and they are actually  $Q_i^-$  for  $i = 1, 2, \ldots, 12$ . Since the structures of  $Q_i$  and  $Q_i^-$  are essentially the same, we use  $Q_i$  to represent  $Q_i$  and  $Q_i^-$  unless otherwise stated.

It is easy to see that  $C_n^3 \cong K_n$  for  $3 \leq n \leq 7$ . Thus,  $d_{\min}(C_{3k}^3) = 1$  when k = 1 and  $d_{\min}(C_{3k}^3) = 10$  when k = 2.

**Theorem 6.** If  $k \ge 3$  then  $d_{\min}(C_{3k}^3) = 4k + 1$ .

**Proof.** We first prove that  $d_{\min}(C_{3k}^3) \ge 4k + 1$ . Suppose to the contrary that  $d_{\min}(C_{3k}^3) < 4k + 1$ . In the paragraph after Lemma 3, we defined  $G_i$  to be the subgraph of  $C_{3k}^3$  induced by the vertex set  $\{v_{3i}, v_{3i+1}, v_{3i+2}, v_{3i+3}, v_{3i+4}, v_{3i+5}\}$  for  $i = 0, 1, \ldots, k - 1$  and H to be  $G_0$ . Any two of these  $G_i$ 's are isomorphic.

Since  $G_i \cong H$ ,  $d'(\mathcal{G}_i) \ge 4$  for all *i* by Lemma 4. So for any acyclic orientation *D* of  $C_{3k}^3$ ,  $d(D) = \sum_{i=0}^{k-1} d'(\mathcal{G}_i) \ge 4k$ . The assumption that  $d_{\min}(C_{3k}^3) < 4k + 1$  implies that  $d_{\min}(C_{3k}^3) = 4k$ . Hence, there exists an acyclic orientation *D* of  $C_{3k}^3$  such that d(D) = 4k and  $d'(\mathcal{G}_i) = 4$  for all *i*.

If  $\mathcal{G}_0$  is  $Q_j$  for some  $j \in \{7, 10, 11\}$ , then  $d'(\mathcal{G}_1) > 4$  by Lemma 5, a contradiction. Since  $G_i \cong G_0$  for all i, every  $\mathcal{G}_i$  is different from  $Q_j$  for  $j \in \{7, 10, 11\}$ .

If  $\mathcal{G}_0$  is  $Q_j$  for some  $j \in \{2, 5\}$ , then  $d'(\mathcal{G}_{k-1}) > 4$  by Lemma 5, a contradiction. Hence, all  $\mathcal{G}_i$  must be different from  $Q_j$  for  $j \in \{2, 5\}$ .

If  $\mathcal{G}_0$  is  $Q_6$ , then, for i = 1, 2, ..., k - 2,  $d'(\mathcal{G}_i) = 4$  only when  $\mathcal{G}_i$  is  $Q_3$  by Lemma 5. But then  $d'(\mathcal{G}_{k-1}) > 4$ , a contradiction. Hence, all  $\mathcal{G}_i$  must be different from  $Q_6$ .

If  $\mathcal{G}_0$  is  $Q_1$ , then, for i = 1, 2, ..., k - 1,  $d'(\mathcal{G}_i) = 4$  only when  $\mathcal{G}_i$  is  $Q_1$  by Lemma 5. Assume that  $v_2 \to v_3$  in  $\mathcal{G}_0$ . Then a directed cycle  $v_0 \to v_{n-3} \to v_{n-6} \cdots \to v_3 \to v_0$  is produced, contradicting to the acyclicity of D. Hence, all  $\mathcal{G}_i$  must be different from  $Q_1$ .

If  $\mathcal{G}_0$  is  $Q_3$ , then, for i = 1, 2, ..., k - 1,  $d'(\mathcal{G}_i) = 4$  only when  $\mathcal{G}_i$  is  $Q_3$  by Lemma 5. Assume that  $v_2 \to v_3$  in  $\mathcal{G}_0$ . Then a directed cycle  $v_0 \to v_3 \to v_6 \cdots \to v_{n-3} \to v_0$  is produced, contradicting to the acyclicity of D. Hence, all  $\mathcal{G}_i$  must be different from  $Q_3$ . If  $\mathcal{G}_0$  is  $Q_4$ , then, for i = 1, 2, ..., k - 1,  $d'(\mathcal{G}_i) = 4$  only when  $\mathcal{G}_i$  is  $Q_4$  by Lemma 5. Assume that  $v_2 \to v_3$  in  $\mathcal{G}_0$ . Then a directed cycle  $v_0 \to v_3 \to v_6 \cdots \to v_{n-3} \to v_0$  is produced, contradicting to the acyclicity of D. Hence, all  $\mathcal{G}_i$  must be different from  $Q_4$ .

If  $\mathcal{G}_0$  is  $Q_8$ , then, for i = 1, 2, ..., k - 1,  $d'(\mathcal{G}_i) = 4$  only when  $\mathcal{G}_i$  is  $Q_8$  by Lemma 5. Assume that  $v_2 \to v_3$  in  $\mathcal{G}_0$ . Then a directed cycle  $v_0 \to v_{n-3} \to v_{n-6} \cdots \to v_3 \to v_0$  is produced, contradicting to the acyclicity of D. Hence, all  $\mathcal{G}_i$  must be different from  $Q_8$ .

If  $\mathcal{G}_0$  is  $Q_9$ , then, for i = 1, 2, ..., k - 1,  $d'(\mathcal{G}_i) = 4$  only when  $\mathcal{G}_i$  is  $Q_9$  by Lemma 5. Assume that  $v_2 \to v_3$  in  $\mathcal{G}_0$ . Then a directed cycle  $v_0 \to v_{n-3} \to v_{n-6} \cdots \to v_3 \to v_0$  is produced, contradicting to the acyclicity of D. Hence, all  $\mathcal{G}_i$  must be different from  $Q_9$ .

If  $\mathcal{G}_0$  is  $Q_{12}$ , then, for i = 1, 2, ..., k - 1,  $d'(\mathcal{G}_i) = 4$  only when  $\mathcal{G}_i$  is  $Q_{12}$ by Lemma 5. Assume that  $v_2 \to v_3$  in  $\mathcal{G}_0$ . Then a directed cycle  $v_0 \to v_3 \to v_6 \cdots \to v_{n-3} \to v_0$  is produced, contradicting to the acyclicity of D. Hence, all  $\mathcal{G}_i$  must be different from  $Q_{12}$ .

In summary, for any orientation D, there exist  $i_0 \in \{0, 1, 2 \cdots k - 1\}$  such that  $d'(\mathcal{G}_{i_0}) > 4$ . Hence,  $d_{\min}(C_{3k}^3) \ge 4k + 1$ .

In the second part, we are going to prove that  $d_{\min}(C_{3k}^3) \leq 4k+1$ . In fact, an acyclic orientation  $D_0$  of G will be constructed so that  $d(D_0) = 4k+1$ .

Let  $D_0$  be defined as follows.

 $v_3 \rightarrow v_1 \rightarrow v_0, \ v_1 \rightarrow v_2 \rightarrow v_0, \ v_3 \rightarrow v_0, v_{3k-1} \rightarrow v_1 \rightarrow v_{3k-2} \rightarrow v_0 \rightarrow v_{3k-3}, \\ v_{3k-1} \rightarrow v_0, \ v_{3k-1} \rightarrow v_2, \ v_1 \rightarrow v_4, \ v_3 \rightarrow v_2 \rightarrow v_4, \ v_5 \rightarrow v_2, \ v_3 \rightarrow v_5 \rightarrow v_4, \\ v_3 \rightarrow v_4, \ v_3 \rightarrow v_6;$ 

 $v_{3i} \to v_{3i-3}$  for each  $i = 3, 4, \ldots, k-1$ ;

$$v_{3i+2} \to v_{3i-1} \to v_{3i+1} \to v_{3i-2} \to v_{3i}$$
 for each  $i = 2, 3, \dots, k-1$ ;

 $v_{3i+2} \to v_{3i+1} \to v_{3i}$  for each  $i = 2, 3, \dots, k-1$ ;

 $v_{3i-1} \to v_{3i}$  and  $v_{3i+2} \to v_{3i}$  for each  $i = 2, 3, \dots, k-1$ .

Clearly,  $D_0$  is an acyclic orientation of  $C_{3k}^3$  such that the set of dependent arcs is as follows.

 $R(D_0) = \{ v_{3k-1} \to v_0, v_{3k-1} \to v_2, v_1 \to v_0, v_3 \to v_0, v_1 \to v_4, v_3 \to v_2, v_3 \to v_4, v_5 \to v_4, v_3 \to v_6 \} \cup \{ v_{3i+2} \to v_{3i+1}, v_{3i+1} \to v_{3i}, v_{3i+2} \to v_{3i}, v_{3i-1} \to v_{3i} \mid i = 2, \dots, k-1 \}.$ 

Therefore,  $d(D_0) = |R(D_0)| = 4k + 1$ . This completes the proof of the theorem.

In this paper, we have only determined the minimum number of dependent

arcs of  $C_{3k}^3$ . A complete proof for the determination of the minimum number of dependent arcs and the full orientability of  $C_n^3$  is too lengthy to be included here. However, the proof methods used in the present paper fully illustrate the techniques that would be employed in a complete proof.

## References

- G. J. Chang, C.-Y. Lin, and L.-D. Tong, Independent arcs of acyclic orientations of complete r-partite graphs, *Discrete Math.*, **309**(2009), 4280-4286.
- [2] D. C. Fisher, K. Fraughnaugh, L. Langley, and D. B. West, The number of dependent arcs in an acyclic orientation, *J. Combin. Theory*, Ser. B 71(1997), 73-78.
- [3] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther Univ. Halle-Wittenberg, *Math.-Nat.* Reihe 8(1959), 109-120.
- [4] H.-H. Lai, G. J. Chang, and K.-W. Lih, On fully orientability of 2degenerate graphs, *Inform. Process. Lett.*, 105(2008), 177-181.
- [5] H.-H. Lai and K.-W. Lih, On preserving full orientability of graphs, *European J. Combin.*, **31**(2010), 598-607.
- [6] K.-W. Lih, C.-Y. Lin, and L.-D. Tong, On an interpolation property of outerplanar graphs, *Discrete Appl. Math.*, 154(2006), 166-172.
- [7] D. B. West, Acyclic orientations of complete bipartite graphs, *Discrete Math.*, 138(1995), 393-396.
- [8] F.-W. Xu, W.-F. Wang, and K.-W. Lih, *Full orientability of the square of a cycle*, to appear in Ars Combin.

# Appendix

Note 1. Let  $G_0$  and  $G_1$  be the induced subgraphs defined in Theorem 6. Suppose that  $\mathcal{G}_0$  is  $Q_i$  and  $\mathcal{G}_1$  is  $Q_j$ . We say that  $Q_i$  and  $Q_j$  can be *pasted* together if there exists an acyclic orientation D of  $G_0 \cup G_1$  such that (i)  $Q_i, Q_j \subset D$ ; (ii) an edge of  $G_0 \cap G_1$  is a dependent edge in D if and only if it is a dependent edge in  $Q_i$  and  $Q_j$ . In Table 1, a tick in the (i, j) cell represents that  $Q_i$  and  $Q_j$  can be pasted together.

Note 2. All digraphs  $Q_1$  to  $Q_{12}$  are depicted at the end of this appendix. Under each  $Q_i$ , the three rows of pairs (i, j) represent all the dependent arcs of  $E(H_1)$ ,  $E(H_2)$ , and  $E(H_3)$  in  $Q_i$ , respectively.

|          |       |       |       |       | •••   | ۰.    | J     | 1     |       | 0        |          |          |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
|          | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ | $Q_5$ | $Q_6$ | $Q_7$ | $Q_8$ | $Q_9$ | $Q_{10}$ | $Q_{11}$ | $Q_{12}$ |
| $Q_1$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_2$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_3$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_4$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_5$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_6$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_7$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_8$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_9$    |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_{10}$ |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_{11}$ |       |       |       |       |       |       |       |       |       |          |          |          |
| $Q_{12}$ |       |       |       |       |       |       |       |       |       |          |          |          |

Table 1: Whether  $Q_i$  and  $Q_j$  can be pasted together.







