The Minimum Number of Dependent Arcs in

 $C_{3 k}^{3}{ }^{*}$Fengwei Xu and Weifan Wang ${ }^{\dagger}$
Department of Mathematics, Zhejiang Normal University
Jinhua 321004, China

and
Ko-Wei Lih ${ }^{\ddagger}$
Institute of Mathematics, Academia Sinica
Taipei 10699, Taiwan

Received December 23, 2009, Accepted December 22, 2010.

Abstract

Let D be an acyclic orientation of a simple graph G. An arc is called dependent if its reversal creates a directed cycle. Let $d(D)$ denote the number of dependent arcs in D. Define $d_{\min }(G)$ to be the minimum number of $d(D)$ over all acyclic orientations D of G. Let C_{n} denote the cycle on n vertices. The cube C_{n}^{3} is the graph defined on the same vertex set of C_{n} such that any two distinct vertices u and v are adjacent in C_{n}^{3} if and only if their distance in C_{n} is at most 3 . In this paper, we study the structure of $C_{3 k}^{3}$ to determine its minimum number of dependent arcs.

Keywords and Phrases: Acyclic orientation, Dependent arc, Cycle, Cube.

[^0]
1. Introduction

Graphs considered in this paper are finite, without loops, or multiple edges. For a graph G, we denote its vertex set, edge set, and the degree of a vertex v by $V(G), E(G)$, and $d(v)$, respectively. If V_{1} is a nonempty set of vertices of G, then we use $G\left[V_{1}\right]$ to denote the induced subgraph of G with vertex set V_{1}. If E_{1} is a set of edges of G, then we use $G-E_{1}$ to denote the spanning subgraph of G with edge set $E(G)-E_{1}$. An orientation D of G assigns a direction to each edge of G and it is called acyclic if there does not exist any directed cycle. An arc of D is called dependent if its reversal creates a directed cycle. Let $d(D)$ denote the number of dependent arcs of D. We use $d_{\min }(G)$ and $d_{\max }(G)$ to denote the minimum and maximum number of $d(D)$ over all acyclic orientations D of G, respectively. It is known ([2]) that $d_{\text {max }}(G)=\|G\|-|G|+c$ for a graph G having c components.

A proper k-coloring of a graph G is a mapping f from $V(G)$ to the set $\{1,2, \ldots, k\}$ such that $f(x) \neq f(y)$ for each edge $x y \in E(G)$. The chromatic number $\chi(G)$ is the smallest integer k such that G has a k-coloring. The girth $g(G)$ is the minimum length of a cycle in a graph G if there is any, and is ∞ if G possesses no cycles.

An interpolation question asks whether G has an acyclic orientation with exactly k dependent arcs for each k satisfying $d_{\min }(G) \leqslant k \leqslant d_{\max }(G)$. The graph G is called fully orientable if its interpolation question has an affirmative answer.

West [7] showed that complete bipartite graphs are fully orientable. Fisher et al. [2] showed that G is fully orientable if $\chi(G)<g(G)$, and $d_{\min }(G)=0$ in this case. Since it is well-known [3] that every planar graph G with $g(G) \geqslant 4$ is 3 -colorable, planar graphs of girth at least 4 are fully orientable.

The full orientability for a few classes of special graphs has been recently investigated. Lih, Lin, and Tong [6] showed that outerplanar graphs are fully orientable. This has been generalized by Lai, Chang, and Lih [4] to 2-degenerate graphs. A graph G is called 2-degenerate if every subgraph H of G contains a vertex of degree at most 2 in H. Lai and Lih [5] gave further examples of fully orientable graphs, such as subdivisions of Halin graphs and graphs of maximum degree at most three. Let $K_{r(n)}$ denote the complete r-partite graph each of whose partite sets has n vertices. Chang, Lin, and Tong [1] proved that $K_{r(n)}$ is not fully orientable if $r \geqslant 3$ and $n \geqslant 2$. These are the only known graphs that are not fully orientable.

Suppose that G is a connected graph. For $m \geqslant 2$, the m th power of G, denoted G^{m}, is the graph defined on the same vertex set $V(G)$ such that two distinct vertices u and v are adjacent in G^{m} if and only if their distance in G is at most m. In particular, G^{2} is called the square of G and G^{3} is called the cube of G. Assume that $C_{n}, n \geqslant 3$, is the cycle $v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}$. A problem posed in [8] states as follows. For a given integer $m \geqslant 2$, does there exist a smallest constant $c(m)$ such that C_{n}^{m} is fully orientable when $n \geqslant c(m)$? In this paper, we give a proof for the determination of $d_{\text {min }}\left(C_{3 k}^{3}\right)$. We have worked out a proof for the full orientability of C_{n}^{3}. However, it is too lengthy to be included here.

2. Results

Given an acyclic orientation D of G, we denote by $u \rightarrow v$ the arc with tail u and head v. If we do not know which of u, v is the head, we still use $u v$ to denote the oriented version of $u v$ in D. We make the convention that the script letter \mathcal{G} is used to denote an acyclically oriented version of G if the orientation is tacitly understood. The in-degree $d_{D}^{-}(v)$ of a vertex v in D is the number of arcs with head v; the out-degree $d_{D}^{+}(v)$ of v in D is the number of arcs with tail v. We call v a source if $d_{D}^{+}(v)=d_{G}(v)$ and v a sink if $d_{D}^{-}(v)=d_{G}(v)$, where $d_{G}(v)$ is the degree of v in G. Let $R(D)$ denote the set of dependent arcs in D. If we reverse all arcs in D, we denote the new orientation by D^{-}. It is easy to see that D^{-}is also an acyclic orientation and an arc is dependent in D if and only if its reversal is dependent in D^{-}. If D^{\prime} is a subdigraph of D, then we write $D^{\prime} \subseteq D$. The complete graph on n vertices is denoted by K_{n}.

The following two Lemmas are evident.
Lemma 1. Let $D^{\prime} \subseteq D$. If an arc is a dependent arc in D^{\prime}, then it is a dependent arc in D.

Lemma 2. For any acyclic orientation D of K_{3}, the number of dependent arcs is 1 . Any vertex $v \in V\left(K_{3}\right)$ is a source or a sink in D if and only if v is incident with a dependent arc.

Lemma 3. For any acyclic orientation D of K_{4}, the number of dependent arcs is 3. Furthermore, every vertex of K_{4} is incident with at least one dependent arc.

Proof. It is well-known [7] that $d_{\min }\left(K_{n}\right)=d_{\max }\left(K_{n}\right)=(n-2)(n-1) / 2$. Hence, $d_{\min }\left(K_{4}\right)=d_{\max }\left(K_{4}\right)=3$. For any acyclic orientation D of the underlying graph $K_{4}, d_{D}^{+}(v) \geqslant 2$ or $d_{D}^{-}(v) \geqslant 2$. So v is a source or a sink in an acyclic orientation $D^{\prime} \subseteq D$ of a certain subgraph K_{3}. By Lemma $2, v$ is incident with at least one dependent arc.

In C_{n}^{3}, any two subgraphs induced by the same number of vertices that are consecutive on C_{n} are isomorphic. In particular, every subgraph induced by three consecutive vertices is isomorphic to K_{3}, and every subgraph induced by four consecutive vertices is isomorphic to K_{4}. Denote by $G_{i}, i=0,1, \ldots, k-1$, the subgraph of $C_{3 k}^{3}$ induced by the vertex set $\left\{v_{3 i}, v_{3 i+1}, v_{3 i+2}, v_{3 i+3}, v_{3 i+4}, v_{3 i+5}\right\}$, where indices are taken modulo $3 k$. These are k isomorphic subgraphs of $C_{3 k}^{3}$. Let H denote G_{0} for short. Let $H_{1}=G\left[v_{0}, v_{1}, v_{2}\right], H_{2}=G\left[v_{3}, v_{4}, v_{5}\right]$, and $H_{3}=H-\left(E\left(H_{1}\right) \cup E\left(H_{2}\right)\right)$.

For an acyclic orientation D of $C_{3 k}^{3}$, we use d_{1}, d_{2}, and d_{3} to denote the number of dependent arcs of $E\left(H_{1}\right), E\left(H_{2}\right)$, and $E\left(H_{3}\right)$ in D, respectively. According to the convention made at the beginning of this section, let \mathcal{H} be an acyclically oriented version of H. Let $d^{\prime}(\mathcal{H})=d_{3}+\frac{1}{2}\left(d_{1}+d_{2}\right)$, and we always abbreviate $d^{\prime}(\mathcal{H})$ to d^{\prime}.

Remark. If $\mathcal{H} \subseteq \mathcal{G}$ and \mathcal{G} is an acyclically oriented version of G, then $d^{\prime}(\mathcal{H})$ evaluated in \mathcal{G} is greater than or equal to $d^{\prime}(\mathcal{H})$ evaluated in \mathcal{H} by Lemma 1.

Lemma 4. For any acyclic orientation D of $H, d^{\prime}(\mathcal{H}) \geqslant 4$.
Proof. Since H_{1} and H_{2} are triangles, $d_{1} \geqslant 1$ and $d_{2} \geqslant 1$ in any acyclic orientation D of H. Let $G\left[v_{0}, v_{1}, v_{2}, v_{3}\right]$ be the subgraph of G induced by the vertex set $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$. Since $G\left[v_{0}, v_{1}, v_{2}, v_{3}\right] \cong K_{4}$, at least one of $v_{0} v_{3}, v_{1} v_{3}, v_{2} v_{3}$ is dependent in D by Lemmas 1 and 3 . So $d_{3} \geqslant 1$.

Case 1. $d_{3}=1$.
Since $G\left[v_{0}, v_{1}, v_{2}, v_{3}\right] \cong G\left[v_{2}, v_{3}, v_{4}, v_{5}\right] \cong K_{4}$, at least one of $v_{0} v_{3}, v_{1} v_{3}, v_{2} v_{3}$ and at least one of $v_{2} v_{3}, v_{2} v_{4}, v_{2} v_{5}$ are dependent by Lemmas 1 and 3 . Since $d_{3}=1, v_{2} v_{3}$ is the only dependent edge of $E\left(H_{3}\right)$.

We may assume that $v_{2} \rightarrow v_{3}$.
By Lemma 2 and Lemma 3, we can determine the orientation of the following arcs: $v_{2} \rightarrow v_{0}, v_{2} \rightarrow v_{1}, v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{1}, v_{4} \rightarrow v_{3}, v_{5} \rightarrow v_{3}, v_{1} \rightarrow v_{3}$, $v_{3} \rightarrow v_{0}, v_{1} \rightarrow v_{0}, v_{5} \rightarrow v_{2}, v_{5} \rightarrow v_{4}$. It follows that $v_{2} \rightarrow v_{0}, v_{2} \rightarrow v_{1}, v_{1} \rightarrow v_{0}$,
$v_{4} \rightarrow v_{3}, v_{5} \rightarrow v_{3}$, and $v_{5} \rightarrow v_{4}$ are dependent. So $d_{1}=3$ and $d_{2}=3$. Thus $d^{\prime}=d_{3}+\frac{1}{2}\left(d_{1}+d_{2}\right)=1+\frac{1}{2}(3+3)=4$.
Case 2. $d_{3}=2$.
Case 2.1. $d_{1}=1$. (By symmetry, the case $d_{2}=1$ is similar.)
At least three arcs in $\mathcal{G}\left[v_{0}, v_{1}, v_{2}, v_{3}\right]$ are dependent by Lemma 3. Since $d_{3}=2$ and $d_{1}=1$, two arcs of $v_{0} v_{3}, v_{1} v_{3}$, and $v_{2} v_{3}$ in D are dependent and none of $v_{1} v_{4}, v_{2} v_{4}$, and $v_{2} v_{5}$ is dependent. So from $\mathcal{G}\left[v_{1}, v_{2}, v_{4}\right]$, neither $v_{0} v_{1}$ nor $v_{0} v_{2}$ is dependent since $v_{1} v_{2}$ is dependent.

We may assume that $v_{2} \rightarrow v_{3}$.
Then $v_{5} \rightarrow v_{3}, v_{4} \rightarrow v_{3}, v_{1} \rightarrow v_{3}, v_{0} \rightarrow v_{3}$.
Case 2.1.1. Assume $v_{1} \rightarrow v_{2}$.
Then $v_{1} \rightarrow v_{0}, v_{0} \rightarrow v_{2}, v_{1} \rightarrow v_{4}, v_{4} \rightarrow v_{2}, v_{2} \rightarrow v_{5}, v_{4} \rightarrow v_{5}$. It follows that $v_{0} \rightarrow v_{3}, v_{1} \rightarrow v_{3}$, and $v_{2} \rightarrow v_{3}$ are dependent, contradicting the assumption that $d_{3}=2$.

Case 2.1.2. Assume $v_{2} \rightarrow v_{1}$.
By Lemma 2 and Lemma $3, v_{0} \rightarrow v_{1}, v_{2} \rightarrow v_{0}, v_{4} \rightarrow v_{1}, v_{2} \rightarrow v_{4}, v_{5} \rightarrow v_{2}$, $v_{5} \rightarrow v_{4}$. It follows that $v_{5} \rightarrow v_{4}, v_{5} \rightarrow v_{3}$, and $v_{4} \rightarrow v_{3}$ are dependent, i.e., $d_{2}=3$. So $d^{\prime}=d_{3}+\frac{1}{2}\left(d_{1}+d_{2}\right)=2+\frac{1}{2}(1+3)=4$.
Case 2.2. $d_{1} \geqslant 2$ and $d_{2} \geqslant 2$.
In this subcase $d^{\prime}=d_{3}+\frac{1}{2}\left(d_{1}+d_{2}\right) \geqslant 2+\frac{1}{2}(2+2)=4$.
Case 3. $d_{3} \geqslant 3$.
Since $d_{1} \geqslant 1$ and $d_{2} \geqslant 1, d^{\prime}=d_{3}+\frac{1}{2}\left(d_{1}+d_{2}\right) \geqslant 3+\frac{1}{2}(1+1)=4$.
By Lemma 4, we know that $d^{\prime} \geqslant 4$ in any acyclic orientations D of H. Now we are going to determine all the cases for which $d^{\prime}=4$.

Lemma 5. Let D be an acyclic orientation of H. If we suppose that $v_{2} \rightarrow v_{3}$ in D, then there are only 12 possible cases for D for which $d^{\prime}(\mathcal{H})=4$.

Proof. We again use d^{\prime} to abbreviate $d^{\prime}(\mathcal{H})$ in the following proof.
Case 1. $d_{3}=1$.
Since $d^{\prime}=4$, we have $d_{1}=3$ and $d_{2}=3$. By Case 1 of Lemma 4, we have $v_{2} \rightarrow v_{0}, v_{2} \rightarrow v_{1}, v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{1}, v_{4} \rightarrow v_{3}, v_{5} \rightarrow v_{3}, v_{1} \rightarrow v_{3}, v_{3} \rightarrow v_{0}$, $v_{1} \rightarrow v_{0}, v_{5} \rightarrow v_{2}, v_{5} \rightarrow v_{4}$.

We denote by Q_{1} this directed version of H.
Case 2. $d_{3}=2$.
Case 2.1. $d_{1}=1$.
Since $d^{\prime}=4$, we have $d_{2}=3$. By Case 2.1 of Lemma 4, we have $v_{5} \rightarrow$ $v_{3}, v_{4} \rightarrow v_{3}, v_{1} \rightarrow v_{3}, v_{0} \rightarrow v_{3}, v_{2} \rightarrow v_{1}, v_{0} \rightarrow v_{1}, v_{2} \rightarrow v_{0}, v_{4} \rightarrow v_{1}, v_{2} \rightarrow v_{4}$, $v_{5} \rightarrow v_{2}, v_{5} \rightarrow v_{4}$.

We denote by Q_{2} this directed version of H.
Case 2.2. $d_{1}=2$.
Since $d^{\prime}=4$, we have $d_{2}=2$.
Case 2.2.1. $v_{2} \rightarrow v_{3}$ is dependent.
Case 2.2.1.1. $v_{0} v_{3}$ is dependent.
Since $d_{3}=2$, none of $v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{4}$, and $v_{2} v_{5}$ is dependent. From $\mathcal{G}\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, $v_{1} v_{2}$ and $v_{3} v_{4}$ are dependent by Lemma 3. From $\mathcal{G}\left[v_{2}, v_{4}, v_{5}\right], v_{4} v_{5}$ is dependent by Lemma 2. Since $d_{2}=2, v_{3} v_{5}$ is not dependent. Then $v_{2} \rightarrow v_{5}, v_{5} \rightarrow v_{3}$, $v_{4} \rightarrow v_{2}, v_{4} \rightarrow v_{5}, v_{4} \rightarrow v_{3}, v_{1} \rightarrow v_{4}, v_{1} \rightarrow v_{2}, v_{1} \rightarrow v_{3}$. It follows that $v_{1} \rightarrow v_{3}$ is dependent, and hence $d_{3} \geqslant 3$, a contradiction.
Case 2.2.1.2. $v_{2} v_{5}$ is dependent.
By symmetry, this case is similar to the case 2.2.1.1, and there does not exist any acyclic orientation to satisfy the conditions of this case.

Case 2.2.1.3. $v_{1} v_{3}$ is dependent.
Since $d_{3}=2$, none of $v_{0} v_{3}, v_{1} v_{4}, v_{2} v_{4}$, and $v_{2} v_{5}$ is dependent. From $\mathcal{G}\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, $v_{1} v_{2}$ and $v_{3} v_{4}$ are dependent. From $\mathcal{G}\left[v_{2}, v_{4}, v_{5}\right], v_{4} v_{5}$ is dependent. So $v_{3} v_{5}$ is not dependent. Then $v_{2} \rightarrow v_{5}, v_{5} \rightarrow v_{3}, v_{4} \rightarrow v_{2}, v_{4} \rightarrow v_{5}, v_{4} \rightarrow v_{3}, v_{1} \rightarrow v_{4}$, $v_{1} \rightarrow v_{2}, v_{1} \rightarrow v_{3}, v_{2} \rightarrow v_{0}, v_{1} \rightarrow v_{0}$. It follows that $v_{1} \rightarrow v_{0}$ is dependent, and hence $v_{2} \rightarrow v_{0}$ is not dependent. Then $v_{0} \rightarrow v_{3}$.

We denote by Q_{3} this directed version of H.
Case 2.2.1.4. $v_{2} v_{4}$ is dependent.
By symmetry, this case is similar to the case 2.2.1.3.
Then $v_{2} \rightarrow v_{0}, v_{0} \rightarrow v_{3}, v_{3} \rightarrow v_{1}, v_{0} \rightarrow v_{1}, v_{2} \rightarrow v_{1}, v_{1} \rightarrow v_{4}, v_{3} \rightarrow v_{4}$, $v_{2} \rightarrow v_{4}, v_{5} \rightarrow v_{3}, v_{5} \rightarrow v_{4}, v_{2} \rightarrow v_{5}$.

We denote by Q_{4} this directed version of H.

Case 2.2.1.5. $v_{1} v_{4}$ is dependent.
Since $d_{3}=2$, none of $v_{0} v_{3}, v_{1} v_{3}, v_{2} v_{4}$, and $v_{2} v_{5}$ is dependent. From $\mathcal{G}\left[v_{0}, v_{1}, v_{2}\right]$, $v_{0} v_{1}$ is dependent. From $\mathcal{G}\left[v_{2}, v_{4}, v_{5}\right], v_{4} v_{5}$ is dependent.

Case 2.2.1.5.1. $v_{0} v_{2}$ is dependent.
Since $d_{1}=2, v_{1} v_{2}$ is not dependent. From $\mathcal{G}\left[v_{1}, v_{2}, v_{3}, v_{4}\right], v_{3} v_{4}$ is dependent. Then $v_{2} \rightarrow v_{1}, v_{1} \rightarrow v_{3}, v_{3} \rightarrow v_{0}, v_{2} \rightarrow v_{0}, v_{1} \rightarrow v_{0}, v_{4} \rightarrow v_{2}, v_{4} \rightarrow v_{1}$, $v_{4} \rightarrow v_{3}, v_{2} \rightarrow v_{5}, v_{4} \rightarrow v_{5}, v_{5} \rightarrow v_{3}$.

We denote by Q_{5} this directed version of H.
Case 2.2.1.5.2. $v_{0} v_{2}$ is not dependent.
Since $d_{1}=2, v_{1} v_{2}$ is dependent. Then $v_{2} \rightarrow v_{0}, v_{0} \rightarrow v_{3}, v_{3} \rightarrow v_{1}, v_{0} \rightarrow v_{1}$, $v_{2} \rightarrow v_{1}, v_{4} \rightarrow v_{1}, v_{4} \rightarrow v_{3}, v_{5} \rightarrow v_{3}$. If $v_{4} \rightarrow v_{5}$ in this case, then $v_{4} \rightarrow v_{2}$, $v_{2} \rightarrow v_{5}$. We denote by Q_{6} this directed version of H. If $v_{5} \rightarrow v_{4}$ in this case, then $v_{5} \rightarrow v_{2}, v_{2} \rightarrow v_{4}$. We denote by Q_{7} this directed version of H.
Case 2.2.2. $v_{2} \rightarrow v_{3}$ is not dependent.
From $\mathcal{G}\left[v_{0}, v_{1}, v_{2}, v_{3}\right]$ and $\mathcal{G}\left[v_{2}, v_{3}, v_{4}, v_{5}\right]$, at least one of $v_{0} v_{3}$ and $v_{1} v_{3}$ and at least one of $v_{2} v_{4}$ and $v_{2} v_{5}$ are dependent by Lemma 3. Since $d_{3}=2$, only one of $v_{0} v_{3}$ and $v_{1} v_{3}$ is dependent, only one of $v_{2} v_{4}, v_{2} v_{5}$ is dependent and $v_{1} v_{4}$ is not dependent.

From $\mathcal{G}\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, at least one of $v_{1} v_{3}$ and $v_{2} v_{4}$ is dependent.
Case 2.2.2.1. Only one of $v_{1} v_{3}$ and $v_{2} v_{4}$ is dependent.
From $\mathcal{G}\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, both $v_{1} v_{2}$ and $v_{3} v_{4}$ are dependent.
Case 2.2.2.1.1. $v_{1} v_{3}$ is dependent.
So $v_{2} v_{4}$ is not dependent. $v_{2} v_{5}$ is dependent and $v_{0} v_{3}$ is not dependent. Then $v_{4} \rightarrow v_{2}, v_{4} \rightarrow v_{3}, v_{1} \rightarrow v_{4}, v_{1} \rightarrow v_{2}, v_{3} \rightarrow v_{0}, v_{2} \rightarrow v_{0}, v_{1} \rightarrow v_{0}$. It follows that $v_{1} \rightarrow v_{0}, v_{2} \rightarrow v_{0}$ and $v_{1} \rightarrow v_{2}$ are dependent, contradicting the assumption that $d_{1}=2$.

Case 2.2.2.1.2. $v_{1} v_{3}$ is not dependent.
So $v_{2} v_{4}$ is dependent. By symmetry, this case is similar to the case 2.2.2.1.1, and there does not exist any acyclic orientation to satisfy the conditions of this case.

Case 2.2.2.2. Both $v_{1} v_{3}$ and $v_{2} v_{4}$ are dependent.

Since $d_{3}=2$, neither $v_{0} v_{3}$ nor $v_{2} v_{5}$ is dependent. From $\mathcal{G}\left[v_{0}, v_{2}, v_{3}\right], v_{0} v_{2}$ is dependent. From $\mathcal{G}\left[v_{2}, v_{3}, v_{5}\right], v_{3} v_{5}$ is dependent.
Case 2.2.2.2.1. $v_{0} v_{1}$ is dependent.
So $v_{1} v_{2}$ is not dependent. Then $v_{3} \rightarrow v_{0}, v_{2} \rightarrow v_{0}, v_{1} \rightarrow v_{2}, v_{1} \rightarrow v_{3}$, $v_{1} \rightarrow v_{0}, v_{4} \rightarrow v_{1}, v_{4} \rightarrow v_{2}, v_{4} \rightarrow v_{3}$. It follows that $v_{4} \rightarrow v_{3}$ is dependent, and hence $v_{4} v_{5}$ is not dependent. Then $v_{4} \rightarrow v_{5}, v_{5} \rightarrow v_{2}$, and $v_{5} \rightarrow v_{3}$.

We denote by Q_{8} this directed version of H.
Case 2.2.2.2.2. $v_{0} v_{1}$ is not dependent.
So $v_{1} v_{2}$ is dependent. Then $v_{3} \rightarrow v_{0}, v_{2} \rightarrow v_{0}, v_{0} \rightarrow v_{1}, v_{3} \rightarrow v_{1}, v_{2} \rightarrow v_{1}$, $v_{5} \rightarrow v_{2}, v_{5} \rightarrow v_{3}, v_{2} \rightarrow v_{4}, v_{5} \rightarrow v_{4}$. It follows that $v_{5} \rightarrow v_{4}$ is dependent, and hence $v_{3} v_{4}$ is not dependent. Then $v_{3} \rightarrow v_{4}$ and $v_{4} \rightarrow v_{1}$.

We denote by Q_{9} this directed version of H.
Case 2.3. $d_{1}=3$.
Since $d^{\prime}=4, d_{2}=1$. Then $v_{2} \rightarrow v_{5}, v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{5}, v_{5} \rightarrow v_{3}, v_{4} \rightarrow v_{3}$, $v_{4} \rightarrow v_{1}, v_{1} \rightarrow v_{3}, v_{3} \rightarrow v_{0}, v_{1} \rightarrow v_{0}, v_{2} \rightarrow v_{1}, v_{2} \rightarrow v_{0}$.

We denote by Q_{10} this directed version of H.
Case 3. $d_{3}=3$.
Since $d^{\prime}=4, d_{1}=1$, and $d_{2}=1$. So at least two of $v_{0} v_{3}, v_{1} v_{3}$, and $v_{2} v_{3}$ are dependent and at least two of $v_{2} v_{3}, v_{2} v_{4}$, and $v_{2} v_{5}$ are dependent. Since $d_{3}=3, v_{2} v_{3}$ is dependent. Only one of $v_{0} v_{3}$ and $v_{1} v_{3}$ is dependent, only one of $v_{2} v_{4}$ and $v_{2} v_{5}$ is dependent, and $v_{1} v_{4}$ is not dependent.

Case 3.1. $v_{0} v_{3}$ is dependent.
So $v_{1} v_{3}$ is not dependent. From $\mathcal{G}\left[v_{1}, v_{3}, v_{4}\right], v_{3} v_{4}$ is dependent. Since $d_{2}=$ 1 , neither $v_{3} v_{5}$ nor $v_{4} v_{5}$ is dependent. From $\mathcal{G}\left[v_{2}, v_{3}, v_{4}, v_{5}\right], v_{2} v_{5}$ is dependent. So $v_{2} v_{4}$ is not dependent. From $\mathcal{G}\left[v_{1}, v_{2}, v_{4}\right], v_{1} v_{2}$ is dependent. Since $d_{1}=1$, neither $v_{0} v_{1}$ nor $v_{0} v_{2}$ is dependent. Then $v_{2} \rightarrow v_{1}, v_{2} \rightarrow v_{4}, v_{4} \rightarrow v_{1}, v_{2} \rightarrow$ $v_{0}, v_{0} \rightarrow v_{1}, v_{0} \rightarrow v_{3}, v_{1} \rightarrow v_{3}, v_{4} \rightarrow v_{3}, v_{4} \rightarrow v_{5}, v_{5} \rightarrow v_{3}, v_{2} \rightarrow v_{5}$.

We denote by Q_{11} this directed version of H.
Case 3.2. $v_{0} v_{3}$ is not dependent.
So $v_{1} v_{3}$ is dependent. From $\mathcal{G}\left[v_{0}, v_{1}, v_{2}, v_{3}\right]$, at least one of $v_{0} v_{1}$ and $v_{0} v_{2}$ is dependent. Since $d_{1}=1, v_{1} v_{2}$ is not dependent. From $\mathcal{G}\left[v_{1}, v_{2}, v_{4}\right], v_{2} v_{4}$ is dependent. So $v_{2} v_{5}$ is not dependent. From $\mathcal{G}\left[v_{2}, v_{3}, v_{4}, v_{5}\right]$, at least one of $v_{3} v_{5}$ and $v_{4} v_{5}$ is dependent. Since $d_{2}=1, v_{3} v_{4}$ is not dependent. Then
$v_{2} \rightarrow v_{0}, v_{1} \rightarrow v_{3}, v_{1} \rightarrow v_{0}, v_{1} \rightarrow v_{4}, v_{4} \rightarrow v_{3}, v_{2} \rightarrow v_{1}, v_{2} \rightarrow v_{4}, v_{5} \rightarrow v_{3}$, $v_{5} \rightarrow v_{4}$. It follows that $v_{5} \rightarrow v_{3}$ and $v_{2} \rightarrow v_{0}$ are dependent, and hence $v_{5} \rightarrow v_{4}$ and $v_{1} \rightarrow v_{0}$ are not dependent. Then $v_{0} \rightarrow v_{3}, v_{2} \rightarrow v_{5}$.

We denote by Q_{12} this directed version of H.
Remark. By Lemma 5 and assuming $v_{2} \rightarrow v_{3}$ in D, there are only 12 possible choices for D to make $d^{\prime}(\mathcal{H})=4$. If we assume that $v_{3} \rightarrow v_{2}$ in D, there are another 12 possible choices for D to make $d^{\prime}(\mathcal{H})=4$ and they are actually Q_{i}^{-}for $i=1,2, \ldots, 12$. Since the structures of Q_{i} and Q_{i}^{-}are essentially the same, we use Q_{i} to represent Q_{i} and Q_{i}^{-}unless otherwise stated.

It is easy to see that $C_{n}^{3} \cong K_{n}$ for $3 \leqslant n \leqslant 7$. Thus, $d_{\min }\left(C_{3 k}^{3}\right)=1$ when $k=1$ and $d_{\text {min }}\left(C_{3 k}^{3}\right)=10$ when $k=2$.
Theorem 6. If $k \geqslant 3$ then $d_{\min }\left(C_{3 k}^{3}\right)=4 k+1$.
Proof. We first prove that $d_{\min }\left(C_{3 k}^{3}\right) \geqslant 4 k+1$. Suppose to the contrary that $d_{\text {min }}\left(C_{3 k}^{3}\right)<4 k+1$. In the paragraph after Lemma 3, we defined G_{i} to be the subgraph of $C_{3 k}^{3}$ induced by the vertex set $\left\{v_{3 i}, v_{3 i+1}, v_{3 i+2}, v_{3 i+3}, v_{3 i+4}, v_{3 i+5}\right\}$ for $i=0,1, \ldots, k-1$ and H to be G_{0}. Any two of these G_{i} 's are isomorphic.

Since $G_{i} \cong H, d^{\prime}\left(\mathcal{G}_{i}\right) \geqslant 4$ for all i by Lemma 4 . So for any acyclic orientation D of $C_{3 k}^{3}, d(D)=\sum_{i=0}^{k-1} d^{\prime}\left(\mathcal{G}_{i}\right) \geqslant 4 k$. The assumption that $d_{\text {min }}\left(C_{3 k}^{3}\right)<$ $4 k+1$ implies that $d_{\min }\left(C_{3 k}^{3}\right)=4 k$. Hence, there exists an acyclic orientation D of $C_{3 k}^{3}$ such that $d(D)=4 k$ and $d^{\prime}\left(\mathcal{G}_{i}\right)=4$ for all i.

If \mathcal{G}_{0} is Q_{j} for some $j \in\{7,10,11\}$, then $d^{\prime}\left(\mathcal{G}_{1}\right)>4$ by Lemma 5 , a contradiction. Since $G_{i} \cong G_{0}$ for all i, every \mathcal{G}_{i} is different from Q_{j} for $j \in$ $\{7,10,11\}$.

If \mathcal{G}_{0} is Q_{j} for some $j \in\{2,5\}$, then $d^{\prime}\left(\mathcal{G}_{k-1}\right)>4$ by Lemma 5 , a contradiction. Hence, all \mathcal{G}_{i} must be different from Q_{j} for $j \in\{2,5\}$.

If \mathcal{G}_{0} is Q_{6}, then, for $i=1,2, \ldots, k-2, d^{\prime}\left(\mathcal{G}_{i}\right)=4$ only when \mathcal{G}_{i} is Q_{3} by Lemma 5 . But then $d^{\prime}\left(\mathcal{G}_{k-1}\right)>4$, a contradiction. Hence, all \mathcal{G}_{i} must be different from Q_{6}.

If \mathcal{G}_{0} is Q_{1}, then, for $i=1,2, \ldots, k-1, d^{\prime}\left(\mathcal{G}_{i}\right)=4$ only when \mathcal{G}_{i} is Q_{1} by Lemma 5. Assume that $v_{2} \rightarrow v_{3}$ in \mathcal{G}_{0}. Then a directed cycle $v_{0} \rightarrow v_{n-3} \rightarrow$ $v_{n-6} \cdots \rightarrow v_{3} \rightarrow v_{0}$ is produced, contradicting to the acyclicity of D. Hence, all \mathcal{G}_{i} must be different from Q_{1}.

If \mathcal{G}_{0} is Q_{3}, then, for $i=1,2, \ldots, k-1, d^{\prime}\left(\mathcal{G}_{i}\right)=4$ only when \mathcal{G}_{i} is Q_{3} by Lemma 5. Assume that $v_{2} \rightarrow v_{3}$ in \mathcal{G}_{0}. Then a directed cycle $v_{0} \rightarrow v_{3} \rightarrow$ $v_{6} \cdots \rightarrow v_{n-3} \rightarrow v_{0}$ is produced, contradicting to the acyclicity of D. Hence, all \mathcal{G}_{i} must be different from Q_{3}.

If \mathcal{G}_{0} is Q_{4}, then, for $i=1,2, \ldots, k-1, d^{\prime}\left(\mathcal{G}_{i}\right)=4$ only when \mathcal{G}_{i} is Q_{4} by Lemma 5. Assume that $v_{2} \rightarrow v_{3}$ in \mathcal{G}_{0}. Then a directed cycle $v_{0} \rightarrow v_{3} \rightarrow$ $v_{6} \cdots \rightarrow v_{n-3} \rightarrow v_{0}$ is produced, contradicting to the acyclicity of D. Hence, all \mathcal{G}_{i} must be different from Q_{4}.

If \mathcal{G}_{0} is Q_{8}, then, for $i=1,2, \ldots, k-1, d^{\prime}\left(\mathcal{G}_{i}\right)=4$ only when \mathcal{G}_{i} is Q_{8} by Lemma 5. Assume that $v_{2} \rightarrow v_{3}$ in \mathcal{G}_{0}. Then a directed cycle $v_{0} \rightarrow v_{n-3} \rightarrow$ $v_{n-6} \cdots \rightarrow v_{3} \rightarrow v_{0}$ is produced, contradicting to the acyclicity of D. Hence, all \mathcal{G}_{i} must be different from Q_{8}.

If \mathcal{G}_{0} is Q_{9}, then, for $i=1,2, \ldots, k-1, d^{\prime}\left(\mathcal{G}_{i}\right)=4$ only when \mathcal{G}_{i} is Q_{9} by Lemma 5. Assume that $v_{2} \rightarrow v_{3}$ in \mathcal{G}_{0}. Then a directed cycle $v_{0} \rightarrow v_{n-3} \rightarrow$ $v_{n-6} \cdots \rightarrow v_{3} \rightarrow v_{0}$ is produced, contradicting to the acyclicity of D. Hence, all \mathcal{G}_{i} must be different from Q_{9}.

If \mathcal{G}_{0} is Q_{12}, then, for $i=1,2, \ldots, k-1, d^{\prime}\left(\mathcal{G}_{i}\right)=4$ only when \mathcal{G}_{i} is Q_{12} by Lemma 5 . Assume that $v_{2} \rightarrow v_{3}$ in \mathcal{G}_{0}. Then a directed cycle $v_{0} \rightarrow v_{3} \rightarrow$ $v_{6} \cdots \rightarrow v_{n-3} \rightarrow v_{0}$ is produced, contradicting to the acyclicity of D. Hence, all \mathcal{G}_{i} must be different from Q_{12}.

In summary, for any orientation D, there exist $i_{0} \in\{0,1,2 \cdots k-1\}$ such that $d^{\prime}\left(\mathcal{G}_{i_{0}}\right)>4$. Hence, $d_{\text {min }}\left(C_{3 k}^{3}\right) \geqslant 4 k+1$.

In the second part, we are going to prove that $d_{\min }\left(C_{3 k}^{3}\right) \leqslant 4 k+1$. In fact, an acyclic orientation D_{0} of G will be constructed so that $d\left(D_{0}\right)=4 k+1$.

Let D_{0} be defined as follows.
$v_{3} \rightarrow v_{1} \rightarrow v_{0}, v_{1} \rightarrow v_{2} \rightarrow v_{0}, v_{3} \rightarrow v_{0}, v_{3 k-1} \rightarrow v_{1} \rightarrow v_{3 k-2} \rightarrow v_{0} \rightarrow v_{3 k-3}$, $v_{3 k-1} \rightarrow v_{0}, v_{3 k-1} \rightarrow v_{2}, v_{1} \rightarrow v_{4}, v_{3} \rightarrow v_{2} \rightarrow v_{4}, v_{5} \rightarrow v_{2}, v_{3} \rightarrow v_{5} \rightarrow v_{4}$, $v_{3} \rightarrow v_{4}, \quad v_{3} \rightarrow v_{6} ;$
$v_{3 i} \rightarrow v_{3 i-3}$ for each $i=3,4, \ldots, k-1$;
$v_{3 i+2} \rightarrow v_{3 i-1} \rightarrow v_{3 i+1} \rightarrow v_{3 i-2} \rightarrow v_{3 i}$ for each $i=2,3, \ldots, k-1$;
$v_{3 i+2} \rightarrow v_{3 i+1} \rightarrow v_{3 i}$ for each $i=2,3, \ldots, k-1$;
$v_{3 i-1} \rightarrow v_{3 i}$ and $v_{3 i+2} \rightarrow v_{3 i}$ for each $i=2,3, \ldots, k-1$.
Clearly, D_{0} is an acyclic orientation of $C_{3 k}^{3}$ such that the set of dependent arcs is as follows.
$R\left(D_{0}\right)=\left\{v_{3 k-1} \rightarrow v_{0}, v_{3 k-1} \rightarrow v_{2}, v_{1} \rightarrow v_{0}, v_{3} \rightarrow v_{0}, v_{1} \rightarrow v_{4}, v_{3} \rightarrow\right.$ $\left.v_{2}, v_{3} \rightarrow v_{4}, v_{5} \rightarrow v_{4}, v_{3} \rightarrow v_{6}\right\} \cup\left\{v_{3 i+2} \rightarrow v_{3 i+1}, v_{3 i+1} \rightarrow v_{3 i}, v_{3 i+2} \rightarrow v_{3 i}, v_{3 i-1} \rightarrow\right.$ $\left.v_{3 i} \mid i=2, \ldots, k-1\right\}$.

Therefore, $d\left(D_{0}\right)=\left|R\left(D_{0}\right)\right|=4 k+1$. This completes the proof of the theorem.

In this paper, we have only determined the minimum number of dependent
arcs of $C_{3 k}^{3}$. A complete proof for the determination of the minimum number of dependent arcs and the full orientability of C_{n}^{3} is too lengthy to be included here. However, the proof methods used in the present paper fully illustrate the techniques that would be employed in a complete proof.

References

[1] G. J. Chang, C.-Y. Lin, and L.-D. Tong, Independent arcs of acyclic orientations of complete r-partite graphs, Discrete Math., 309(2009), 42804286.
[2] D. C. Fisher, K. Fraughnaugh, L. Langley, and D. B. West, The number of dependent arcs in an acyclic orientation, J. Combin. Theory, Ser. B 71(1997), 73-78.
[3] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther Univ. Halle-Wittenberg, Math.-Nat. Reihe 8(1959), 109-120.
[4] H.-H. Lai, G. J. Chang, and K.-W. Lih, On fully orientability of 2degenerate graphs, Inform. Process. Lett., 105(2008), 177-181.
[5] H.-H. Lai and K.-W. Lih, On preserving full orientability of graphs, European J. Combin., 31(2010), 598-607.
[6] K.-W. Lih, C.-Y. Lin, and L.-D. Tong, On an interpolation property of outerplanar graphs, Discrete Appl. Math., 154(2006), 166-172.
[7] D. B. West, Acyclic orientations of complete bipartite graphs, Discrete Math., 138(1995), 393-396.
[8] F.-W. Xu, W.-F. Wang, and K.-W. Lih, Full orientability of the square of a cycle, to appear in Ars Combin.

Appendix

Note 1. Let G_{0} and G_{1} be the induced subgraphs defined in Theorem 6. Suppose that \mathcal{G}_{0} is Q_{i} and \mathcal{G}_{1} is Q_{j}. We say that Q_{i} and Q_{j} can be pasted together if there exists an acyclic orientation D of $G_{0} \cup G_{1}$ such that (i) $Q_{i}, Q_{j} \subset D$; (ii) an edge of $G_{0} \cap G_{1}$ is a dependent edge in D if and only if it is a dependent edge in Q_{i} and Q_{j}. In Table 1, a tick in the (i, j) cell represents that Q_{i} and Q_{j} can be pasted together.

Note 2. All digraphs Q_{1} to Q_{12} are depicted at the end of this appendix. Under each Q_{i}, the three rows of pairs (i, j) represent all the dependent arcs of $E\left(H_{1}\right), E\left(H_{2}\right)$, and $E\left(H_{3}\right)$ in Q_{i}, respectively.

Table 1: Whether Q_{i} and Q_{j} can be pasted together.

	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}	Q_{8}	Q_{9}	Q_{10}	Q_{11}	Q_{12}
Q_{1}	$\sqrt{ }$									$\sqrt{ }$		
Q_{2}	$\sqrt{ }$									$\sqrt{ }$		
Q_{3}			\checkmark									
Q_{4}				$\sqrt{ }$		$\sqrt{ }$	\checkmark					
Q_{5}			\checkmark									
Q_{6}			$\sqrt{ }$									
Q_{7}												
Q_{8}								$\sqrt{ }$				
Q_{9}									$\sqrt{ }$			
Q_{10}												
Q_{11}												
Q_{12}												\checkmark

$$
\begin{array}{lll}
Q_{9} & (2,0) & (2,1) \\
& (5,3) & (5,4) \\
& (3,1) & (2,4)
\end{array}
$$

[^0]: *2000 Mathematics Subject Classification. Primary 05C15.
 ${ }^{\dagger}$ Research supported partially by NSFC (No.10771097)
 ${ }^{\ddagger}$ Corresponding author. E-mail: makwlih@sinica.edu.tw

