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0. Introduction
Many generalizations and generalizing procedures of the notion of metric

spaces come from and are permeated with an idea of symmetry are of crucial
character.

A rejection of the condition of symmetry in the definition of metric (Wilson
[11]) shows essential quality changes in such spaces.

1. Generalized Quasi-Pseudo-Metric Spaces

Definition 1.1. ([1]) An algebra (G,+,∨, e) is called an L-semigroup if
(G,+, e) is an Abelian semigroup with the unit e and (G,∨) is a ∨-semilattice
and the following conditions hold: for all a, b, c ∈ G,

(1) e ≤ a,
(2) a+ (b ∨ c) = (a + b) ∨ (a+ c).

Lemma 1.2. Let (G,+,∨, e) be an L-semigroup and let a, b, c, d ∈ G. Then
the following conditions hold:

(1) If a ≤ b, then a+ c ≤ b+ c.
(2) (a + b) ∨ (c+ d) ≤ (a ∨ c) + (b ∨ d).

Proof. The condition a ≤ b means that a ∨ b = b. Then, for any c ∈ G, we
have, by (2) of Definition 1,

(b+ c) = (a ∨ b) + c = (a + c) ∨ (b+ c),

which proves (1).
To show (2), if we apply (1) and (2) of Definition 1,

(a ∨ c) + (b ∨ d) = (a + (b ∨ d)) ∨ (c+ (b ∨ d))

= ((a + b) ∨ (a+ d)) ∨ ((c+ b) ∨ (c+ d))

≥ (a+ b) ∨ (c+ d),

which proves (2). This completes the proof.
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Definition 1.2. An L-semigroup (G,+,∨, e) is called conditionally complete
if the ∨-semilattice (G,∨) is conditionally complete, that is, for each nonempty
A ⊂ G bounded from above, there exists a supA ∈ G.

Lemma 1.2. Let (G,+,∨, e) be a conditionally complete L-semigroup. Then
G is a lattice.

Proof. It suffices to show that, for all a, b ∈ G, there exists a∧ b ∈ G. Indeed,
put

a ∧ b = ∧{c ∈ G : c ≤ a, c ≤ b}.
The set {c ∈ G : c ≤ a, c ≤ b} is nonempty by (1) of Definition 1.1 and
bounded from above by a ∨ b. Using Definition 1.2, we get the element a ∧ b.

Definition 1.3. By a generalized quasi-pseudo-metric space is meant an or-
dered triple (X,G, p), where X is a nonempty set, G is an L-semigroup and
p : X2 → G satisfies the following conditions: for all x, y, z ∈ X,

(1) p(x, x) = e,

(2) p(x, y) ≤ p(x, z) + p(z, y).

Lemma 1.3. Let p1 and p2 be generalized quasi-pseudo-metrics on a set X
with values in a L-semigroup G. Then the functions p1 ∨ p2 : X2 → G and
p1 + p2 : X

2 → G defined by, for all x, y ∈ X,

(1) (p1 ∨ p2)(x, y) = p1(x, y) ∨ p2(x, y),

(2) (p1 + p2)(x, y) = p1(x, y) + p2(x, y),

respectively, are generalized quasi-pseudo-metrics on X, too.

Proof. From (1) of Definition 1.3, we have

(p1 ∨ p2)(x, x) = p1(x, x) ∨ p2(x, x) = e ∨ e = e,

(p1 + p2)(x, x) = p1(x, x) + p2(x, x) = e+ e = e.

The condition (2) of Definition 1.3 for p1 ∨ p2 can be obtained by using (2) of
Lemma 1.1. Indeed, we have

(p1 ∨ p2)(x, y) = p1(x, y) ∨ p2(x, y)

≤ (p1(x, y) + p1(z, y)) ∨ (p2(x, z) + p2(z, y))

≤ (p1(x, z) ∨ p2(x, z)) + (p1(z, y) ∨ p2(z, y))

= (p1 ∨ p2)(x, z) + (p1 ∨ p2)(z, y).
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The condition (2) of Definition 1.3 for p1 + p2 can be obtained by using (2) of
Definition 1.1 and (1) of Lemma 1.1. Indeed, we have

(p1 + p2)(x, y) = p1(x, y) + p2(x, y)

= (p1(x, z) + p1(z, y)) + (p2(x, z) + p2(z, y))

= (p1(x, z) + p2(x, z)) + (p1(z, y) + p2(z, y))

= (p1 + p2)(x, z) + (p1 + p2)(z, y).

This completes the proof.

The following is an immediate corollary from the above lemma:

Theorem 1.1. Let M be the family of all generalized quasi-pseudo-metrics
on a set X with values in an L-semigroup G. Then the algebra (M,+,∨, e) is
an L-semigroup too, where the operations + and ∨ are given by the formulae
(2), (1) of Lemma 1.3, respectively, and the function e : X2 → G is defined by
e(x, y) = e for all x, y ∈ X.

Corollary 1.1. If G is a conditionally complete L-semigroup, then the algebra
(M,+,∨, e) is a lattice.

Proof. This result follows immediately from Lemma 1.1.

Definition 1.4. Let (X,G, p) be a generalized quasi-pseudo-metric space.
Then (X,G, q) is also a generalized quasi-pseudo-metric space, where the func-
tion q : X2 → G is given by the formula: for all x, y ∈ X ,

(A) q(x, y) = p(y, x).

Then the generalized quasi-pseudo-metrics p and q are called the conjugate
each other. A structure generated by p is denoted by (X,G, p, q).

If p and q are two conjugate of generalized quasi-pseudo-metrics on a set X,
then the generalized quasi-pseudo-metric p∨q satisfies the symmetry condition
by (1) of Lemma 1.3 and (A) and hence it is a generalized pseudo-metric.

Theorem 1.2. Let (X,G, p) be a generalized quasi-pseudo-metric space. Then
the relation ≤ on a set X2 defined by the formula:

x ≤ y if and only if p(x, y) = e

is a quasi-order on X, that is, it is reflexive and transitive. If p, additionally,
satisfies the condition:

(B) p(x, y) 
= e or p(y, x) 
= e whenever x 
= y,
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then ≤ is a partial order.

Proof. The reflexivity and transitivity of the relation follow, respectively,
from the conditions (1), (2) of Definition 1.3. The second part of the theorem
follows from the fact that, whenever x ≤ y and y ≤ x, then we simultaneously
have p(x, y) = e and p(y, x) = e. By (B), we infer that x = y.

Remark 1.1. If, in Theorem 1.2, we replace the condition (B) by the follow-
ing:

If x 
= y, then exactly one of p(x, y) and p(y, x) is equal to e,

then the relation ≤ defined in (B) is a linear order on X .

Theorem 1.3. For each quasi-order ≤ on X, there exists a generalized quasi-
pseudo-metric which generates this order.

Proof. Let G = {0, 1} be the two-point lattice and let p : X2 → G be a
function defined by

p(x, y) =

{
0, if x ≤ y,

1, if x 
≤ y.

Then (X, p) is a generalized quasi-pseudo-metric space satisfying the condi-
tions of the theorem.

Example 1.1. ([6], [8]) If G = (R+,+, 0,≤ ) is an L-semigroup, then (X,G, p)
is a usual quasi-pseudo-metric space.

A distance distribution function (briefly, d.d.f.) is a nondecreasing function
F : [−∞. +∞] → [0, 1] which is left-continuous on (−∞,+∞) and F (0) = 0
and F (+∞) = 1.

We denote the set of all d.d.f’s by Δ+. Among the elements of Δ+, there
is a unit step-function ua defined by

ua = 1(a,+∞] for all a ∈ R+ = [0,+∞].

The elements of Δ+ are partially ordered by

F ≤ G if and only if F (x) ≤ G(x) for all x ∈ X.

For any F,G ∈ Δ+ and h ∈ (0, 1], let (G,F : h) denote the condition:

G(x) ≤ F (x+ h) + h for all x ∈ (0, h−1)
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and let

dL(F,G) = inf{h : both (F,G : h) and (G,F : h) hold }.

As shown by Sibley [10], the function dL is a metric in Δ+ which is a
modified form of the well-known Levy metric for distribution functions and
the metric space (Δ+, dL) is compact and hence complete (see [9, p. 45-49]).

Definition 1.5. ([9]) A binary operation ∗ : Δ+ × Δ+ → Δ+ is a triangle
function if (Δ+, ∗) is an Abelian monoid with identity u0 in Δ+ such that, for
any F, F ′, G,G′ ∈ Δ+,

F ∗G ≤ F ′ ∗G′ whenever F ≤ F ′, G ≤ G′.

Note that a triangle function ∗ is continuous if it is continuous with respect
to the metric topology induced by dL.

Example 1.2. ([4]) Let G = (Δ+, ∗, u0,≥) be an L-semigroup. Then (X,G, p)
is a probabilistic quasi-pseudo-metric space defined on X .

Let L be a distributive lattice with the universal bounds 0 and 1. We say
that a∗ ∈ L is a pseudo-complement of a ∈ L if, for every x ∈ L such that
a∧ x = 0, one has x ≤ a∗. A Stone algebra is a distributive lattice L with the
condition (see Grätzer [5], p. 152]):

a∗ ∨ a∗∗ = 1.

Some properties of a Stone algebra are given as follows:

Lemma 1.4. Let L be a Stone algebra and let x, y, z ∈ L. Then the following
hold:

(1) (x ∧ y)∗ = x∗ ∨ y∗.
(2) (x ∧ y)∗∗ = x∗∗ ∧ y∗∗.
(3) If x ≤ y, then x∗∗ ∧ y∗ = 0.
(4) x∗∗ ∧ y∗ ≤ (x∗∗ ∧ z∗) ∨ (z∗∗ ∧ y∗).

Proof. (1) Note that x ∧ y ≤ x and hence x∗ ≤ (x ∧ y)∗ and, analogously,
y∗ ≤ (x∧y)∗. Thus x∗∨y∗ ≥ (x∧y)∗. On the other hand, by the distributivity
of L, we have (x ∧ y) ∧ (x∗ ∨ y∗) = 0 and hence x∗ ∨ y∗ ≤ (x ∧ y)∗.

(2) Note that x ∧ y ≤ x implies (x ∧ y)∗∗ ≤ x∗∗ and (x ∧ y)∗∗ ≤ y∗∗.
Hence it follows that (x∧ y)∗∗ ≤ x∗∗ ∧ y∗∗. On the other hand, by (1) and the
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distributivity of L, we have

(x ∧ y)∗ ∧ (x∗∗ ∧ y∗∗) = (x∗ ∨ y∗) ∧ (x∗∗ ∨ y∗∗)

= (x∗ ∧ x∗∗ ∧ y∗∗) ∨ (y∗ ∧ x∗∗ ∧ y∗∗)

= 0.

This means that x∗∗ ∧ y∗∗ ≤ (x ∧ y)∗∗.
(3) Let x ≤ y. Then x∧ y = x and, by (2), we have x∗∗∧ y∗ = (x∗∗ ∧ y∗∗)∧

y∗ = 0.
(4) Consider the following:

x∗∗ ∧ z∗) ∨ (z∗∗ ∧ y∗)

= ((x∗∗ ∧ z∗) ∨ z∗∗) ∧ ((x∗∗ ∧ z∗) ∨ y∗)

= ((x∗∗ ∨ z∗∗) ∧ (z∗ ∨ z∗∗)) ∧ ((z∗∗ ∧ z∗) ∨ y∗)

= (x∗∗ ∧ z∗∗ ∧ z∗) ∨ (z∗∗ ∧ x∗∗ ∧ z∗) ∨ (x∗∗ ∧ y∗) ∨ (z∗∗ ∧ y∗)

= (x∗∗ ∧ z∗) ∨ (z∗∗ ∧ y∗) ∨ (x∗∗ ∧ y∗),

which implies
x∗∗ ∧ y∗ ≤ (x∗∗ ∧ z∗) ∨ (z∗∗ ∧ y∗).

This completes the proof.

Theorem 1.4. Let L be a Stone algebra and let p : L2 → L be a function
defined by the following formula:

p(x, y) = x∗∗ ∧ y∗.

Then the function p has the following properties:
(1) p(x, x) = 0,
(2) p(x, y) ≤ p(x, z) ∨ p(z, y).

Proof. The proof follows directly from the conditions (3), (4) of Lemma 1.4.

Corollary 1.2. The pair (L, p) is a generalized quasi-pseudo-metric space de-
fined on L with values in a Stone algebra considered as an L-semigroup (with
the group operation + being identified with the lattice operation ∨).

Corollary 1.3. Let (L, p) be a generalized quasi-pseudo-metric space. Then
(L, q) is a generalized quasi-pseudo-metric space which is a conjugate of (L, p),
where q is defined by (A). Also, (L, p∨q) is a generalized pseudo-metric space.
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Corollary 1.4.([2]) Let L be a Boolean algebra. Then (L, p∨q) is a generalized
metric space.

Remark 1.2. The question of generalized metric spaces is dealt with in the
paper by Blumenthal and Menger ([2], Chap. III).

Remark 1.3. Consider (X,G, p, q) of Definition 1.3 generated by a general-
ized quasi-pseudo-metric p. Then we note that the condition of an “internal”
symmetry dropped in the definition of p has been structurally imposed on the
pair (p and q) of mutually conjugate quasi-pseudo-metrics, because the opera-
tion i : X2 → X2 defined by (x, y) → (y, x), mapping p to q, is an involution.
Thus it seems that, by dropping the symmetry, one destroys the conjugation.

Thus we have the following:

Definition 1.6. By a G-bimetric space we mean an ordered 4-tuple (X,G,
p1, p2), where X is a nonempty set, G is an L-semigroup and p1, p2 are arbitrary
generalized quasi-pseudo-metrics.

Remark 1.4. We have taken the name a “bimetric space” to make a dis-
tinction from the concept of a 2-metric space introduced by Gähler ([6]) as a
generalization of the area function in R2.

Remark 1.5. By Lemma 1.3 with a G-bimetric space, there are associated
two generalized quasi-pseudo-metric spaces (X,G, p1∨p2) and (X,G, p1+ p2).
For p1 being a conjugate of p2, a G-bimetric space is provided by the structure
of Definition 1.3. On the other hand, if p1 = p2, then the G-bimetric space
reduces itself to a (·)-metric space.

2. Hemimetric Spaces

In this section, we present the definition of the notion of Hemimetric space as
a structural generalization of the notion of ordering metric and quasi-metric
space ([6], [11]), which was dealt with in the paper by Blumenthal and Menger
[2].

The essence of this procedure consists in introducing a disjunctive “triangle
condition”. We give several example of such spaces, and at the some time, we
define their topologies. We also give condition for hemimetrizability of these
spaces.
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Definition 2.1. An ordered triple (X, h,G) is called a hemimetric space,
where X is a nonempty set, G is an L-semigroup and the function h : X2 → G
fulfills the conditions:

(C) h(x, x) = e

for all x ∈ X, where e ∈ G is a unit in group G and the disjunction of the
following inequalities hold: for all x, y, z ∈ X,

(Q-1) h(x, y) ≤ h(x, z) + h(z, y),
(M-1) h(x, y) ≤ h(y, z) + h(z, x),
(M-2) h(x, y) ≤ h(x, z) + h(y, z),
(M-3) h(x, y) ≤ h(z, x) + h(z, y).

Each of the conditions (Q-1), (M-1), (M-2), (M-3) is called a weak triangle
condition or a disjunctive triangle condition.

Remark 2.1. If the condition (Q-1) is fulfilled, then the function h is a
generalized quasi-pseudo-metric. On the other hand, if one of the conditions
(M-i) for i = 1, 2, 3 is strictly fulfilled, then the function h is a generalized
pseudo-metric. Note that the symmetry condition follows directly from (C)
and any condition (M-i) for i = 1, 2, 3. Indeed, to exemplify, take the condition
(M-1)

h(x, y) ≤ h(y, x) + h(x, x) = h(y, x).

Analogously, we get h(y, x) ≤ h(x, y) and hence the equality h(x, y) =
h(y, x).

Definition 2.2. Let (X, h,G) be a hemimetric space. Then the function
g : X2 → G defined by

(D) g(x, y) = h(y, x)

for all x, y ∈ X is a hemimetric given in X. An ordered triple (X, g,G) is
called a hemimetric space conjugate with (X, h,G).

Remark 2.2. Note that the conditions (M-2) and (M-3) are mutually con-
jugate in the sense that, at the moment of transition from the function h to
g, (M-2) becomes (M-3) and, conversely. On the other hand, the conditions
(Q-1) and (M-1) are self-conjugate in the sense of the above notion.

Example 2.1. Let X be an Euclidean plane with the pointwise partial order
induced from a natural order of real numbers R and let the function h : X2 →
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R+ be given by the following formula:

h(A,B) =

{
0, if A ≤ B,A,B ∈ X or A,B ∈ OY,

|AB|, otherwise,

for all A = (x1, y1) and B = (x2, y2) ∈ X . The symbol |AB| stands for the
distance between the points A and B. Then the ordered triple (X, h,R+) is a
hemimetric space for the sake of the L-semigroup (R+,+, 0,≤).

Note that, for the points A = (1, 0), B = (0, 1) and C = (0, 0), the condi-
tion (M-2) holds. Respectively, for the points A = (−1, 0), B = (0,−1) and
C = (0, 0), the condition (M-3) holds. On the other hand, for the points
A = (−1, 0), B = (0, 1) and C = (0, 0), the condition (M-1) holds. Finally, for
the points A = (1, 0), B = (0,−1) and C = (0, 0), the condition (Q-1) holds.

Example 2.3. Let X = R × (R+ ∪ {0}) and let a function h : X2 → R+ for
all A,B ∈ X be defined by

h(A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if A = B,

1, if A 
= B ∈ OX or A ∈ OX and B ∈ OX,

min{1, r}, if A ∈ OX and B 
∈ OX,

min{1, |AB|}, if A 
∈ OX,

where r stands for the radius of the circle with the center in point S(Ax, r) and
tangent to the line OX in the point A. Then the pair (X, h) is a hemimetric
space. Note at the same time that the family of all the neighborhoods of the
points from X given by the formula

Uh
A(ε) = {B ∈ X : h(A,B) < ε}

generates the topology Th identical with the topology of Niemytzki space (see
V. Niemytzki [8]).

Remark 2.3. This example demonstrates that Niemytzki space is a hemi-
metrizable space.

Example 2.3. Let X = I ∨ {P} for P 
∈ I = [0, 1]. On the other hand, the
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function h : X2 → R+ is given as follows: for all x, y ∈ X,

h(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, for x ∈ I and y ∈ P

or (x ≥ y and x, y ∈ I) and x = y,

x− y, if x, y ∈ I and x < y,

1, if x = P and y ∈ I.

Then (X, h) is a hemimetric space.

According to (D), the function g(x, y) = h(y, x) is also a hemimetric. The
families of neighborhoods {Uh

x (ε)}x∈X and {Ug
x(ε)}x∈X generate the topologies

Th and Tg, that is, they determine a bitopological space (X, Th, Tg), which was
introduced by J. C. Kelly [6].

Note that the neighborhoods of the points from X are of the form Uh
x (ε) =

[0, x + ε) ∪ {P} if x 
= P and Uh
p (ε) = {P}. Analogously, for the function g,

we have Ug
x(ε) = (x− ε, 1] ∪ {P} if x 
= P and Ug

p (ε) = {P}.
The topologies Th and Tg are To, while the bitopological space (X, Th, Tg)

is mutually T1, yet it does not fulfill the condition T1 1
2
and therefore it is not

semi-Hausdorff space.

Remark 2.4. The question of separation axioms in the bitopological space
(X, Th, Tg) is dealt with in the papers by J. C. Kelly [6], M. G. Murdeshwar
and S. A. Naimpally [7].
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