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1. Introduction

Let A(p) denote the class of functions of the form

f(z) = zp +
∞∑

k=p+1

akz
k, (p ∈ N = {1, 2, . . .}) ,

which are analytic and p–valent in the open unit disc U = {z ∈ C : |z| < 1}.
If f and g are analytic functions in U, we say that f is subordinate to g,

written f(z) ≺ g(z), if there exists a Schwarz function w, which (by definition)
is analytic in U with w(0) = 0, and |w(z)| < 1 for all z ∈ U, such that
f(z) = g(w(z)), for all z ∈ U. Furthermore, if the function g is univalent in
U, then we have the following equivalence:

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

For 0 ≤ η < p, we denote by S∗
p(η), Kp(η) and Cp the subclasses of A(p)

consisting of all analytic functions which are, respectively, p–valent starlike of
order η, p–valent convex of order η and close-to-convex in U.

Let define the multiplier transformation Isλ,p : A(p) → A(p) by

Isλ,p f(z) = zp +
∞∑

k=p+1

(
k + λ

p+ λ

)s

akz
k, (λ ≥ 0, s ∈ R) .

This operator is closely related to the Sălăgean derivative operators [13].
The special case Is1,λ was studied recently by Cho and Srivastava [4], and Cho
and Kim [3], while Is1,1 was studied by Uralegaddi and Somanatha [15]. An
investigation of the Isp;λ operator was given by Aghalary et. al. [1]. We also
mention the papers [2], [6], [7], [9], [11], [12] and [14], that are closely-related
recent articles on the subject of the multiplier transformations investigated in
our work.

Let M be the class of all functions ϕ which are analytic and univalent in
U and for which ϕ(U) is convex, with ϕ(0) = 1 and Reϕ(z) > 0 for all z ∈ U.

Using the above subordination property between univalent functions, in
order to generalize the previous subclasses S∗

p(η), Kp(η) and Cp, we define the
following subclasses of A(p):

S∗
p(η;ϕ) =

{
f ∈ A(p) :

1

p− η

(
zf ′(z)
f(z)

− η

)
≺ ϕ(z)

}
,
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Kp(η;ϕ) =

{
f ∈ A(p) :

1

p− η

(
1 +

zf ′′(z)
f ′(z)

− η

)
≺ ϕ(z)

}
,

and

Cp(η, δ;ϕ, ψ) =

{
f ∈ A(p) : ∃ g ∈ S∗

p (η;ϕ) ,
1

p− δ

(
zf ′(z)
g(z)

− δ

)
≺ ψ(z)

}
,

where 0 ≤ η < p, 0 ≤ δ < p, and ϕ, ψ ∈ M. It is easy to see that the next
equivalence holds:

f ∈ Kp(η;ϕ) ⇔ zf ′(z)
p

∈ S∗
p(η;ϕ). (1.1)

Setting

f s
p;λ(z) = zp +

∞∑
k=p+1

(
k + λ

p+ λ

)s

zk, (s ∈ R, λ ≥ 0) ,

we define a new function f s
p;λ,μ in terms of the Hadamard (or convolution)

product, by

f s
p;λ,μ(z) ∗ f s

p;λ(z) =
zp

(1− z)μ+p
, (μ > −p) . (1.2)

We now introduce the operator Isp;λ,μ : A(p) → A(p), defined by

Isp;λ,μ f(z) = f s
p;λ,μ(z) ∗ f(z) = zp +

∞∑
k=p+1

(
p+ λ

k + λ

)s
(p+ μ)k−p

(1)k−p
akz

k, (1.3)

where s ∈ R, λ ≥ 0, μ > −p, and (d)k denotes the Pochhammer symbol, i.e.

(d)k =

⎧⎨
⎩

1, if k = 0, d ∈ C \ {0},

d(d+ 1) . . . (d+ k − 1), if k ∈ N, d ∈ C.

In particular, we note that

I0p;0,1−p f(z) = f(z) and I0p;0,2−p = zf ′(z) + (1− p)f(z).

In view of (1.2) and (1.3), we may easily obtain the following relations:

z
(
Is+1
p;λ,μ f(z)

)′
= (λ+ p) Isp;λ,μ f(z)− λ Is+1

p;λ,μ f(z) (1.4)
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and

z
(
Isp;λ,μ f(z)

)′
= (μ+ p) Isp;λ,μ+1 f(z)− μ Isp;λ,μ f(z). (1.5)

Now, by using the operator Isp;λ,μ, for ϕ, ψ ∈ M, s ∈ R, λ ≥ 0, μ > −p,
0 ≤ η < p, and 0 ≤ δ < p, we will introduce the following subclasses of A(p):

Definition 1.1. 1. Let denote by

Ss
p;λ,μ(η;ϕ) =

{
f ∈ A(p) : Isp;λ,μ f ∈ S∗

p(η;ϕ)
}

the class of p–valent generalized ϕ–starlike of order η.
2. Let

Ks
p;λ,μ(η;ϕ) =

{
f ∈ A(p) : Isp;λ,μ f ∈ Kp(η;ϕ)

}
be the class of p–valent generalized ϕ–convex of order η.

3. Let denote by

Cs
p;λ,μ(η, δ;ϕ, ψ) =

{
f ∈ A(p) : Isp;λ,μ f ∈ Cp(η, δ;ϕ, ψ)

}
the class of p–valent generalized ϕ–close-to-convex of order η.

Remark 1.1. If f ∈ Cs
p;λ,μ(η, δ;ϕ, ψ), then Isp;λ,μ f ∈ Cp(η, δ;ϕ, ψ), hence there

exists a function g ∈ S∗
p (η;ϕ) such that

1

p− δ

(
z
(
Isp;λ,μ f(z)

)′
Isp;λ,μ g(z)

− δ

)
≺ ψ(z).

In this case we call that f ∈ Cs
p;λ,μ(η, δ;ϕ, ψ), or f is a p–valent generalized

ϕ–starlike of order η, related to the function g ∈ S∗
p (η;ϕ).

Since I0p;0,1−p f = f , these classes generalize the already defined S∗
p(η;ϕ),

Kp(η;ϕ), and Cp(η, δ;ϕ, ψ) subclasses of A(p). Also, it is easy to check that

z

p

(
Isp;λ,μ f(z)

)′
= Isp;λ,μ

(
zf ′(z)
p

)
, (1.6)

and according to this formula, we have the next equivalence:

f ∈ Ks
p;λ,μ(η;ϕ) ⇔

zf ′(z)
p

∈ Ss
p;λ,μ(η;ϕ). (1.7)
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In particular, we set

Ss
p;λ,μ(η;A,B;α) = Ss

p;λ,μ

(
η;

(
1 + Az

1 +Bz

)α)
,

and

Ks
p;λ,μ(η;A,B;α)) = Ks

p;λ,μ

(
η;

(
1 + Az

1 +Bz

)α)
,

where 0 < α ≤ 1, and −1 ≤ B < A ≤ 1.
In the first part of this paper we investigate several inclusion properties

of the classes Ss
p;λ,μ(η;ϕ), K

s
p;λ,μ(η;ϕ) and Cs

p;λ,μ(η, δ;ϕ, ψ), associated with
the operator Isp;λ,μ, while in the second paper we will prove that a well-known
class of integral operators preserve these subclasses of A(p). Some applications
involving these and other classes of integral operators are also considered.

2. Inclusion Properties Involving the Operator

Isp;λ,μ

The following results will be required in our investigation.

Lemma 2.1. [8] Let ϕ be convex (univalent) in U, with ϕ(0) = 1 and
Re (βϕ(z) + γ) > 0 for all z ∈ U, where β, γ ∈ C. If the function q is analytic
in U, with q(0) = 1, then

q(z) +
zq′(z)

βq(z) + γ
≺ ϕ(z),

implies that
q(z) ≺ ϕ(z).

Lemma 2.2. [10] Let ϕ be convex (univalent) in U, and let w be analytic in
U, with Rew(z) ≥ 0 for all z ∈ U. If the function q is analytic in U, with
q(0) = ϕ(0), then

q(z) + w(z)zq′(z) ≺ ϕ(z)

implies that
q(z) ≺ ϕ(z).

With the help of Lemma 2.1, we obtain the next inclusions:
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Theorem 2.1. Let s ∈ R, λ ≥ 0, μ > −p, 0 ≤ η < p, and μ+ η ≥ 0.
1. If f ∈ Ss

p;λ,μ+1(η;ϕ), then f ∈ Ss
p;λ,μ(η;ϕ), whenever I

s
p;λ,μ f(z) �= 0, for

all z ∈ U̇ = U \ {0}.
2. If f ∈ Ss

p;λ,μ(η;ϕ), then f ∈ Ss+1
p;λ,μ(η;ϕ), whenever I

s+1
p;λ,μ f(z) �= 0, for all

z ∈ U̇.

Proof. Let f ∈ Ss
p;λ,μ+1(η;ϕ), and set

q(z) =
1

p− η

(
z(Isp;λ,μ f(z))

′

Isp;λ,μ f(z)
− η

)
. (2.1)

From the assumption, the function q is analytic in U, with q(0) = 1. According
to (2.1) and using the relation (1.5), we obtain

(p+ μ)
Isp;λ,μ+1 f(z)

Isp;λ,μ f(z)
= (p− η)q(z) + η + μ. (2.2)

Taking the logarithmic differential on both sides of (2.2), and multiplying
then by z, we have

q(z) +
zq′(z)

(p− η)q(z) + η + μ
=

1

p− η

(
z(Isp;λ,μ+1 f(z))

′

Isp;λ,μ+1 f(z)
− η

)
≺ ϕ(z). (2.3)

Since ϕ ∈ M, then Reϕ(z) > 0 for all z ∈ U, and from the assumptions
μ > −p and μ+ η ≥ 0 we get

Re ((p− η)ϕ(z) + η + μ) > 0, z ∈ U. (2.4)

Now, by applying Lemma 2.1 for the subordination (2.3), it follows that q(z) ≺
ϕ(z), i.e. f ∈ Ss

p;λ,μ(η;ϕ).
To prove the second part, let f ∈ Ss

p;λ,μ(η;ϕ) and put

h(z) =
1

p− η

(
z(Is+1

p;λ,μ+1 f(z))
′

Is+1
p;λ,μ f(z)

− η

)
.

From the assumption, we have that h is analytic in U, and h(0) = 1. Then,
by using similar arguments to those detailed above, together with the relation
(1.4), it follows that

h(z) +
zh′(z)

(p− η)h(z) + η + μ
=

1

p− η

(
z(Isp;λ,μ f(z))

′

Isp;λ,μ f(z)
− η

)
≺ ϕ(z). (2.5)
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Like in the first part of the proof, the inequality (2.4) holds, and then by
applying Lemma 2.1 for the subordination (2.5), it follows that h(z) ≺ ϕ(z),
i.e. f ∈ Ss+1

p;λ,μ(η;ϕ).

Theorem 2.2. Let s ∈ R, λ ≥ 0, μ > −p, 0 ≤ η < p, and μ+ η ≥ 0.

1. If f ∈ Ks
p;λ,μ+1(η;ϕ), then f ∈ Ks

p;λ,μ(η;ϕ), whenever Isp;λ,μ

(
zf ′(z)
p

)
�=

0, for all z ∈ U̇.

2. If f ∈ Ks
p;λ,μ(η;ϕ), then f ∈ Ks+1

p;λ,μ(η;ϕ), whenever I
s+1
p;λ,μ

(
zf ′(z)
p

)
�= 0,

for all z ∈ U̇.

Proof. If f ∈ Ks
p;λ,μ+1(η;ϕ), by definition we have Isp;λ,μ+1 f ∈ Kp(η;ϕ).

According to (1.7) and (1.6), this last relation is equivalent to

Isp;λ,μ+1

(
zf ′(z)
p

)
=
z

p

(
Isp;λ,μ+1 f(z)

)′ ∈ S∗
p(η;ϕ),

i.e.
zf ′(z)
p

∈ Ss
p;λ,μ+1(η;ϕ). By using the first part of Theorem 2.1 together

with (1.6), it follows that
zf ′(z)
p

∈ Ss
p;λ,μ(η;ϕ), or

z

p

(
Isp;λ,μ f(z)

)′
= Isp;λ,μ

(
zf ′(z)
p

)
∈ S∗

p(η;ϕ).

Using (1.7), this is equivalent to Isp;λ,μ f ∈ Kp(η;ϕ), i.e. f ∈ Ks
p;λ,μ(η;ϕ).

For the second part of the theorem, let f ∈ Ks
p;λ,μ(η;ϕ). Form (1.7), that

means
zf ′(z)
p

∈ Ss
p;λ,μ(η;ϕ), and by using the second part of Theorem 2.1

together with (1.6), it follows that
zf ′(z)
p

∈ Ss+1
p;λ,μ(η;ϕ), or

Is+1
p;λ,μ

(
zf ′(z)
p

)
=
z

p

(
Is+1
p;λ,μ f(z)

)′ ∈ S∗
p(η;ϕ).

From (1.7), this is equivalent to Is+1
p;λ,μ f ∈ Kp(η;ϕ), i.e. f ∈ Ks+1

p;λ,μ(η;ϕ).
Taking

ϕ(z) =

(
1 + Az

1 +Bz

)α

(−1 ≤ B < A ≤ 1, 0 < α ≤ 1)

in Theorem 2.1 and Theorem 2.2, we have the following special cases:
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Corollary 2.1. Let s ∈ R, λ ≥ 0, μ > −p, 0 ≤ η < p, and μ+η ≥ 0. Suppose
that −1 ≤ B < A ≤ 1, and 0 < α ≤ 1.

1. If f ∈ Ss
p;λ,μ+1(η;A,B;α), then f ∈ Ss

p;λ,μ(η;A,B;α), whenever Isp;λ,μ f(z) �=
0, for all z ∈ U̇.

2. If f ∈ Ss
p;λ,μ(η;A,B;α), then f ∈ Ss+1

p;λ,μ(η;A,B;α), whenever Is+1
p;λ,μ f(z) �=

0, for all z ∈ U̇.
3. If f ∈ Ks

p;λ,μ+1(η;A,B;α)), then f ∈ Ks
p;λ,μ(η;A,B;α)), whenever

Isp;λ,μ

(
zf ′(z)
p

)
�= 0, for all z ∈ U̇.

4. If f ∈ Ks
p;λ,μ(η;A,B;α)), then f ∈ Ks+1

p;λ,μ(η;A,B;α)), whenever

Is+1
p;λ,μ

(
zf ′(z)
p

)
�= 0, for all z ∈ U̇.

Theorem 2.3. Let s ∈ R, λ ≥ 0, μ > −p, 0 ≤ η < p, and μ+ η ≥ 0.
1. If f ∈ Cs

p;λ,μ+1(η, δ;ϕ, ψ) related to g ∈ Ss
p;λ,μ+1(η;ϕ), then

f ∈ Cs
p;λ,μ(η, δ;ϕ, ψ) related to g ∈ Ss

p;λ,μ(η;ϕ), whenever Isp;λ,μ g(z) �= 0, for

all z ∈ U̇.
2. If f ∈ Cs

p;λ,μ(η, δ;ϕ, ψ) related to g ∈ Ss
p;λ,μ(η;ϕ), then f ∈ Ss+1

p;λ,μ(η, δ;ϕ, ψ)

related to g ∈ Ss+1
p;λ,μ(η;ϕ), whenever Is+1

p;λ,μ g(z) �= 0, for all z ∈ U̇.

Proof. If f ∈ Cs
p;λ,μ+1(η, δ;ϕ, ψ) related to g ∈ Ss

p;λ,μ+1(η;ϕ), according to the
definition of these classes, we have

1

p− δ

(
z
(
Isp;λ,μ+1 f(z)

)′
Isp;λ,μ+1 g(z)

− δ

)
≺ ψ(z). (2.6)

Now, if we let

q(z) =
1

p− δ

(
z(Isp;λ,μ f(z))

′

Isp;λ,μ g(z)
− δ

)
,

then q is analytic in U, with q(0) = 1. Using (1.5), we obtain

[(p− δ)q(z) + δ] Isp;λ,μ g(z) + μ Isp;λ,μ f(z) = (p+ μ) Isp;λ,μ+1 f(z). (2.7)

Differentiating (2.7) and multiplying by z, we have

(p+ μ)z
(
Isp;λ,μ+1 f(z)

)′
= μz

(
Isp;λ,μ f(z)

)′
+

(p− δ)zq′(z) Isp;λ,μ g(z) + [(p− δ)q(z) + δ] z
(
Isp;λ,μ g(z)

)′
. (2.8)
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Since g ∈ Ss
p;λ,μ+1(η;ϕ), by the first part of Theorem 2.1 we have g ∈

Ss
p;λ,μ(η;ϕ). Letting

Q(z) =
1

p− η

(
z
(
Isp;λ,μ g(z)

)′
Isp;λ,μ g(z)

− η

)
,

then Q(z) ≺ ϕ(z), and using (1.5) once again, we have

(μ+ p)
Isp;λ,μ+1 g(z)

Isp;λ,μ g(z)
= (p− η)Q(z) + η + μ. (2.9)

From (2.8) and (2.9), we obtain

1

p− δ

(
z(Isp;λ,μ+1 f(z))

′

Isp;λ,μ+1 g(z)
− δ

)
= q(z) +

zq′(z)
(p− η)Q(z) + μ+ η

,

and combining with (2.6) we deduce that

q(z) + w(z)zq′(z) ≺ ψ(z), where w(z) =
1

(p− η)Q(z) + μ+ η
. (2.10)

Since p > η, μ + η ≥ 0 and Q(z) ≺ ϕ(z) ∈ M, then Rew(z) > 0 for
all z ∈ U. According to Lemma 2.2, the subordination (2.10) yields that
q(z) ≺ ψ(z), where g ∈ Ss

p;λ,μ(η;ϕ), i.e. f ∈ Cs
p;λ,μ(η, δ;ϕ, ψ).

Since for the second part of the theorem we used similar arguments to those
detailed above together with the identity (1.4), we will omit this proof.

3. The Subclasses Images by the Integral Op-

erator Fp;c

Let consider the integral operator Fp;c : A(p) → A(p), defined by

Fp;c(f)(z) =
p+ c

zc

z∫
0

tc−1f(t) d t, (c > −p). (3.1)

In this section we will prove that this operator preserves the classes Ss
p;λ,μ(η;ϕ),

Ks
p;λ,μ(η;ϕ) and C

s
p;λ,μ(η, δ;ϕ, ψ).
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Theorem 3.1. Let s ∈ R, λ ≥ 0, c > −p, and c + η ≥ 0. If f ∈ Ss
p;λ,μ(η;ϕ),

then Fp;c(f) ∈ Ss
p;λ,μ(η;ϕ), whenever Isp;λ,μ Fp;c(f)(z) �= 0 for all z ∈ U̇.

Proof. If we let f ∈ Ss
p;λ,μ(η;ϕ), and

q(z) =
1

p− η

(
z(Isp;λ,μ Fp;c(f)(z))

′

Isp;λ,μ Fp;c(f)(z)
− η

)
, (3.2)

then q is analytic in U, with q(0) = 1.

From (3.1), according to (1.6), we have

z
(
Isp;λ,μ Fp;c(f)(z)

)′
= (c+ p) Isp;λ,μ f(z)− c Isp,λ,μ Fp;c(f)(z), (3.3)

and then, by using (3.2) and (3.3), we obtain

(c+ p)
Isp;λ,μ f(z)

Isp;λ,μ Fp;c(f)(z)
= (p− η)q(z) + c+ η. (3.4)

Now, taking the logarithmic differentiation on both sides of (3.4) and multi-
plying by z, we have

q(z) +
zq′(z)

(p− η)q(z) + c+ η
=

1

p− η

(
z(Isp;λ,μ f(z))

′

Isp;λ,μ f(z)
− η

)
≺ ϕ(z). (3.5)

Since ϕ ∈ M, then Reϕ(z) > 0 for all z ∈ U, and from the assumptions
μ > −p and c+ η ≥ 0 we get

Re ((p− η)ϕ(z) + c + η) > 0, z ∈ U.

Hence, by virtue of Lemma 2.1, the subordination (3.5) implies that q(z) ≺
ϕ(z), i.e. Fp;c(f) ∈ Ss

p;λ,μ(η;ϕ).

Next we derive an inclusion property involving the images of the subclasses
Ks

p;λ,μ(η;ϕ) via the operator Fp;c, which is given by the following result:

Theorem 3.2. Let s ∈ R, λ ≥ 0, c > −p, and c+ η ≥ 0. If f ∈ Ks
p;λ,μ(η;ϕ),

then Fp;c(f) ∈ Ks
p;λ,μ(η;ϕ), whenever Isp;λ,μ Fp;c

(
zf ′(z)
p

)
�= 0 for all z ∈ U̇.
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Proof. If f ∈ Ks
p;λ,μ(η;ϕ), by definition we have Isp;λ,μ f ∈ Kp(η;ϕ), and from

(1.7) and (1.6), this is equivalent to

Isp;λ,μ

(
zf ′(z)
p

)
=
z

p

(
Isp;λ,μ f(z)

)′ ∈ S∗
p(η;ϕ),

i.e.
zf ′(z)
p

∈ Ss
p;λ,μ(η;ϕ). By using Theorem 3.1 together with (1.6), it follows

that Fp;c

(
zf ′(z)
p

)
∈ Ss

p;λ,μ(η;ϕ), or

Fp;c

(
zf ′(z)
p

)
=
z

p
(Fp;cf(z))

′ ∈ Ss
p(η;ϕ),

that is

Isp;λ,μ

(
z (Fp;cf(z))

′

p

)
=
z

p

(
Isp;λ,μ Fp;cf(z)

)′ ∈ S∗
p(η;ϕ).

Using (1.1), this is equivalent to Isp;λ,μ Fp;c(f) ∈ Kp(η;ϕ), i.e. Fp;c(f) ∈
Ks

p;λ,μ(η;ϕ), which proves the theorem.
From Theorem 3.1 and Theorem 3.2, we have the following:

Corollary 3.1. Let s ∈ R, λ ≥ 0, c > −p, and c + η ≥ 0. Suppose that
−1 ≤ B < A ≤ 1, and 0 < α ≤ 1.

1. If f ∈ Ss
p;λ,μ(η;A,B;α), then Fp;c(f) ∈ Ss

p;λ,μ(η;A,B;α), whenever

Isp;λ,μ Fp;c(f)(z) �= 0 for all z ∈ U̇.
2. If f ∈ Ks

p;λ,μ(η;A,B;α), then Fp;c(f) ∈ Ks
p;λ,μ(η;A,B;α), whenever

Isp;λ,μ Fp;c

(
zf ′(z)
p

)
�= 0, for all z ∈ U̇.

Finally, we will prove that the operator Fp;c preserves the classes C
s
p;λ,μ(η, δ;ϕ, ψ)

of p–valent generalized ϕ–starlike of order η.

Theorem 3.3. Let s ∈ R, λ ≥ 0, c > −p, and c + η ≥ 0. If f ∈
Cs

p;λ,μ(η, δ;ϕ, ψ) related to g ∈ Ss
p;λ,μ(η;ϕ), then Fp;c(f) ∈ Cs

p;λ,μ(η, δ;ϕ, ψ)

related to Fp;c(g) ∈ Ss
p;λ,μ(η;ϕ), whenever Isp;λ,μ Fp;c(g)(z) �= 0, for all z ∈ U̇.

Proof. If f ∈ Cs
p;λ,μ(η, δ;ϕ, ψ), then in view of the Definition 1.1, there exists

a function g ∈ Ss
p;λ,μ(η;ϕ) such that

1

p− δ

(
z(Isp;λ,μ Fp;cf(z))

′

Isp;λ,μ g(z)
− δ

)
≺ ψ(z). (3.6)
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Thus, if we set

q(z) =
1

p− δ

(
z(Isp;λ,μ Fp;c(f)(z))

′

Isp;λ,μ Fp;c(g)(z)
− δ

)
,

then q is analytic in U, with q(0) = 1. Using (3.3), we have

(c+ p) Isp;λ,μ f(z) = [(p− δ)q(z) + δ] Isp;λ,μ Fp;c(g)(z) + c Isp,λ,μ Fp;c(f)(z),

and taking the logarithmic derivative of this identity and multiplying by z, we
have

(c+ p)z
(
Isp;λ,μ f(z)

)′
= (p− δ)zq′(z) Isp;λ,μ Fp;c(g)(z) +

[(p− δ)q(z) + δ] z
(
Isp;λ,μ Fp;c(g)(z)

)′
+ cz

(
Isp;λ,μ Fp;c(f)(z)

)′
. (3.7)

Letting

Q(z) =
1

p− η

(
z(Isp;λ,μ Fp;c(g)(z))

′

Isp;λ,μ Fp;c(g)(z)
− η

)
,

since g ∈ Ss
p;λ,μ(η;ϕ), from Theorem 3.1 we have that Fp;c(g) ∈ Ss

p;λ,μ(η;ϕ),
hence Q(z) ≺ ϕ(z).

Using again (3.3), we obtain

(c+ p) Isp;λ,μ g(z) = [(p− η)Q(z) + c+ η] Isp;λ,μ Fp;c(g)(z), (3.8)

and then, from (3.7) and (3.8), we deduce that

q(z) +
zq′(z)

(p− η)Q(z) + c+ η
=

1

p− δ

(
z(Isp;λ,μ Fp;cf(z))

′

Isp;λ,μ g(z)
− δ

)
.

Combining this last identity together with the subordination (3.6), we deduce
that

q(z) + w(z)zq′(z) ≺ ψ(z), where w(z) =
1

(p− η)Q(z) + c+ η
. (3.9)

Since p > η, c + η ≥ 0 and Q(z) ≺ ϕ(z) ∈ M, then Rew(z) > 0 for all
z ∈ U. Using Lemma 2.2, the subordination (3.9) implies that q(z) ≺ ψ(z),
where Fp;c(g) ∈ Ss

p;λ,μ(η;ϕ), i.e. Fp;c(f) ∈ Cs
p;λ,μ(η, δ;ϕ, ψ).

Remark 3.1. Putting p = 1 in the above results we obtain the results of [5].
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