On the Classes of Analytic Functions Defined by Using Al - Oboudi Operator *

Hesam Mahzoon[†]

Manasagangotri University of Mysore Mysore-570 006 India

and

S. Latha[‡]

Department of Mathematics Yuvaraja's College University of Mysore Mysore - 570 005 India

Received March 31, 2009, Accepted May 12, 2009.

Abstract

In this note, we define the new subclasses $\mathcal{N}_{m,n}(\alpha,\beta,\lambda)$ and $\tilde{\mathcal{N}}_{m,n}(\alpha,\beta,\lambda)$ of analytic functions using the Al - Oboudi operator. For functions belonging to these classes we determine coefficient inequalities, extreme points and integral means inequalities.

Keywords and Phrases: Analytic functions, Al - Oboudi operator, Coefficient inequalities, Extreme points and Integral means.

^{*2010} Mathematics Subject Classification. Primary 30C45.

[†]E-mail: mahzoon_ hesam@yahoo.com

[‡]Corresponding author. E-mail: drlatha@gmail.com

1. Introduction

Let \mathcal{A} be the class of functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1.1}$$

which are analytic in the open unit disc $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}.$

Definition 1.1. [1] Let $n \in \mathbb{N}$ and $\lambda \geq 0$, the Al - Oboudi operator $D_{\lambda}^{n} : \mathcal{A} \to \mathcal{A}$, is defined as $D_{\lambda}^{0}f(z) = f(z)$, $D_{\lambda}^{1}f(z) = (1-\lambda)f(z)+zf'(z) = D_{\lambda}f(z)$ and $D_{\lambda}^{n}f(z) = D_{\lambda}\left(D_{\lambda}^{n-1}f(z)\right)$.

Further, if $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, then we have,

$$D_{\lambda}^{n} f(z) = z + \sum_{k=2}^{\infty} [1 + (k-1)\lambda]^{n} a_{k} z^{k}, \quad (n \in \mathbb{N}_{0}).$$
 (1.2)

Remark 1.2. It is easy to observe that for $\lambda = 1$, we get the Sălăgean operator [8].

Definition 1.3. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{N}_{m,n}(\alpha,\beta,\lambda)$ if

$$\Re\left\{\frac{D_{\lambda}^{m}f(z)}{D_{\lambda}^{n}f(z)}\right\} > \beta \left|\frac{D_{\lambda}^{m}f(z)}{D_{\lambda}^{n}f(z)} - 1\right| + \alpha, \tag{1.3}$$

for some $0 \le \alpha < 1, \ \beta \ge 0, \ m \in \mathbb{N}, \ n \in \mathbb{N}_0, \ \lambda \ge 0 \ \text{and} \ z \in \mathcal{U}$.

The following are the special cases of the class $\mathcal{N}_{m,n}(\alpha,\beta,\lambda)$:

- i. $\mathcal{N}_{m,n}(\alpha,\beta,1) \equiv \mathcal{N}_{m,n}(\alpha,\beta)$, the class introduced by Eker and Owa [3].
- ii. $\mathcal{N}_{1,0}(\alpha,\beta,1) \equiv \mathcal{SD}(\alpha,\beta)$ and $\mathcal{N}_{2,1}(\alpha,\beta,1) \equiv \mathcal{KD}(\alpha,\beta)$, the classes studied by Shams, Kulkarni and Jahangiri [9].
- iii. $\mathcal{N}_{m,n}(\alpha,0,1) \equiv \mathcal{K}_{m,n}(\alpha)$, the class studied by Eker and Owa [4].
- iv. $\mathcal{N}_{1,0}(\alpha,0,1) \equiv \mathcal{S}^{\star}(\alpha)$ and $\mathcal{N}_{2,1}(\alpha,0,1) \equiv \mathcal{K}(\alpha)$, the classes introduced by Robertson [7].

2. Coefficient Inequalities for the Class $\mathcal{N}_{m,n}(\alpha,\beta,\lambda)$

Theorem 2.1. If $f \in A$ satisfies,

$$\sum_{k=2}^{\infty} \psi(\lambda, m, n, k, \alpha, \beta) |a_k| \le 2(1-\alpha)$$
(2.1)

where,

$$\psi(\lambda, m, n, k, \alpha, \beta) = |(1 + \alpha) [1 + (k - 1)\lambda]^{n} - [1 + (k - 1)\lambda]^{m}| + ((1 - \alpha) [1 + (k - 1)\lambda]^{n} + [1 + (k - 1)\lambda]^{m}) + 2\beta |[1 + (k - 1)\lambda]^{m} - [1 + (k - 1)\lambda]^{n}|$$

for some $\alpha (0 \leq \alpha < 1)$, $\beta \geq 0$, $m \in \mathbb{N}$, $n \in \mathbb{N}_0$ and $\lambda \geq 0$, then $f \in \mathcal{N}_{m,n}(\alpha,\beta,\lambda)$.

Proof. Let, the expression (2.1) be true for $0 \le \alpha < 1$, $\beta \ge 0$, $m \in \mathbb{N}$, $n \in \mathbb{N}_0$ and $\lambda \ge 0$. Hence it suffices to show that,

$$\left| (1 - \alpha) D_{\lambda}^{n} f(z) + D_{\lambda}^{m} f(z) - \beta e^{i\theta} \left| D_{\lambda}^{m} f(z) - D_{\lambda}^{n} f(z) \right| \right|$$

$$-\left|(1+\alpha)D_{\lambda}^{n}f(z)-D_{\lambda}^{m}f(z)+\beta e^{i\theta}\left|D_{\lambda}^{m}f(z)-D_{\lambda}^{n}f(z)\right|\right|>0.$$

So, we have

$$\begin{split} & \left| (1-\alpha)D_{\lambda}^{n}f(z) + D_{\lambda}^{m}f(z) - \beta e^{i\theta} \left| D_{\lambda}^{m}f(z) - D_{\lambda}^{n}f(z) \right| \right| \\ & - \left| (1+\alpha)D_{\lambda}^{n}f(z) - D_{\lambda}^{m}f(z) + \beta e^{i\theta} \left| D_{\lambda}^{m}f(z) - D_{\lambda}^{n}f(z) \right| \right| \\ & = \left| (2-\alpha)z + \sum_{k=2}^{\infty} \left\{ (1-\alpha) \left[1 + (k-1)\lambda \right]^{n} + \left[1 + (k-1)\lambda \right]^{m} \right\} a_{k}z^{k} \\ & - \beta e^{i\theta} \left| \sum_{k=2}^{\infty} \left\{ \left[1 + (k-1)\lambda \right]^{m} - \left[1 + (k-1)\lambda \right]^{n} \right\} a_{k}z^{k} \right| \right| \\ & - \left| \alpha z + \sum_{k=2}^{\infty} \left\{ (1+\alpha) \left[1 + (k-1)\lambda \right]^{n} - \left[1 + (k-1)\lambda \right]^{m} \right\} a_{k}z^{k} \right| \\ & + \beta e^{i\theta} \left| \sum_{k=2}^{\infty} \left\{ (1+\alpha) \left[1 + (k-1)\lambda \right]^{n} - \left[1 + (k-1)\lambda \right]^{m} \right\} a_{k}z^{k} \right| \right| \\ & \geq (2-\alpha)|z| - \sum_{k=2}^{\infty} \left| (1-\alpha) \left[1 + (k-1)\lambda \right]^{n} + \left[1 + (k-1)\lambda \right]^{m} \right| |a_{k}| |z|^{k} \\ & - \beta \left| e^{i\theta} \right| \sum_{k=2}^{\infty} \left| (1+\alpha) \left[1 + (k-1)\lambda \right]^{n} - \left[1 + (k-1)\lambda \right]^{m} \right| |a_{k}| |z|^{k} \\ & - \beta \left| e^{i\theta} \right| \sum_{k=2}^{\infty} \left| \left[1 + (k-1)\lambda \right]^{m} - \left[1 + (k-1)\lambda \right]^{n} \right| |a_{k}| |z|^{k} \\ & \geq 2(1-\alpha) - \sum_{k=2}^{\infty} \left\{ \left| (1+\alpha) \left[1 + (k-1)\lambda \right]^{n} - \left[1 + (k-1)\lambda \right]^{m} \right| \\ & + \left((1-\alpha) \left[1 + (k-1)\lambda \right]^{m} + \left[1 + (k-1)\lambda \right]^{m} \right) \\ & + 2\beta \left| \left[1 + (k-1)\lambda \right]^{m} - \left[1 + (k-1)\lambda \right]^{n} \right| |a_{k}| \geq 0. \end{split}$$

3. Relation for $\tilde{\mathcal{N}}_{m,n}(\alpha,\beta,\lambda)$

By Theorem 2.1, we introduce the class $\tilde{\mathcal{N}}_{m,n}(\alpha,\beta,\lambda)$ as the subclass of $\mathcal{N}_{m,n}(\alpha,\beta,\lambda)$ consisting of f satisfying

$$\sum_{k=2}^{\infty} \psi(\lambda, m, n, k, \alpha, \beta) |a_k| \le 2(1-\alpha)$$
(3.1)

where,

$$\psi(\lambda, m, n, k, \alpha, \beta) = |(1 + \alpha) [1 + (k - 1)\lambda]^n - [1 + (k - 1)\lambda]^m| + ((1 - \alpha) [1 + (k - 1)\lambda]^n + [1 + (k - 1)\lambda]^m) + 2\beta |[1 + (k - 1)\lambda]^m - [1 + (k - 1)\lambda]^n|$$

for some $\alpha (0 \le \alpha < 1)$, $\beta \ge 0$, $m \in \mathbb{N}$, $n \in \mathbb{N}_0$ and $\lambda \ge 0$.

Theorem 3.1. If $f \in \mathcal{A}$, then $\tilde{\mathcal{N}}_{m,n}(\alpha, \beta_2, \lambda) \subset \tilde{\mathcal{N}}_{m,n}(\alpha, \beta_1, \lambda)$ for some β_1 and β_2 , such that $0 \leq \beta_1 \leq \beta_2$.

Proof. For $0 \le \beta_1 \le \beta_2$, we have

$$\sum_{k=2}^{\infty} \psi(\lambda, m, n, k, \alpha, \beta_1) |a_k| \leq \sum_{k=2}^{\infty} \psi(\lambda, m, n, k, \alpha, \beta_2) |a_k|.$$

Therefore, if $f \in \tilde{\mathcal{N}}_{m,n}(\alpha, \beta_2, \lambda)$, then $f \in \tilde{\mathcal{N}}_{m,n}(\alpha, \beta_1, \lambda)$.

4. Extreme Points

The determination of the extreme points of a family \mathcal{F} of univalent functions enables us to solve many external problems for \mathcal{F} .

Theorem 4.1. Let $f_1(z) = z$ and

$$f_k(z) = z + \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} z^k, \quad (k = 1, 2,; |\varepsilon_k| = 1).$$

Then, $f \in \tilde{\mathcal{N}}_{m,n}(\alpha,\beta,\lambda)$ if and only if it can be expressed in the form

$$f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z),$$

where, $\lambda_k \geq 0$ and $\sum_{k=1}^{\infty} \lambda_k = 1$.

Proof. Let $f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z)$, $\lambda_k \ge 0$, k = 1, 2, ..., with $\sum_{k=1}^{\infty} \lambda_k = 1$. Then, we have

$$f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z) = \lambda_1 z + \sum_{k=2}^{\infty} \lambda_k \left(z + \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} z^k \right)$$
$$= z + \sum_{k=2}^{\infty} \lambda_k \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} z^k.$$

That is,

$$\sum_{k=2}^{\infty} \psi(\lambda, m, n, k, \alpha, \beta) \left| \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} \lambda_k \right| = \sum_{k=2}^{\infty} 2(1-\alpha)\lambda_k$$
$$= 2(1-\alpha)(1-\lambda_1) \le 2(1-\alpha),$$

which is the condition (3.1) for $f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z)$. Thus, $f \in \tilde{\mathcal{N}}_{m,n}(\alpha, \beta, \lambda)$. Conversely, let $f \in \tilde{\mathcal{N}}_{m,n}(\alpha, \beta, \lambda)$. Since

$$|a_k| \le \frac{2(1-\alpha)}{\psi(\lambda, m, n, k, \alpha, \beta)}, \quad (k=2, 3, \ldots)$$

we put

$$\lambda_k = \frac{\psi(\lambda, m, n, k, \alpha, \beta)}{2(1 - \alpha)\varepsilon_k} a_k, \quad (|\varepsilon_k| = 1)$$

and

$$\lambda_1 = 1 - \sum_{k=2}^{\infty} \lambda_k.$$

Then,

$$f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z).$$

Corollary 4.2. The extreme points of $\tilde{\mathcal{N}}_{m,n}(\alpha,\beta,\lambda)$ are the functions $f_1(z)=z$ and

$$f_k(z) = z + \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} z^k, \quad (k = 2, 3,; |\varepsilon_k| = 1).$$

5. Integral Means Inequalities

For any two functions f and g analytic in \mathcal{U} , f is said to be subordinate to g in \mathcal{U} , denoted by $f \prec g$ if there exists an analytic function ω defined \mathcal{U} satisfying $\omega(0) = 0$ and $|\omega(z)| < 1$ such that $f(z) = g(\omega(z)), z \in \mathcal{U}$.

In particular, if the function g is univalent in \mathcal{U} , the above subordination is equivalent to f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$. In 1925, Littlewood [6] proved the following Subordination Theorem.

Theorem 5.1. [6]: If f and g are any two functions, analytic in \mathcal{U} , with $f \prec g$, then for $\mu > 0$ and $z = re^{i\theta}$, (0 < r < 1),

$$\int_0^{2\pi} |f(z)|^{\mu} d\theta \le \int_0^{2\pi} |g(z)|^{\mu} d\theta.$$

Theorem 5.2. Let $f \in \tilde{\mathcal{N}}_{m,n}(\alpha,\beta,\lambda)$ and f_k be defined by

$$f_k(z) = z + \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} z^k, \quad (k = 2, 3,; |\varepsilon_k| = 1).$$

If there exists an analytic function $\omega(z)$ given by

$$[\omega(z)]^{k-1} = \frac{\psi(\lambda, m, n, k, \alpha, \beta)}{2(1-\alpha)\varepsilon_k} \sum_{k=2}^{\infty} a_k z^{k-1},$$

then for $z = re^{i\theta}$ and 0 < r < 1,

$$\int_0^{2\pi} \left| f(re^{i\theta}) \right|^{\mu} d\theta \le \int_0^{2\pi} \left| f_k(re^{i\theta}) \right|^{\mu} d\theta, \quad (\mu > 0).$$

Proof. We have to prove that

$$\int_0^{2\pi} \left| 1 + \sum_{k=2}^\infty a_k z^{k-1} \right|^{\mu} d\theta \le \int_0^{2\pi} \left| 1 + \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} z^{k-1} \right|^{\mu} d\theta.$$

By Theorem 5.1, it suffices to show that

$$1 + \sum_{k=2}^{\infty} a_k z^{k-1} \prec 1 + \frac{2|b|(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} z^{k-1}.$$

By taking

$$1 + \sum_{k=2}^{\infty} a_k z^{k-1} = 1 + \frac{2(1-\alpha)\varepsilon_k}{\psi(\lambda, m, n, k, \alpha, \beta)} [\omega(z)]^{k-1}$$

we get

$$[\omega(z)]^{k-1} = \frac{\psi(\lambda, m, n, k, \alpha, \beta)}{2(1-\alpha)\varepsilon_k} \sum_{k=2}^{\infty} a_k z^{k-1}.$$

Clearly, $\omega(0) = 0$. By (3.1), we have

$$|[\omega(z)]|^{k-1} = \left| \frac{\psi(\lambda, m, n, k, \alpha, \beta)}{2(1 - \alpha)\varepsilon_k} \sum_{k=2}^{\infty} a_k z^{k-1} \right|$$

$$\leq \frac{\psi(\lambda, m, n, k, \alpha, \beta)}{2(1 - \alpha)|\varepsilon_k|} \sum_{k=2}^{\infty} |a_k| |z|^{k-1}$$

$$\leq |z| < 1.$$

References

- [1] F. M. AL Oboudi, On univalent functions defined by a generalized Sălăgean operator, *Ind. J. Math. Math. Sci.*, no.25-28 (2004), 1429-1436.
- [2] P. L. Duren, *Univalent functions*, Springer-Verlag, 1983.
- [3] S. S. Eker and S. Owa, Certian classes of analytic functions involving Sălăgean operator, J. Inequal. Pure Appl. Math., (in course of publication).
- [4] S. S. Eker and S. Owa, New applications of classes of analytic functions involving Sălăgean operator, *International Symposium on Complex Function Theory and Applications, Brasov, Romania*, 1 5 (2006).
- [5] S. S. Eker and B. Seker, On a class of multivalent functions defined by Sălăgean operator, *General Mathematics*, **15** Nr.2-3 (2007), 154 163.
- [6] J. E. Littlewood, On inequalities in the theory of functions, *Proc. London Math. Soc.*, **23**(1925), 481-519.
- [7] M. S. Robertson, On the theory of univalent functions, *Annals of Math.*, **37**(1936), 374-406.
- [8] G. S. Sălăgean, On some classes of univalent functions, Seminar of Geometric function theory, Cluj Napoca, 1983.
- [9] S. Shams, S. R. Kulkarni, and J. M. Jahangiri, Classes of uniformly starlike and convex functions, *International Journal of Mathematics and Mathematical Science*, **55**(2004), 2959-2961.