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Abstract

In the present paper we study some fundamental properties of solu-
tions of certain first order implicit sum-difference equations of Fredholm
type. A variant of a certain finite difference inequality with explicit es-
timate is obtained and used to establish the results.
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1. Introduction

Sum-difference equations occur frequently in numerous settings and forms,
both in mathematics itself and its applications. A simple way of solving nu-
merically, various types of differential and integral equations is to write down
the equations for a set of equidistant points and to approximate the integral
terms by appropriate quadrature formulas. In the present paper we consider
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the initial value problem (IVP, for short) for implicit sum-difference equations
of Fredholm type

∆u (n) = f (n, u (n) ,∆u (n) , Hu (n)) , u (α) = u0, (1.1)

where

Hu (n) :=

β∑
τ=α

h (n, τ, u (τ) ,∆u (τ)), (1.2)

∆u (n) = u (n+ 1) − u (n) ; f, h are given functions and u is the unknown
function to be found. The origin of equations like (1.1) can be traced back
to the study of discrete analogue of the well known Clairaut’s differential
equation, see [1, p. 117] and [6].

In the general case, solving (1.1) is highly nontrivial problem and handling
the study of its qualitative properties need a fresh outlook. The problem of
existence of solutions for equations like (1.1) can be dealt with the method
employed in [3] (see also [2, 4-6]). In the present work, we focus our attention
to study some basic qualitative properties of solutions of IVP (1.1) by using
a variant of a certain finite difference inequality with explicit estimate given
in [8]. A particular feature of our approach here is that it present conditions
under which we can offer simple, unified and concise proofs of some of the
important qualitative properties of solutions of IVP (1.1).

2. A Basic Finite Difference Inequality

Let Rm denote the real m-dimensional Euclidean space with appropriate norm
|.| . Let R+ = [0,∞) , N0 = {0, 1, 2, ...} , Nα,β = {α, α + 1, ..., α + n = β}
(α ∈ N0, n ∈ N) be the given subsets of R, the set of real numbers. Let
D(A,B) denote the class of discrete functions from the set A to the set B and
for w ∈ D (N0, R

m) , we define the operator ∆ by ∆w (n) = w (n+ 1)−w (n) .
Throughout, we assume that f ∈ D (Nα,β+1 ×Rm ×Rm ×Rm, Rm), h ∈
D
(
N2
α,β+1 ×Rm ×Rm, Rm) and use the usual conventions that empty sums

and products are taken to be 0 and 1 respectively. By a solution of IVP (1.1)
we mean a function u ∈ D (Nα,β+1, R

m) for which ∆u (n) exists and satisfies
the IVP (1.1). It is easy to observe that the solution u(n) of IVP (1.1) satisfies
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the following sum-difference equation

u (n) = u0 +
n−1∑
s=α

f (s, u (s) ,∆u (s) , Hu (s)) ,

for n ∈ Nα,β+1.

We require the following variant of the finite difference inequality established
by the present author in [8, Theorem 4.5.1 Part (a2), p. 224]. We shall state
and prove it in the following theorem for completeness.

Theorem 1. Let u, a, b, c, d, f, g ∈ D (Nα,β+1, R+) . Suppose that

u (n) ≤ a (n) + b (n)
n−1∑
s=α

f (s)

[
u (s) + d (s)

β∑
τ=α

g (τ)u (τ)

]

+c (n)

β∑
τ=α

g (τ)u (τ), (2.1)

for n ∈ Nα,β+1. If

k =

β∑
ξ=α

g (ξ)K2 (ξ) < 1, (2.2)

then
u (n) ≤ K1 (n) +M K2 (n) , (2.3)

for n ∈ Nα,β+1, where

K1 (n) = a (n) + b (n)
n−1∑
s=α

f (s) a (s)
n−1∏
σ=s+1

[1 + f (σ) b (σ)], (2.4)

K2 (n) = c (n) + b (n)
n−1∑
s=α

f (s) [c (s) + d (s)]
n−1∏
σ=s+1

[1 + f (σ) b (σ)], (2.5)

and

M =
1

1− k

β∑
ξ=α

g (ξ)K1 (ξ) . (2.6)
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Proof. Let

λ =

β∑
τ=α

g (τ)u (τ), (2.7)

z (n) =
n−1∑
s=α

f (s)

[
u (s) + d (s)

β∑
τ=α

g (τ)u (τ)

]

=
n−1∑
s=α

f (s) [u (s) + d (s)λ], (2.8)

then z (α) = 0 and (2.1) can be restated as

u (n) ≤ a (n) + b (n) z (n) + c (n)λ. (2.9)

From (2.8) and (2.9), we have

∆z (n) = f (n) [u (n) + d (n)λ]

≤ f (n) [a (n) + b (n) z (n) + c (n)λ+ d (n)λ]

= f (n) b (n) z (n) + f (n) [a (n) + [c (n) + d (n)]λ] . (2.10)

Now a suitable application of Theorem 1.2.1 given in [7] to (2.10) yields

z (n) ≤
n−1∑
s=α

f (s) [a (s) + λ [c (s) + d (s)]]
n−1∏
σ=s+1

[1 + f (σ) b (σ)]. (2.11)

Using (2.11) in (2.9), we get

u (n) ≤ a (n) + b (n)
n−1∑
s=α

f (s) [a (s) + λ [c (s) + d (s)]]
n−1∏
σ=s+1

[1 + f (σ) b (σ)]

+c (n)λ

= K1 (n) + λK2 (n) . (2.12)

From (2.7) and (2.12), it is easy to observe that

λ ≤M. (2.13)

Using (2.13) in (2.12), we get (2.3).
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3. Existence and Uniqueness

For a function z(n) and ∆z (n) in D (Nα,β+1, R
m) we denote by |z (n)|1 =

|z (n)|+|∆z (n)| . Let S be the space of functions z (n) ,∆z (n) inD (Nα,β+1, R
m)

which fulfil the condition

|z (n)|1 = O (exp (Ln)) , (3.1)

where L > 0 is a constant. In the space S we define the norm

|z|S =
max

n ∈ Nα,β+1
[|z (n)|1 exp (−Ln)] . (3.2)

It is easily seen that S with norm defined in (3.2) is a Banach space. We note
that the condition (3.1) implies that there exists a constant M ≥ 0 such that
|z (n)|1 ≤M exp (Ln) , n ∈ Nα,β+1. Using this fact in (3.2) we observe that

|z|S ≤M. (3.3)

We are now in a position to formulate the existence and uniqueness result
for the solution of equation (1.1).

Theorem 2. Suppose that
(i) the functions f, h in (1.1) satisfy the conditions

|f (n, u, v, w)− f (n, ū, v̄, w̄)| ≤ p (n) [|u− ū|+ |v − v̄|] + |w − w̄| , (3.4)

|h (n, τ, u, v)− h (n, τ, ū, v̄)| ≤ q (n, τ) [|u− ū|+ |v − v̄|] , (3.5)

where p ∈ D (Nα,β+1, R+), q ∈ D
(
N2
α,β+1, R+

)
,

(ii) for L as in (3.1).
(a1) there exists a nonnegative constant δ such that 0 ≤ δ < 1 and

E (n) +
n−1∑
s=α

E (s) ≤ δ exp (Ln) , (3.6)

for n ∈ Nα,β+1, where

E (n) = p (n) exp (Ln) +

β∑
τ=α

q (n, τ) exp (Lτ),
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(a2) there exists a nonnegative constant d such that

|u0|+ |f (n, 0, 0, H0)|+
n−1∑
s=α

|f (s, 0, 0, H0)| ≤ d exp (Ln) , (3.7)

where f,H, u0 are as in equation (1.1).
Under the assumptions (i) and (ii) the equation (1.1) has a unique solution
u(n) on Nα,β+1 in S.

Proof. Let u ∈ S and define the operator T by

(Tu) (n) = u0 +
n−1∑
s=α

f (s, u (s) ,∆u (s) , Hu (s)) . (3.8)

From (3.8), we get

∆ (Tu) (n) = f (n, u (n) ,∆u (n) , Hu (n)) . (3.9)

We first show that T maps S into itself. We verify that (3.1) is fulfilled. From
(3.8), (3.9), using the hypotheses and (3.3), we have

|(Tu) (n)|1 ≤ |u0|+
n−1∑
s=α

|f (s, u (s) ,∆u (s) , Hu (s))− f (s, 0, 0, H0)|

+
n−1∑
s=α

|f (s, 0, 0, H0)|

+ |f (n, u (n) ,∆u (n) , Hu (n))− f (n, 0, 0, H0)|+ |f (n, 0, 0, H0)|

≤ d exp (Ln) +
n−1∑
s=α

{
p (s) |u (s)|1 +

β∑
τ=α

q (s, τ) |u (τ)|1

}

+p (n) |u (n)|1 +

β∑
τ=α

q (n, τ) |u (τ)|1

≤ d exp (Ln) + |u|S

[
n−1∑
s=α

{
p (s) exp (Ls) +

β∑
τ=α

q (s, τ) exp (Lτ)

}
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+

{
p (n) exp (Ln) +

β∑
τ=α

q (n, τ) exp (Lτ)

}]

≤ d exp (Ln) +M

[
n−1∑
s=α

E (s) + E (n)

]
≤ [d+Mδ] exp (Ln) . (3.10)

From (3.10), it follows that Tx ∈ S.

Next, we verify that the operator T is a contraction map. Let u, v ∈ S.
From (3.8), (3.9), and using the hypotheses, we have

|(Tu) (n)− (Tv) (n)|1

≤
n−1∑
s=α

|f (s, u (s) ,∆u (s) , Hu (s))− f (s, v (s) ,∆v (s) , Hv (s))|

+ |f (n, u (n) ,∆u (n) , Hu (n))− f (n, v (n) ,∆v (n) , Hv (n))|

≤
n−1∑
s=α

{
p (s) |u (s)− v (s)|1 +

β∑
τ=α

q (s, τ) |u (s)− v (s)|1

}

+p (n) |u (n)− v (n)|1 +

β∑
τ=α

q (n, τ) |u (τ)− v (τ)|1

≤ |u− v|S

[
n−1∑
s=α

E (s) + E (n)

]
≤ |u− v|S δ exp (Ln) . (3.11)

From (3.11), we get

|Tu− Tv|S ≤ δ |u− v|S .

Since δ < 1, it follows from Banach fixed point theorem (see [3, Theorem 9.1,
p. 372]) that T has a unique fixed point in S. The fixed point of T is however
a solution of equation (1.1). The proof is complete.
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4. Estimates On the Solutions

In this section we apply the inequality in Theorem 1 to obtain estimates on
the solutions of IVP (1.1) under some suitable conditions on the functions
involved therein.

The following theorem concerning the estimate on the solutions of IVP (1.1)
holds.

Theorem 3. Suppose that the functions f, h in (1.1) satisfy the conditions

|f (n, u, v, w)| ≤ γ [|u|+ |v|+ |w|] , (4.1)

|h (n, τ, u, v)| ≤ q (n) r (τ) [|u|+ |v|] , (4.2)

for all u, v, w ∈ Rm, where 0 ≤ γ < 1 is a constant and q, r ∈ D (Nα,β+1, R+) .
Let

L1 (n) =
|u0|

1− γ
+

1

1− γ

n−1∑
s=α

γ
|u0|

1− γ

n−1∏
σ=s+1

[
1 +

1

1− γ

]
, (4.3)

L2 (n) =
γ

1− γ
q (n) +

1

1− γ

n−1∑
s=α

γ

[
γ

1− γ
+ 1

]
q (s)

n−1∏
σ=s+1

[
1 +

1

1− γ

]
(4.4)

for n ∈ Nα,β+1 and

λ =

β∑
ξ=α

r (ξ)L2 (ξ) < 1, (4.5)

Q =
1

1− λ

β∑
ξ=α

r (ξ)L1 (ξ) . (4.6)

If u(n) is any solution of IVP (1.1) on Nα,β+1, then

|u (n)|+ |∆u (n)| ≤ L1 (n) +QL2 (n) , (4.7)

for n ∈ Nα,β+1.
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Proof. Let m (n) = |u (n)|+ |∆u (n)| , n ∈ Nα,β+1. Using the hypotheses, we
observe that

m (n) =

∣∣∣∣∣u0 +
n−1∑
s=α

f (s, u (s) ,∆u (s) , Hu (s))

∣∣∣∣∣+ |f (n, u (n) ,∆u (n) , Hu (n))|

≤ |u0|+
n−1∑
s=α

γ

[
m (s) +

β∑
τ=α

q (s) r (τ)m (τ)

]
+γ

[
m (n) +

β∑
τ=α

q (n) r (τ)m (τ)

]
.

(4.8)
From (4.8) it is easy to observe that

m (n) ≤ |u0|
1− γ

+
1

1− γ

n−1∑
s=α

γ

[
m (s) + q(s)

β∑
τ=α

r (τ)m (τ)

]

+
γ

1− γ
q (n)

β∑
τ=α

r (τ)m (τ) . (4.9)

Now a suitable application of Theorem 1 to (4.9) yields (4.7).

Remark 1. We note that the estimate obtained in (4.7) yields not only the
bound on the solution u(n) of IVP (1.1) but also the bound on ∆u (n). If the
estimate on the right hand side in (4.7) is bounded, then the solution u(n) of
IVP (1.1) and ∆u (n) are also bounded on Nα,β+1.

Consider the IVP (1.1) together with the following IVP:

∆z (n) = g (n, z (n) ,∆z (n) , Hz (n)) , z (α) = z0, (4.10)

for n ∈ Nα,β+1, whereH is given by (1.2) and g ∈ D (Nα,β+1 ×Rm ×Rm ×Rm, Rm) .

In the following theorem we provide conditions concerning the closeness of
solutions of IVP (1.1) and IVP (4.10).

Theorem 4. Suppose that the functions f, h in (1.1) satisfy the conditions

|f (n, u, v, w)− f (n, ū, v̄, w̄)| ≤ γ [|u− ū|+ |v − v̄|+ |w − w̄|] , (4.11)
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|h (n, τ, u, v)− h (n, τ, ū, v̄)| ≤ q (n) r (τ) [|u− ū|+ |v − v̄|] , (4.12)

where 0 ≤ γ < 1 is a constant, q, r ∈ D (Nα,β+1, R+) and there exist constants
ε ≥ 0, δ ≥ 0 such that

|f (n, u, v, w)− g (n, u, v, w)| ≤ ε, (4.13)

|u0 − z0| ≤ δ, (4.14)

where f, u0 and g, z0 are as in (1.1) and (4.10). Let λ, L2 (n) be as in (4.5),
(4.4) and

e (n) = δ + ε [1 + n− α] , (4.15)

Q0 =
1

1− λ

β∑
ξ=α

r (ξ)A0 (ξ) , (4.16)

in which

A0 (n) =
e (n)

1− γ
+

1

1− γ

n−1∑
s=α

γ
e (s)

1− γ

n−1∏
σ=s+1

[
1 +

γ

1− γ

]
. (4.17)

Let u(n) and z(n) be respectively, solutions of IVP (1.1) and IVP (4.10) on
Nα,β+1, then

|u (n)− z (n)|+ |∆u (n)−∆z (n)| ≤ A0 (n) +Q0 L2 (n) , (4.18)

for n ∈ Nα,β+1.

Proof. Let w (n) = |u (n)− z (n)| + |∆u (n)−∆z (n)| , n ∈ Nα,β+1. Using
the hypotheses, we observe that

w (n) ≤ |u0 − z0|+
n−1∑
s=α

|f (s, u (s) ,∆u (s) , Hu (s))− f (s, z (s) ,∆z (s) , Hz (s))|

+
n−1∑
s=α

|f (s, z (s) ,∆z (s) , Hz (s))− g (s, z (s) ,∆z (s) , Hz (s))|

+ |f (n, u (n) ,∆u (n) , Hu (n))− f (n, z (n) ,∆z (n) , Hz (n))|

+ |f (n, z (n) ,∆z (n) , Hz (n))− g (n, z (n) ,∆z (n) , Hz (n))|
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≤ δ +
n−1∑
s=α

γ

[
w (s) + q (s)

β∑
τ=α

r (τ)w (τ)

]
+

n−1∑
s=α

ε

+γ

[
w (n) + q (n)

β∑
τ=α

r (τ)w (τ)

]
+ ε

= e (n)+
n−1∑
s=α

γ

[
w (s) + q (s)

β∑
τ=α

r (τ)w (τ)

]
+γ

[
w (n) + q (n)

β∑
τ=α

r (τ)w (τ)

]
.

(4.19)
From (4.19) it is easy to observe that

w (n) ≤ e (n)

1− γ
+

1

1− γ

n−1∑
s=α

γ

[
w (s) +

β∑
τ=α

q (s) r (τ)w (τ)

]
+

γ

1− γ
q (n)

β∑
τ=α

r (τ)w (τ).

(4.20)
Now a suitable application of Theorem 1 to (4.20) yields (4.18).

Remark 2. We note that the result given in Theorem 3 relates the solutions
of IVP (1.1) and IVP (4.10) in the sense that if f is close to g; u0 is close to
z0, then it is easy to observe that the solutions of IVP (1.1) and IVP (4.10)
are also close to each other.

5. Continuous Dependence

In this section we present results on the dependency of solutions of (1.1) on
initial values and also the solutions of equations of the form (1.1) on parame-
ters.

The following theorem deals with the continuous dependence of solutions of
(1.1) on given initial values.

Theorem 5. Let ui(n)(i = 1, 2) be respectively the solutions of equation

∆u (n) = f (n, u (n) ,∆u (n) , Hu (n)) , (5.1)

with the given initial conditions

ui (α) = ci, (5.2)
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where f, h are as in (1.1) and ci are given constants. Suppose that the functions
f, h in (5.1) satisfy the conditions (4.11), (4.12). Let λ, L2 (n) be as in (4.5),
(4.4) and

Q1 =
1

1− λ

β∑
ξ=α

r (ξ)A1 (ξ) , (5.3)

where A1(n) is defined by the right hand side of (4.17) by replacing e(n) by
|c1 − c2| . Then

|u1 (n)− u2 (n)|+ |∆u1 (n)−∆u2 (n)| ≤ A1 (n) +Q1 L2 (n) , (5.4)

for n ∈ Nα,β+1.

Proof. Let u (n) = |u1 (n)− u2 (n)|+|∆u1 (n)−∆u2 (n)| , n ∈ Nα,β+1. From
the hypotheses, we observe that

u (n) ≤ |c1 − c2|+
n−1∑
s=α

|f (s, u1 (s) ,∆u1 (s) , Hu1 (s))− f (s, u2 (s) ,∆u2 (s) , Hu2 (s))|

+ |f (n, u1 (n) ,∆u1 (n) , Hu1 (n))− f (n, u2 (n) ,∆u2 (n) , Hu2 (n))|

≤ |c1 − c2|+
n−1∑
s=α

γ

[
u (s) +

β∑
τ=α

q (s) r (τ)u (τ)

]
+γ

[
u (n) +

β∑
τ=α

q (n) r (τ)u (τ)

]
.

(5.5)
From (5.5) it is easy to observe that

u (n) ≤ |c1 − c2|
1− γ

+
1

1− γ

n−1∑
s=α

γ

[
u (s) + q (s)

β∑
τ=α

r (τ)u (τ)

]

+
γ

1− γ
q (n)

β∑
τ=α

r (τ)u (τ). (5.6)

Now a suitable application of Theorem 1 to (5.6) yields (5.4), which shows the
dependency of solutions of (5.1) on given initial values.

Remark 3. If we choose c1 = c2 in Theorem 5, then it is easy to see that
A1(n) = 0, Q1 = 0 and consequently from (5.4) the uniqueness of solutions of
(5.1) follows.
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Next, we consider the following IVPs for implicit Fredholm type sum-difference
equations

∆z (n) = f (n, z (n) ,∆z (n) , Hz (n) , µ) , z (α) = z0, (5.7)

∆z (n) = f (n, z (n) ,∆z (n) , Hz (n) , µ0) , z (α) = z0, (5.8)

where H is given as in (1.2), f ∈ D (Nα,β+1 ×Rm ×Rm ×Rm ×R,Rm) and
µ, µ0 are parameters.

The next theorem deals with the dependency of solutions of IVP (5.7) and
IVP (5.8) on parameters.

Theorem 6. Suppose that the functions h and f in (5.7), (5.8) respectively
satisfy the condition (4.12) and

|f (n, u, v, w, µ)− f (n, ū, v̄, w̄, µ)| ≤ γ [|u− ū|+ |v − v̄|+ |w − w̄|] , (5.9)

|f (n, u, v, w, µ)− f (n, u, v, w, µ0)| ≤ m (n) |µ− µ0| , (5.10)

where 0 ≤ γ < 1 is a constant and m ∈ D (Nα,β+1, R+) . Let

m̄ (n) = m (n) +

β∑
τ=α

m (τ), (5.11)

λ, L2 (n) be as in (4.5), (4.4) and

Q2 =
1

1− λ

β∑
ξ=α

r (ξ)A2 (ξ) , (5.12)

where A2(n) is defined by the right hand side of (4.17) by replacing e(n) by
|µ− µ0| m̄ (n) . Let z1(n) and z2(n) be respectively the solutions of IVP (5.7)
and IVP (5.8) on Nα,β+1. Then

|z1 (n)− z2 (n)|+ |∆z1 (n)−∆z2 (n)| ≤ A2 (n) +Q2 L2 (n) , (5.13)

for n ∈ Nα,β+1.
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Proof. Let w (n) = |z1 (n)− z2 (n)|+ |∆z1 (n)−∆z2 (n)| , n ∈ Nα,β+1. From
the hypotheses, we observe that

w (n) ≤
n−1∑
s=α

|f (s, z1 (s) ,∆z1 (s) , Hz1 (s) , µ)− f (s, z2 (s) ,∆z2 (s) , Hz2 (s) , µ)|

+
n−1∑
s=α

|f (s, z2 (s) ,∆z2 (s) , Hz2 (s) , µ)− f (s, z2 (s) ,∆z2 (s) , Hz2 (s) , µ0)|

+ |f (n, z1 (n) ,∆z1 (n) , Hz1 (n) , µ)− f (n, z2 (n) ,∆z2 (n) , Hz2 (n) , µ)|

+ |f (n, z2 (n) ,∆z2 (n) , Hz2 (n) , µ)− f (n, z2 (n) ,∆z2 (n) , Hz2 (n) , µ0)|

≤
n−1∑
s=α

γ

[
w (s) +

β∑
τ=α

q (s) r (τ)w (τ)

]
+

n−1∑
s=α

m (s) |µ− µ0|

+γ

[
w (n) +

β∑
τ=α

q (n) r (τ)w (τ)

]
+m (n) |µ− µ0| . (5.14)

From (5.14), we observe that

w (n) ≤ |µ− µ0| m̄ (n)

1− γ
+

1

1− γ

n−1∑
s=α

γ

[
w (s) + q (s)

β∑
τ=α

r (τ)w (τ)

]

+
γ

1− γ
q (n)

β∑
τ=α

r (τ)w (τ). (5.15)

Now an application of Theorem 1 to (5.15) yields (5.13), which shows the
dependency of solutions of IVP (5.7) and IVP (5.8) on parameters.

Remark 4. We note that the results given in this paper can be extended
very easily to study the sum-difference equation of the form (1.1) involving
functions of two independent variables (see [10]) by making use of the two
independent variable generalization of Theorem 1 given above (see also [8,
Theorem 5.5.1]). For further results on the qualitative properties of solutions
of various sum-difference equations, see [7-10] and the references cited therein.
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