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Abstract 
The concepts of (Φ , ρ)-invexity  have been given by Caristi, Ferrara 

and Stefanescu[32]. We consider a higher-order dual model associated to a  
multiobjective programming problem involving support functions and a 
weak duality result is established under appropriate higher-order (Φ , ρ)-
invexity conditions. 
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1. Introduction 

 

For nonlinear programming problems, a number of duals have been suggested 
among which the Wolfe dual [35,8] is well known. While studying duality under 
generalized convexity, Mond and Weir [36] proposed a number of different duals for 
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nonlinear programming problems with nonnegative variables and proved various 
duality theorems under appropriate pseudo-convexity/quasi-convexity assumptions. 

The study of second order duality is significant due to the computational 
advantage over first order duality as it provides tighter bounds for the value of the 
objective function when approximations are used [10,16,24]. Mangasarian[12] 
considered a nonlinear programming problem and discussed second order duality 
under inclusion condition. Mond [14] was the first who present second order 
convexity. He also gave in [14] simpler conditions than Mangasarian using a 
generalized form of convexity. which was later called bonvexity by Bector and 
Chandra [2]. Further, Jeyakumar [37,30] and Yang [24] discussed also second order 
Mangasarian type dual formulation under ρ-convexity and generalized representation 
conditions respectively. In [20] Zhang and Mond established some duality theorems 
for second-order duality in nonlinear programming under generalized second-order B-
invexity, defined in their paper. In [14] it was shown that second order duality can be 
useful from computational point of view, since one may obtain better lower bounds 
for the primal problem than otherwise. The case of some optimization problems that 
involve n-set functions was studied by Preda [38]. Recently, Yang et al. [24] proposed 
four second-order dual models for nonlinear programming problems and established 
some duality results under generalized second-order F -convexity assumptions. In [15] 
Mishra and Rueda generalized Zhang’s Mangasarian type and Mond-Weir type 
higher-order duality [28] to higher-order type I functions. Yang et al. [26] extended 
this results to a class of nondifferentiable multiobjective programming problems. 
They also presented an unified higher-order dual model for nondifferentiable 
multiobjective programs, where every component of the objective function contains a 
support function of a compact convex set, also Batatorescu et al. [33]. 

For ),();,()),(,,( 2 axrdyaxFryax +=Φ , where ;.),( axF is sublinear on nR , the 
definition of ),( ρΦ - invexity reduces to the definition of ),( ρF -convexity 
introduced by Preda[29], which in turn Jeyakumar[30] generalizes the concepts of F-
convexity and ρ -invexity[31]. 

The more recent literature, Xu[21], Ojha [27], Ojha and Mukherjee [22] for 
duality under generalized ),( ρF -convexity, Mishra [23] and Yang et al.[24] for 
duality under second order F -convexity. Liang et al. [25] and Hachimi[26] for 
optimality criteria and duality involving ),,,( dF ρα -convexity or generalized 

),,,{ dF ρα -type functions.The ),( ρF -convexity was recently generalized to ),( ρΦ -
invexity by Caristi , Ferrara and Stefanescu [32],and here we will use this concept to 
extend some theoretical results of multiobjective programming. 

Whenever the objective function and all active restriction functions satisfy 
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simultaneously the same generalized invexity at a Kuhn-Tucker point which is an 
optimum condition, then all these functions should satisfy the usual invexity, too. This 
is not the case in multiobjective programming ; Ferrara and Stefanescu[28] showed 
that sufficiency Kuhn-Tucker condition can be proved under ),( ρΦ -invexity, even if 
Hanson’s invexity is not satisfied, Puglisi[34].The interested reader may 
consult[1,3,4,5,6,7,9,11,13,15,17,18,19,33,39,40,41,4243,44,45,46,47.48]. 

Therefore, the results of this paper are real extensions of the similar results 
known in the literature.    

The ),( ρF -convexity was recently generalized to ),( ρΦ -invexity by Caristi, 
Ferrara and Stefanescu[32], and here we will use this concept to extend some 
theoretical results of multiobjective programming. 

Whenever the objective function and all active restriction functions satisfy 
simultaneously the same generalized invexity at a Kuhn-Tucker point which is an 
optimum condition, then all these functions should satisfy the usual invexity, too. This 
is not the case in multiobjective programming ; Ferrara and Stefanescu[28] showed 
that sufficiency Kuhn-Tucker condition can be proved under ),( ρΦ -invexity, even if 
Hanson’s invexity is not satisfied, Puglisi[34]. 

Therefore, the results of this paper are real extensions of the similar results 
known in the literature.    

In Section 2 we define  the higher-order ),( ρΦ -invexity . In Section 3 we 
consider a class of multiobjective  programming problems and for the dual model we 
prove a weak duality result. 

 

2.  Notation and Preliminaries 
 

we denote by nR the n -dimensional Euclidean space, and by nR+ its nonnegative 
orthant . Further, { 0}nR x R x+ = ∈ >  .For any vector nx R∈ , ny R∈ , we denote 

1

n
T

i i
i

x y x y
=

=∑ . 

We consider : n pf R R→ , : n qg R R→ ,are differential functions  and nX R⊂ is 
an open set. We define the following multiobjective programming problem: 
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(P)  minimize ( )1( ) ( ).......... ( )

( ) 0 ,
pf x f x f x

subject to g x x x X

=

≥ ∈
 

Let X0 be the set of all feasible solutions of (P) that is, 0 { ( ) 0}X x X g x= ∈ ≥ . 

We quote some definitions and also give some new ones. 

Definition 2.1  

A  vector 0a X∈  is said to be an efficient solution of problem (P) if there exit no 

0Xx∈  such that ( ) ( ) \{0}pf a f x R+− ∈ i.e., ( ) ( )i if x f a≤ for all {1,.,.,., }i p∈ , and for 
at least one {1,.,.,., }j p∈ we have ( ) ( )i if x f a< .  

Definition 2.2 

A  point 
0Xa∈  is said to be a weak efficient solution of problem (VP) if there is no 

Xx∈  such that ).()( afxf <   

Definition 2.3 

A  point 0Xa∈  is said to be a properly efficient solution of (VP) if it is efficient 
and there exist a positive constant K such that for each 0x X∈  and for each 

{ }1,2......i p satisfying∈  ( ) ( )i if x f a< , there exist at least one { }1,2......i p suchthat∈   

( ) ( )f a f xj j<  and ( ) ( ) ( ) ( )f a f x K f x f ai i j j
 − ≤ − 
 

 Denoting by WE(P), E(P) and PE(P)  

the sets of all weakly efficient, efficient and properly efficient solutions of (VP), we 
have PE(P) E(P) WE(P).         ⊆ ⊆  

We denote by ( )f a∇ the gradient vector at a of a differentiable function 
: pf R R→ , and by 2 ( )f a∇ the Hessian matrix of  f at a . For a real valued twice 

differentiable function ( , )x yψ defined on an open set in p qR R× , we denote by 
( , )x a bψ∇ the gradient vector of ψ  with respect to x at ( , )a b , and by ( , )xx a bψ∇ the 

Hessian matrix with respect to x at ( , )a b . Similarly, we may define  ( , )y a bψ∇ , 
( , )xy a bψ∇ and ( , )yy a bψ∇ .For convenience, let us write the definitions of ( )ρ,Φ - 

invexity from[32], Let RX →0:ϕ   be a differentiable function ( )0
nX R⊆ ,

0X X⊆ , 

and 
0a X∈ . An element of all (n+1)- dimensional Euclidean Space 1+nR  is 

represented as the ordered pair ( z, r ) with ,nz R and r R ρ∈ ∈  is a real number and Φ  is 
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real valued function defined on ( )1
0 0 , , ,.nX X R suchthat x a is+× × Φ convex on 

( )( )1 , , 0, 0,nR and x a r+ Φ ≥  for every  ( ), 0 0x a X X∈ ×  and r R∈ + , : nh X R R× → be 

differentiable function. 

 
Definition 2.4 

A function :f X R→ is said to be higher-order ( , )ρΦ -invex at Xu∈ with 
respect to h ,both f and h are differentiable function, if for all 
( , ) nx y X R∈ × , 1: nX X R R+Φ × × → , ρ is a real number, we have, 
{ ( ) ( ) ( , ) ( , )} ( , ; ( ( ) ( , ), ))T

y yf x f u h u y y h u y x u f u h u y ρ− − + ∇ ≥Φ ∇ +∇                     (2.1) 

Definition 2.5 

A function :f X R→ is said to be higher-order ( , )ρΦ -incave at Xu∈ with 
respect to h ,both f and h are differentiable function, if for all 
( , ) nx y X R∈ × , 1: nX X R R+Φ × × → , ρ is a real number, we  have, 
{ ( ) ( ) ( , ) ( , )} ( , ; ( ( ) ( , ), ))T

y yf x f u h u y y h u y x u f u h u y ρ− − + ∇ ≥Φ −∇ −∇  

Definition 2.6 

A function :f X R→ is said to be higher-order ( , )ρΦ -pseudoinvex at 
Xu∈ with respect to h ,both f and h are differentiable function, if for all 

( , ) nx y X R∈ × , 1: nX X R R+Φ × × → , ρ is a real number, we have  

( , ; ( ( ) ( , ), )) 0 { ( ) ( ) ( , ) ( , )} 0T
y yx u f u h u y f x f u h u y y h u yρΦ ∇ +∇ ≥ ⇒ − − + ∇ ≥  (2.2) 

Definition 2.7 

A function :f X R→ is said to be higher-order ( , )ρΦ -quasiinvex at Xu∈ with 
respect to h ,both f and h are differentiable function, if for all 
( , ) nx y X R∈ × , 1: nX X R R+Φ × × → , ρ is a real number, we have, 

{ ( ) ( ) ( , ) ( , )} 0 ( , ; ( ( ) ( , ), )) 0T
y yf x f u h u y y h u y x u f u h u y ρ− − + ∇ ≤ ⇒Φ ∇ +∇ ≤          (2.3) 

Remark 2.1 

(i) If we consider the case, ( , ; ( ( ), )) ( , ; ( ))x u f u F x u f uρΦ ∇ = ∇ (with F is 
sublinear in third argument, then the above definition reduce to Definition 4 of 
Chandra et al.[4] . 
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Example 2.1 

We present here a function which is higher-order ( , )ρΦ -invex. Let us consider 
(0, )X = ∞ and  

:f X R→ , ( ) logf x x x= , : , ( , ) logh X R R h u y y u× → = − . We have  

1( ) 1 log , ( ) , ( , ) logu uu yf u u f u h u y u
u

∇ = + ∇ = ∇ = − , 1: nX X R R+Φ × × → , taking 

0ρ = 2( , ; )x y b b bΦ = + . 

It is obvious our mapping is more generalized rather than previous ones. 

Hence ( ) logf x x x= is higher-order ( , )ρΦ -invex at u X∈ , with respect to 
( , ) logh u y y u= − . 

 

3. Higher-order Mond-Weir type Symmetric Duality 
 
We consider in this section twice differentiable functions 

, ,n m n m n n m m
i i if R R R g R R R R h R R R R= × → = × × → = × × → , and compact convex 

sets n
iC R⊂  and m

iD R⊂ , for 1, 2,.,.,i p= . 

We define the following pair of higher-order symmetric multiobjective dual 
problems. 

(MP) 

minimize 

11 1 1 1 1 1( , ) ( , , ) ( ( , , ))

                     :
                     :

( , ) ( , , ) ( ( , , ))

 
p

T

T
p p p p p p

f x y h x y h x y

f x y h x y h x y

π

π

π π π

π π π

 + − ∇
 
 
 
 
 + − ∇
  
 

 

subject to  

1
( ( , ) ( , , )) 0

i

p

i y i i i
i

f x y h x yπλ π
=

∇ +∇ ≤∑        (3.1) 
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1
( ( , ) ( , , )) 0

i

p
T

i y i i i
i

y f x y h x yπλ π
=

∇ +∇ ≥∑        (3.2) 

1
1,.,., , 0, 1

p

i
i

i p λ λ
=

= > =∑         (3.3) 

(MD) 

maximize 

11 1 1 1 1 1( , ) ( , , ) ( ( , , ))

                     :
                     :

( , ) ( , , ) ( ( , , ))

 
p

T

T
p p p p p p

f u v g u v g u v

f u v g u v g u v

µ

µ

µ µ µ

µ µ µ

 + − ∇
 
 
 
 
 + − ∇
  
 

 

subject to  

1
( ( , ) ( , , )) 0

i

p

i u i i i
i

f u v g u vµλ µ
=

∇ +∇ ≥∑       (3.4) 

1
( ( , ) ( , , )) 0

i

p
T

i u i i i
i

u f u v g u vµλ µ
=

∇ +∇ ≤∑        (3.5) 

1,.,., , 0, 1Ti p eλ λ= > =          (3.6) 

In the sequel we shall establish weak, strong and converse duality theorems under 
( , )ρΦ -univex type assumptions. For this, the number . , 1, 2,.,.,i R i pρ ∈ = .Further, 
we suppose that the functions 1

0 : n n nR R R R+Φ × × →  and 1
1 : n n nR R R R+Φ × × →  

also satisfy the condition 

0 ( , ; ( , )) 0Tx u uξ ρ ξΦ + ≥ , for all nRξ +∈  

1( , ; ( , )) 0Tv y yζ ρ ζ′Φ + ≥ , for all mRζ +∈      (3.7) 

We suppose also that following conditions are satisfied: 

(1) the functions (., )if v  are higher-order 0( , )ρΦ -invex at u . 

 (2) ( ,.)if x  are higher-order 1( , )ρΦ -incave at y . 
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Theorem 3.1 (Weak duality) 

Let 1 2( , , , , ,.,., )px y λ π π π be a feasible solution of (MP) and 1 2( , , , , ,.,., )pu v λ µ µ µ  
a feasible solution of (MD). Then the inequalities can not hold simultaneously: 

(i) for all {1,2,.,., }i p∈ , 

( , ) ( , , ) ( ( , , ))T
i i i i i if x y h x y h x yππ π π+ − ∇ ≤ ( , ) ( , , ) ( ( , , ))T

i i i i i if u v g u v g u vµµ µ µ+ − ∇  

     (3.8) 

(ii) for at least one {1,2,.,., }j p∈ , 

( , ) ( , , ) ( ( , , ))T
i i i i i if x y h x y h x yππ π π+ − ∇ < ( , ) ( , , ) ( ( , , ))T

i i i i i if u v g u v g u vµµ µ µ+ − ∇  

       (3.9) 

Proof. 

Since, 1 2( , , , , ,.,., )px y λ π π π be a feasible solution of (MP) and 

1 2( , , , , ,.,., )pu v λ µ µ µ  a feasible solution of (MD), by (3.7) and (3.4), we get  

0
1 1

( , ; ( { ( , ) ( , , )}, )) { ( , ) ( , , )} 0
p p

T
i u i i i i i u i i i

i i
x u f u v g u v u f u v g u vµ µλ µ ρ λ µ

= =

Φ ∇ +∇ + ∇ +∇ ≥∑ ∑
        By (3.5) we have  

0
1

( , ; ( { ( , ) ( , , )}, )) 0
p

i u i i i i
i

x u f u v g u vµλ µ ρ
=

Φ ∇ +∇ ≥∑                          (3.10) 

It follows from the higher-order 0( , )ρΦ -invexity of (., )if v  at u with respect to 
( , , )i ig u v µ that 

{ ( , ) ( , )}i if x v f u v− ≥  

0
1

( , ; ( { ( , ) ( , , )}, )) { ( , , ) ( , , )}
p

T
i u i i i i i i i i i

i
x u f u v g u v g u v g u vµ µλ µ ρ µ µ µ

=

Φ ∇ +∇ + − ∇∑   (3.11) 

Since 0, 1T eλ λ> = , from (3.4),(3.10) and (3.11), we get  

1
{ ( , ) ( , )}

p

i i i
i

f x v f u vλ
=

−∑ ≥  

0
1 1

( , ; ( { ( , ) ( , , )}, )) { ( , , ) ( , , )}
p p

T
i u i i i i i i i i i i

i i
x u f u v g u v g u v g u vµ µλ µ ρ λ µ µ µ

= =

Φ ∇ +∇ + − ∇∑ ∑  
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That is  

1
( , )

p

i i
i

f x vλ
=
∑ ≥

1
( , )

p

i i
i

f u vλ
=
∑ +

1
{ ( , , ) ( , , )}

p
T

i i i i i i
i

g u v g u vµλ µ µ µ
=

− ∇∑                        (3.12) 

On the other hand , from (3.1) and (3.7) we get  

1
1

( , ; ( ( ( , ) ( , , ), ))
p

i y i i i i
i

v y f x y h x yπλ π ρ
=

Φ − ∇ +∇∑ −
1

( ( , ) ( , , )
p

T
i y i i i

i
y f x y h x yπλ π

=

∇ +∇∑  ≥ 0 , 

which, by using (3.2), imply 

1
1

( , ; ( ( ( , ) ( , , ), ) 0
p

i y i i i i
i

v y f x y h x yπλ π ρ
=

Φ − ∇ +∇ ≥∑                          (3.13) 

Now, using the fact that ( ,.)if x  is higher-order 1( , )ρΦ -incavity at y , with 
respect   to ( , , ), 1, 2,.,.,i ih x y i pπ− = , we have,  

{ ( , ) ( , )}i if x v f x y− − ≥  

 1
1

( , ; ( ( ( , ) ( , , ), ))
p

i y i i i i
i

v y f x y h x yπλ π ρ
=

Φ − ∇ +∇∑ + { ( , , ) ( , , )}T
i i i i ih x y h x yππ π π− + ∇  

(3.14) 

Since 0, 1T eλ λ> = , from (3.13)and (3.14) , we get  

1
( , )

p

i i
i

f x vλ
=
∑ ≤

1
( , )

p

i i
i

f x yλ
=
∑ +

1
{ ( , , ) ( , , )}

p
T

i i i i i i
i

h x y h x yπλ π π π
=

− ∇∑                        (3.15) 

from (3.12) and (3.15) we obtain 

1
{ ( , ) ( , , ) ( , , )}

p
T

i i i i i i i
i

f u v g u v g u vµλ µ µ µ
=

+ − ∇∑ ≤
1

[ ( , ) ( , , ) ( , , )]
p

T
i i i i i i i

i
f x y h x y h x yπλ π π π

=

+ − ∇∑  

 which proves the assertion of the theorem. 

                                

Remark 3.2.   
Following the same lines as in the previous proof, we easily can prove other 

variants of Theorem 3.1 under the same assumptions, but replacing in the statement 
the corresponding conditions by those below: 
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(1) the functions (., )if v  are higher-order 0( , )ρΦ -pseudoinvex at u , with respect   
to ( , , ), 1, 2,.,.,i ig u v i pµ = ; 

 (2) ( ,.)if x  are higher-order 1( , )ρΦ -incave at y , with respect   to  

( , , ), 1, 2,.,.,i ih x y i pπ− = ; respectively 

(3) the functions (., )if v  are higher-order 0( , )ρΦ -pseudoinvex at u , with respect   
to ( , , ), 1, 2,.,.,i ig u v i pµ = ; 

 (4) ( ,.)if x  are higher-order 1( , )ρΦ -incave at y , with respect   to  

( , , ), 1, 2,.,.,i ih x y i pπ− = ; respectively 

Now, under appropriate conditions, we state a strong duality and a converse 
duality theorem relative to problems, (MP) and (MD). 

 

Theorem 3.2 ( Strong duality) 

Let 1 2( , , , , ,., )px y λ π π π′ ′ ′ ′ ′ ′ be a feasible solution of (MP) and assume that 

(i) for all  {1,2,.,., }i p∈ we have 

( , ,0) 0, ( , ,0) 0, ( , ,0) 0,i i ih x y g x y h x yπ′ ′ ′ ′ ′ ′= = ∇ =
( , ,0) 0, ( , ,0) ( , ,0)y i x i ih x y h x y g x yµ′ ′ ′ ′ ′ ′∇ = ∇ = ∇  ; 

(ii) for all  {1,2,.,., }i p∈ the Hessian matrix ( , , )i ih x yππ π′ ′ ′∇  is positive or 
negative definite ; 

(iii) the vectors ( , ) ( , , ), 1, 2,. ,y i i if x y h x y i pπ π′ ′ ′ ′ ′∇ +∇ = , are linearly independent; 

(iv) for any , 0pRβ β+∈ ≠ , and , 0, 1, 2,.,.,m
i iR i pπ π∈ ≠ = , we have 

1
{ ( , ) ( , , )} 0

p
T

i i y i i i
i

f x y h x yπβ π π
=

′ ′ ′ ′∇ +∇ ≠∑ , then  

(a) 0, 1,2,.,.,i i pπ ′ = = ; 

(b) there exist i iw C′∈ such that 1 2( , , ,0 ,0 ,. ,. ,0 )px y λ′ ′ ′ is a feasible solution of 
(MD). 
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Furthermore, if the assumptions of Theorem 3.1 are satisfied and the functions 
( , , , ) 0, 1, 2,.,.,ib x y u v i p′ ′ ′ ′ > = , then 1 2( , , ,0 ,0 ,. ,. ,0 )px y λ′ ′ ′ is a properly efficient 

solution of (MD) and the values of both problems are equal. 

  

Theorem 3.3 (Converse duality) 

Let 1 2( , , , , ,., )pu v λ µ µ µ′ ′ ′ ′ ′ ′ be a properly efficient  solution of (MD) and assume 
that 

(i)for all  {1,2,.,., }i p∈ we have  ( , ,0) 0, ( , ,0) 0, ( , ,0) 0,i i ih u v g u v g u vµ′ ′ ′ ′ ′ ′= = ∇ =   
( , ,0) 0, ( , ,0) ( , ,0)x i y i ig u v g u v h u vπ′ ′ ′ ′ ′ ′∇ = ∇ = ∇  ; 

(ii)  for all  {1,2,.,., }i p∈ the Hessian matrix ( , , )i ig u vµµ µ′ ′ ′∇  is positive or 
negative definite ; 

(iii)the vectors ( , ) ( , , ), 1, 2,. ,x i i if u v g u v i pµ µ′ ′ ′ ′ ′∇ +∇ = , are linearly independent; 

(iv)for any , 0pRβ β+∈ ≠ , and , 0, 1, 2,., .,n
i iR i pµ µ∈ ≠ = , we have 

1
{ ( , ) ( , , )} 0

p
T

i i x i i i
i

f u v g u vµβ µ µ
=

′ ′ ′ ′ ′∇ +∇ ≠∑ ,  then  

(a) 0, 1, 2,.,.,i i pµ = = ; 

(b) there exist i iz D′∈ such that 1 2( , , ,0 ,0 ,. ,. ,0 )pu v λ′ ′ ′ is a feasible solution of 
(MP). 
 

Furthermore, if the assumptions of Theorem 3.1 are satisfied and the functions 
( , , , ) 0, 1, 2,.,.,ib x y u v i p′ ′ ′ ′ > = , then 1 2( , , ,0 ,0 ,. ,. ,0 )pu v λ′ ′ ′ is a properly efficient 

solution of (MP) and the values of both problems are equal.  
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