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Abstract

In the present paper, we study the various useful methods of solv-
ing the one-dimensional integral equation of Fredholm type. We first
solve an integral equation involving the product of multivariable H-
function by the application of fractional calculus theory. Further the
Fredholm integral equation involving the product of I-functions in the
kernel is also considered by the Mellin transform techniques. The re-
sults obtained here are general in nature and capable of yielding a large
number of results (new or known) hitherto scattered in the literature.
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1. Introduction and Definitions

In the last several years a large number of Fredholm type integral equations
involving various polynomials or special functions as their kernels have been
studied by many authors notably Buchman [1], Higgins [5], Love ([7] and
[8]), Prabhakar and Kashyap [10], Srivastava and Buchman [14], Srivastava
and Raina [17], Chaurasia and Patni [2] and others, In the present paper, we
obtain the solutions of the following Fredholm integral equations
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The series representation of the multivariable H-function [16] is given by Olkha
and Chaurasia [2] as
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Let [ denote the space of all functions f which are defined on R* [0,00) and
satisfy

(i) fep (R,

(ii) Xli_}rr;o [x7f"(x)] = 0 for all non-negative integers v and r.

(iii) f(x) = 0(1) as x — 0.

For correspondence to the space of good functions defined on the whole real
line (—o0,00) see Lighthill [6].

The Riemann-Liouville fractional integral (of order u) is defined by

X

Hfx)} = SHix) = L x —w)" H(w) dw
DAE() = oD} = o [ (e wp e
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where D#{f(x)} = ¢(x)is understood to mean that ¢ is a locally integrable
solution of f(x) = D™#*{¢(x)},implying that D" is the inverse of the fractional
operator D™* (whenever necessary, we shall simply write D_* for (D_#for the
Riemann-Liouville fractional integral operator defined by (11) above).

The Weyl fractional integral (of order h) is defined by
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2. Solution of the Integral Equation Associated
with Product of Multivariable H-functions
Lemma 1. Let (i) A\, u®, v@) A, BO. ¢, DWbe positive integers such that 0
<A<A4,0<u® <DO C>0,and0 < v <BO i =1,..1;
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m; = 1,...,06(1); Pi, j = 0, 1,2,.. -
(v)w # 0, V; <0, Vi € {1,..,r}, where V; is given by (11). Then

Wh—e [y gty (o8 oo (@0),800) | 18) Y oo YTy ar s (@) g s 50
ALCE (MYNY) s (MO N [(8) € €]y o (07) g w53

@) o

(p(r),sm)l:N(r) ; (/¥)7 s ur(X/Y)p}

(W', v');..
XHAC (B, D’) . (BM D)

N CLRRION [(a;): 0 ,....00)]q A ((W0)y e
[e§) 0 s 6] 21 (),

(bWt Ly

(b(r)7¢(r))1:D(r) : ZI(X/Y)Q PRRES} Zr(X/Y)q:|:|

- ] G i - Wi
N e ()

m;=1 n;=0 i= 1<8m1 1 )

HO,)V‘rl Z( /) ( @) V(r) (1 /8 le 1U q;-- 7q) [( ) Jv 79(r)]1A
A+1,CH1: (B’ D) 5.5 (BY.DW) {(ep) 4], s

(bs.&; >1B/, 5087 ,60), peyi7a (x/y)° } (13)
(1—a—p XI_; Uiiq,.0) : (dj, j)l,D/;---;(dj(r),éj(r))l,D(r);zr /|
Proof. To prove Lemma 1, we first use the definition of Weyl fractional in-
tegral given in (12) express the one multivariable H-function in series form
and other in Mellin-Barnes type, then we change the order of summations
and integrations (which is justified under the stated conditions), evaluate the
t-integral and reinterpreting the resulting Mellin-Barnes contour integral in
terms of the multivariable H-function, we easily arrive at the desired result.
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Theorem 1. With the set of sufficient conditions (i), (i), (i), (iv) and (v)

of Lemma 1,
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Proof. Let A denote the first member of the assertion (14). Then using
Lemma 1 and applying (12), we have
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The change in the order of integration is assumed to be permissible just as in
the proof of Lemma 1.
Now, by appealing to definition (11), (15) gives
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which is precisely the right-hand member of (14). This completes the proof of
Theorem 1.

3. Solution of the Integral Equation Involving
the Product of I-functions
Lemma 2. Let
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pi, 0<m<gq (i=1,..r);
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(i) |arg (z) | < 27T, where

m n
= Y o+ ) f— max Z Qi + Z Bii
<j<r
j=1 j=1 j=n+1 j=m+1

(iv) p, < q;and |u| < 1.
Then

5—04 —« m/,n/ p
W [Y ng,q;:r/ [u (x/y)

(3500 )1,03 (@50050), 41/
( j’ﬂj)l,tyx/;( 31“831)

m’+1,qi

m,n q
XInnee |7 (/)

(85,05)1,n; (851,041 )m+1,p;
(b5,85)1,m3 (b5, B85 m+ 1,5
J i

- m’ oo Qb/
=y B Z Z ﬁ - ?h k) 'k (X/y)p"]h,k
h=1 k=0 h

Imy n+1 (1—B—pMn,k,9), (a]7aJ)1 n; (8§i,Qji)n+1, Pi
pitl,qi+1l:r ( J7BJ)1 m; (leiﬁjl)m+l q; ,(I—a—p T, )]

(17)



56 V. B. L. Chaurasia and Devendra Kumar

Proof. The Lemma 2 can be easily established by using the same technique
as used in Lemma 1.

Theorem 2. Under the sufficient conditions (i), (ii), (iii), and (iv) of Lemma
2,
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Theorem 2 is established with the help of Lemma 2 and the equation (11), on
proceeding on similar lines as indicated in the proof of Theorem 1.
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4. Use of other Methods

One-dimensional Fredholm integral equation (2) involving the product of I-
functions in the kernel can also be solved by resorting to the application of
Mellin transforms.

Theorem 3. If f € [, D*P{f(x)}exists ¢ > 0, x> 0, |arg (z) |< 5 7 T,

T > 0 (T is given in Lemma 2), Re (a) > Re (3) > 0, p; < q;and |u |< 1,
then the solution of the integral equation
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where we have assumed the absolute (and uniform) convergence of the integrals
involved, with a view to justifying the inversion of the order of integration.
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Now, evaluate the inner integral in (23) by a simple change of variables in
the familiar results (cf. for example, [3] and [13]), equation (23) reduces to
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Inverting (24) by applying Mellin inversion theorem [18], we get
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as the solution of the integral equation (19).
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5. Special Cases

(i) If we set p = 0, the results in (13) and (14) reduce to the known results
obtained by Chaurasia and Patni [2].

(ii) Taking r = 1 and p = 0, then the results in (17), (18) and (19) reduce to
the known results with a slight modification obtained by Chaurasia and Patni
2].

(iii) On specializing the parameters in (13), (14), (17), (18) and (19), we arrive
at the results obtained by Srivastava and Raina [17].

The importance of our results lies in its manifold generality. In view of the
generality of the multivariable H-function, on specializing the various parame-
ters and variables, we can obtained from our results, several integral equations
and solutions involving a remarkably wide variety of useful functions (or prod-
uct of several functions), which are expressible in terms of E, F, G and H
functions of one and several variables. Secondly, by suitably specializing the
various parameters in the I-functions, our results can be reduces to a large
number of integral equations and solutions involving a product of H-functions,
G functions and their various special cases. Thus the results presented in this
paper would at once yield a very large number of results involving a large va-
riety of special functions occurring in the problems of mathematical analysis,
applied mathematics, mathematical physics and engineering.
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